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Abstract

LCM is an algorithm for enumeration of frequent closed itemsets in transac-
tion databases. It is well known that when we ignore the required frequency,
the closed itemsets are exactly intents of formal concepts in Formal Concept
Analysis (FCA). We describe LCM in terms of FCA and show that LCM
is basically the Close-by-One algorithm with multiple speed-up features for
processing sparse data. We analyze the speed-up features and compare them
with those of similar FCA algorithms, like FCbO and algorithms from the
In-Close family.
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1. Introduction

Frequent closed itemsets in transaction databases are exactly intents in
Formal Concept Analysis (FCA) with sufficient support—cardinality of the
corresponding extents. If the minimum required support is zero (i.e. any
attribute set is considered frequent), one can easily unify these two notions.
LCM (Linear time Closed itemset Miner) is an algorithm for the enumeration
of frequent closed itemsets developed by Takeaki Uno [17, 18, 19, 20] in 2003–
2005. It is considered to be one of the most efficient algorithms for this task.1

We have thoroughly studied Uno’s papers and source codes and, in the
present paper, we deliver a complete description of LCM from the point of
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view of FCA. Despite the source codes being among the main sources for this
study, we stay at a very comprehensible level in our description and avoid
delving into implementation details. We explain that the basis of LCM is
Kuznetsov’s Close-by-One (CbO) [13].2 We describe its additional speed-up
features and compare them with those of state-of-art CbO-based algorithms,
like FCbO [16] and In-Close2+ [4, 5, 6, 7].3

Remark 1 (Some subjective notes on our motivations). Besides the obvious
importance of LCM for FCA4, there are two motivational points for this work.
We separated them into this remark as they are based on our subjective
impressions and views. We ask the reader to excuse the rather subjective
tone in this remark.

(a) A significant part of the FCA community is aware of LCM and uses
Uno’s implementation to enumerate formal concepts for further pro-
cessing or for comparison with their methods. However, it is our im-
pression that, more often than not, the implementation is used merely
as a black box. We believe that this part of the FCA community would
appreciate ‘unwrapping the black box’.

(b) Uno’s papers provide quite confusing descriptions of LCM and the
source codes of the implementations are not written to allow easy anal-
ysis. Moreover, Uno’s implementation and description of LCM have
some differences; there is even an important feature present in the im-
plementation which is not described in the papers. We believe that a
clearer and more complete description would be fruitful.

The paper is structured as follows. First, we recall the basic notions and
notations of FCA (Section 2) we use in the rest of this paper. Then we de-
scribe CbO (Section 3) as it is a basis for description of LCM. Afterwards,
we provide a description of LCM’s features (Section 4), namely, initial pre-
processing of data (Section 4.1), handling data using arraylists computing
all attribute extents at once (Section 4.2), conditional datasets (Section 4.3),
and pruning (Section 4.4). In all of the above, we ignore the requirement of

2Although LCM was most likely developed independently.
3In the rest of this paper, whenever we write ‘CbO-based algorithms’ we mean CbO,

FCbO and In-Close family of algorithms. By version number 2+, we mean the version 2
and higher.

4However, the closed sets are also relevant in other disciplines, like association rule
mining [1, 8], condensed representation of inductive queries [15], or logical analysis of data
[2, 3].
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1 2 3 4 5 6 7

a ˆ ˆ ˆ ˆ ˆ ˆ
b ˆ ˆ ˆ ˆ
c ˆ ˆ
d ˆ ˆ ˆ ˆ

Figure 1: Formal context with objects a,b,c,d and attributes 1, 2, . . . , 7

frequency and we describe it separately (Section 5). We provide a tutorial-
like description of complete FP-trees used for the denser parts of data in
LCM3 (Section 6). Finally, we summarize our conclusions (Section 7).

This paper is an extended version of the conference paper [10] presented
at CLA 2020.

2. Formal Concept Analysis

An input to FCA is a triplet xX, Y, Iy, called a formal context, where X
and Y are non-empty sets of objects and attributes, respectively, and I is a
binary relation between X and Y ; xx, yy P I means that the object x has the
attribute y. Finite formal contexts are usually depicted as tables, in which
rows represent objects, columns represent attributes, and each entry contains
a cross if the corresponding object has the corresponding attribute, and is
left blank otherwise; see Fig. 1 for an example. In this paper, we consider
only finite formal contexts.

The formal context induces concept-forming operators:

Ò : 2X Ñ 2Y assigns to a set A of objects the set AÒ of all attributes
shared by all the objects in A.

Ó : 2Y Ñ 2X assigns to a set B of attributes the set BÓ of all objects
which share all the attributes in B.

Formally,

AÒ “ ty P Y | @x P A : xx, yy P Iu, and BÓ “ tx P X | @y P B : xx, yy P Iu.
For singletons, we use shortened notation and write xÒ, yÓ instead of txuÒ,
tyuÓ, respectively.

In this paper, we assume a set of attributes Y “ t1, . . . , nu. Whenever
we write about lower and higher attributes, we refer to the natural ordering
ď of the numbers in Y .
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A formal concept is a pair xA,By of sets A Ď X,B Ď Y , such that AÒ “ B
and BÓ “ A. The first component of a formal concept is called the extent,
whilst the second one is called the intent.

The compositions ÒÓ and ÓÒ of concept-forming operators are closure op-
erators on 2X and 2Y , respectively. That is, the composition ÓÒ satisfies

(extensivity) B Ď BÓÒ (1)

(monotony) B Ď D implies BÓÒ Ď DÓÒ (2)

(idempotency) BÓÒ “ BÓÒÓÒ (3)

for all B,D Ď Y (analogously for the composition ÒÓ).

Sets of attributes satisfying B “ BÓÒ are called closed sets and they are
exactly the intents of formal concepts.

3. Close-by-One

In the context of FCA, the foundation of LCM is CbO.5 Therefore, we
firstly turn our attention to CbO.

We start the description of CbO with a näıve algorithm for generating all
closed sets. The näıve algorithm traverses the space of all subsets of Y , each
subset is checked for closedness and is outputted. This approach is quite
inefficient as the number of closed subsets is typically significantly smaller
than the number of all subsets.

The algorithm is given by a recursive procedure GenerateFrom, which
accepts two attributes:

‚ B – the set of attributes, from which new sets will be generated.

‚ y – the auxiliary argument to remember the highest attribute in B.

The procedure first checks the input set B for closedness and prints it if it is
closed (lines 1,2). Then, for each attribute i higher than y:

‚ a new set is generated by adding the attribute i into the set B (line 4);

‚ the procedure recursively calls itself to process the new set (line 5).

The procedure is initially called with an empty set and zero as its arguments.
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Algorithm 1: Näıve algorithm to enumerate closed subsets

def GenerateFrom(B, y):
input : B – set of attributes

y – last added attribute
1 if B “ BÓÒ then
2 print(B)

3 for i P ty ` 1, . . . , nu do
4 D Ð B Y tiu
5 GenerateFrom(D, i)

6 return

GenerateFrom(H, 0)

H

1 2 3 4

43 4

4

2 3 4

43 4

4

1

2 10 14 16

1511 13

12

3 7 9

84 6

5

Figure 2: Tree of all subsets of t1, 2, 3, 4u. Each node represents a unique set containing
all elements in the path from the node to the root. The dotted arrows and small numbers
represent the order of traversal performed by the algorithm for generating all subsets.
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The näıve algorithm represents a depth-first sweep through the tree of all
subsets of Y (see Fig. 2) and printing the closed ones.

In the tree of all subsets (Fig. 2), each node is a superset of its predeces-
sors. We can use the closure operator ÓÒ to skip non-closed sets. In other
words, to make jumps in the tree to closed sets only. Instead of simply adding
an element to generate a new subset D Ð B Y tiu, CbO adds the element
and then closes the set

D Ð pB Y tiuqÓÒ. (4)

We need to distinguish the two outcomes of the closure (4). Either

• the closure contains some attributes lower than i which are not included
in B, i.e. Di ‰ Bi where Di “ DXt1, . . . , i´1u, Bi “ BXt1, . . . , i´1u;

• or it does not, and we have Di “ Bi.

The jumps with Di ‰ Bi are not desirable because they land on a closed
set which was already processed or will be processed later (depending on the
direction of the sweep). CbO does not perform such jumps. The check of
the condition Di “ Bi is called a canonicity test.

Algorithm 2: Close-by-One

def GenerateFrom(A, B, y):
input : A – extent

B – set of attributes
y – last added attribute

1 D Ð AÒ

2 if Dy ‰ By then
3 return

4 print(xA,Dy)
5 for i P ty ` 1, . . . , nu zD do
6 C Ð AX iÓ

7 GenerateFrom(C, D Y tiu, i)
8 return

GenerateFrom(X, H, 0)

One can see the pseudocode of CbO in Algorithm 2. In addition, we pass
an extent A to the procedure GenerateFrom and the closed set Dp“ BÓÒq is

5It is called a backtracking algorithm with prefix-preserving closure extensions in Uno’s
papers.
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computed as AÒ (line 1), which is more efficient. Then the canonicity test is
performed. If it fails, the procedure ends (lines 2, 3). Otherwise, we print
the concept and continue with the generation of its subtree.

Remark 2. What we show in Algorithm 2 is not the usual pseudocode of CbO
presented in literature. We made some superficial changes to emphasize the
link between CbO and LCM, which will be apparent later. Specifically:

(a) The closure and the canonicity test (lines 1–3) are usually performed
before the recursive invocation (line 7), not as the first steps of the
procedures.

(b) The main loop (line 5) of CbO usually processes the attributes in the
ascending order, which corresponds to a left-to-right depth-first sweep
through the tree of all subsets (Fig. 2). In actual fact, for CbO there is
no reason for a particular order of processing attributes.

4. Features of LCM

There are three versions of the LCM algorithm:

LCM1 is CbO with arraylist representation of data and computing of all
extents at once (described in Section 4.2), data preprocessing (described
in Section 4.1), and using of diffsets [21] to represent extents for dense
data (this is not present in later versions).

LCM2 is LCM1 (without diffsets) with conditional databases (described in
Section 4.3)

LCM3 is LCM2 which uses a hybrid data structure to represent a context.
The data structure uses a combination of FP-trees and bitarrays, called
a complete FP-tree (described in Section 6), to handle the most dense
attributes. Arraylists are used for the rest, the same way as in the
previous versions.

In this paper, we describe all features present in LCM2 and LCM3.

4.1. Initialization

To speed the computation up, LCM initializes the input data as follows:

‚ removes empty rows and columns,

‚ merges identical rows,

‚ sorts attributes by cardinality (|yÓ|) in the descending order,
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‚ sorts objects by cardinality p|xÒ|q in the descending order.

In the pseudocode in Algorithm 3 (later in the paper), the initialization
is not shown and it is supposed that it is run before the first invocation of
the procedure GenerateFrom.

FCA aspect:. The attribute sorting is well known to most likely cause a
smaller number of computations of closures in CbO-based algorithms [11, 4,
5]. This feature is included in publicly available implementations of In-Close4
and FCbO.

The object sorting is a different story. Andrews [4] tested the performance
of In-Close2 and concluded that lexicographic order tends to significantly
reduce L1 data cache misses. However, the test were made for bitarray
representation of contexts.

The reason for object sorting in LCM is probably that a lesser amount of
inverses occurs in a computation of a union of rows (shown later (5)), which is
consequently easier to sort. Our testing with Uno’s implementation of LCM
did not show any difference in runtime for unsorted and sorted objects when
attributes are sorted. In the implementation of LCM3, the object sorting is
not present.

Remark 3. In examples in the present paper, we do not use sorted data, in
order to keep the examples small.

4.2. Ordered arraylists and occurrence deliver

LCM uses arraylists6 as data representation of the rows of the context.
It is directly bound to one of the LCM’s main features – occurrence deliver:

LCM computes extents A X iÓ (line 6 in Algorithm 2) all at once using
a single traversal through the data. Specifically, it sequentially traverses
through all rows xÒ of the context and whenever it encounters an attribute i,
it adds x to an initially empty arraylist – bucket – for i (see Fig. 3). As
LCM works with conditional datasets (see Section 4.3), attribute extents
correspond to extents AX iÓ (see Algorithm 2, line 6). This is also known as
vertical format in DM algorithms; the buckets are also known as tidlists.

LCM generates childs of each node from right to left. That way, it can
reuse the memory for extents (buckets). For example, when computing ex-
tents in the node t2u, that is t2, 3uÓ and t2, 4uÓ, the algorithm can reuse
the memory used by extents t3uÓ and t4uÓ, because t3u and t4u (and their
subtrees) are already finalized (see Fig. 4).

6Whenever we write arraylist, we mean ordered arraylists.
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items

a 2 3 4 5 7 8
b 1 2 3 4 5 7
c 2 3 6 7
d,i 2 7 8
e,f,h 1 3 5 6 7
g 5 7 1 2 3 4 5 6 7 8

items

a 2 3 4 5 7 8
b 1 2 3 4 5 7
c 2 3 6 7
d,i 2 7 8
e,f,h 1 3 5 6 7
g 5 7 1

a

2

a

3

a

4

a

5 6

a

7

a

8

items

a 2 3 4 5 7 8
b 1 2 3 4 5 7
c 2 3 6 7
d,i 2 7 8
e,f,h 1 3 5 6 7
g 5 7

b

1

b
a

2

b
a

3

b
a

4

b
a

5 6

b
a

7

a

8

items

a 2 3 4 5 7 8
b 1 2 3 4 5 7
c 2 3 6 7
d,i 2 7 8
e,f,h 1 3 5 6 7
g 5 7

e,f,h
b

1

d,i
c
b
a

2

e,f,h
c
b
a

3

b
a

4

g
e,f,h
b
a

5

e,f,h
c

6

g
e,f,h
d,i
c
b
a

7

d,i
a

8

Figure 3: Occurrence deliver in LCM.
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H

1 2 3 4

43 4

4

2 3 4

43 4

4

1

9 5 3 2

47 6

8

13 11 10

1215 14

16

Figure 4: Demonstration of bucket reuse in LCM with right-first sweep.

items

a 2 3 4 5 7 8
b 1 2 3 4 5 7
c 2 3 6 7
d,i 2 7 8
e,f,h 1 3 5 6 7
g 5 7

1 2 3 4 5 6 7 8

a 0 1 1 1 1 0 1 1
b 1 1 1 1 1 0 1 0
c 0 1 1 0 0 1 1 0
d,i 0 1 0 0 0 0 1 1
e,f,h 1 0 1 0 1 1 1 0
g 0 0 0 0 1 0 1 0

Figure 5: Data representation for contexts: arraylists (left), bitarrays (right).
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FCA aspect:. In FCA, the CbO-based algorithms do not specify data repre-
sentation used for handling contexts, sets of objects, and sets of attributes.
This is mostly considered a matter of specific implementations (see Re-
mark 4). Generally, the data representation issues are almost neglected in
literature on FCA. The well-known comparison study [14] of FCA algorithms
mentioned the need to study the influence of data structures on practical per-
formances of FCA algorithms but it does not pay attention to that particular
issue. The comparison study [12] provided the first steps to an answer for
this need.7 The latter paper concludes that binary search trees or linked lists
are good choices for large or sparse datasets, while bitarray is an appropriate
structure for small or dense datasets. Arraylists did not perform particu-
larly well in any setting. However, this comparison did not assume other
features helpful for this data representation, like conditional databases (see
Section 4.3) and computation of all required attribute extents in one sweep
by occurrence deliver. More importantly, the minimal tested density is 5 %,
which is still very dense in the context of transactional data.

Remark 4. Available implementations of FCbO8 and In-Close9 utilize bitar-
rays for rows of contexts, and sets of attributes, and arraylists for sets of
objects.

4.3. Conditional Database and Interior Intersections

LCM reduces the database for the recursive invocations of GenerateFrom
to so-called conditional databases.

Let K “ xX, Y, Iy be a formal context, B be an intent, and y be the
attribute used to build B. The conditional database (context) KB,y w.r.t.
xB, yy is created from K as follows:

(a) First, remove objects from K which are not in the corresponding extent
A “ BÓ.

(b) Remove attributes which are full or empty.

(c) Remove attributes lesser than y. 10

(d) Merge identical objects together.

7Paper [12] compares bitarrays, sorted linked lists, arraylists, binary search trees, and
hash tables.

8Available at http://fcalgs.sourceforge.net/.
9Available at https://sourceforge.net/projects/inclose/.

10In the implementation, when the database is already too small (less than 6 objects,
and less than 2 attributes), steps (c)–(d) are skipped.
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(e) Put back attributes removed in step (c); set each new object created in
step (d) by merging objects x1, . . . , xk P X to have attributes common
to the objects x1, . . . , xk. That is, the merged objects are intersections
of the original objects. The part of the context added in this step is
called an interior intersection.

For an example, see Fig. 6.
Alternatively, we can describe conditional databases with interior inter-

sections as:

‚ Restricting the context K to objects in A and attributes in N where

N “
˜

ď

xPA

xÒ

¸

zAÒ. (5)

This covers the steps (a)–(c).

‚ Subsequent merging/intersecting of those objects which have the same
incidences with attributes in t1, 2, . . . , y ´ 1u. This covers the steps
(d)–(e).

Note, that from the conditional database (with interior intersections) KB,i

all intents in the subtree of B can be extracted. More specifically, if D is an
intent of the conditional database and it passes the canonicity test (tested on
interior intersections) then D Y B is an intent of the original context which
passes the canonicity test; i.e. is in the subtree of B.

In pseudocode in Algorithm 3 (later in the paper), the creation of the con-
ditional databases with interior intersections is represented by the procedure
named CreateConditionalDBpK, A,N, yq.
FCA aspect:. CbO-based algorithms do not utilize conditional databases.
However, we can see partial similarities with features of CbO-based algo-
rithms.

First, all of the algorithms skip attributes in B and work only with part
of the formal context given by BÓ and Y zB. This corresponds to step (a)
and the first part of step (b) (full attributes).

Second, the removal of empty attributes in step (b) utilizes basically the
same idea as in In-Close4 [6]: if the present extent A and an attribute extent
iÓ have no common object, we can skip the attribute i in the present subtree.
In FCbO and In-Close3, such attribute would be skipped due to pruning (see
Section 4.4).

Steps (c)–(e) have no analogy in CbO algorithms.
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1 2 3 4 5 6 7 8

a ˆ ˆ ˆ ˆ ˆ
b ˆ ˆ ˆ ˆ ˆ ˆ
c ˆ ˆ ˆ ˆ
d ˆ ˆ ˆ
e ˆ ˆ ˆ ˆ ˆ
f ˆ ˆ ˆ ˆ ˆ ˆ
g ˆ ˆ
h ˆ ˆ ˆ ˆ
i ˆ ˆ

1 2 3 4 5 6 7 8

a ˆ ˆ ˆ ˆ ˆ
b ˆ ˆ ˆ ˆ ˆ ˆ
c ˆ ˆ ˆ ˆ
e ˆ ˆ ˆ ˆ ˆ
f ˆ ˆ ˆ ˆ ˆ
h ˆ ˆ ˆ ˆ

1 2 4 5 6

a ˆ ˆ ˆ
b ˆ ˆ ˆ ˆ
c ˆ ˆ
e ˆ ˆ ˆ
f ˆ ˆ ˆ
h ˆ ˆ

4 5 6

a ˆ ˆ
b ˆ ˆ
c ˆ
e ˆ ˆ
f ˆ ˆ
h ˆ ˆ

4 5 6

a,b ˆ ˆ
c ˆ
e,f,h ˆ ˆ

1 2 4 5 6

a,b ˆ ˆ ˆ
c ˆ ˆ
e,f,h ˆ ˆ

(a) Remove objects not in t3, 7uÓ:
Objects d,g, and i are removed.

(b) Remove empty and full attributes:
Attributes 3, 7, and 8 are removed.

(c) Remove attributes lesser than 3:
Attributes 1 and 2 are removed.

(d) Merge identical objects together.

(e) Add interior intersections.

Figure 6: Obtaining contitional context KB,y for attribute set B “ t3, 7u and attribute
y “ 3.
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Algorithm 3: LCM (without pruning)

def GenerateFrom(A, B, y, K):
input : A – extent

B – set of attributes
y – last added attribute
K – input context/conditional database

1 N Ð `
Ť

xPA xÒ
˘ zB

2 tni | i P Nu ÐFrequencies(K, N)

3 for i P N, i ă y do
4 if ni “ |A| then
5 return

6 for i P N, i ą y do
7 if ni “ |A| then
8 B Ð B Y tiu
9 N Ð N z tiu

10 print(xA,By)
11 K1 Ð CreateConditionalDB(K, A, N , y)
12 tCi | i P Nu Ð OccurenceDeliver(K1)

13 for i P N, i ą y, (in descending order) do
14 GenerateFrom(Ci, B Y tiu, i, K1)

15 return

GenerateFrom(X, XÒ, 0, xX, Y, Iy)

Pseudocode of LCM without pruning

At this moment, we present pseudocode of LCM (Algorithm 3) with
above-described features. As in the case for CbO, the algorithm is given
by recursive procedure GenerateFrom. The procedure takes four arguments:
an extent A, a set of attributes B, the last attribute y added to B, and a
(conditional) database K). The procedure performs the following steps:

14



(line 1) The set N (5) of non-trivial attributes is computed.
(line 2) The frequencies of all attributes in N are computed, this

is made by a single traversal through K similar to the
occurence deliver (described in Section 4.2).

(lines 3–5) The loop checks whether any attribute in N lesser than y
has frequency equal to |A|. If so, the attribute causes the
canonicity test to fail, therefore we end the procedure.

(lines 6–9) The loop closes B (and updates N) based on the com-
puted frequencies.

(line 10) As the cannonicity is checked and B is closed, the pair
xA,By is printed out.

(line 11) The conditional database KB,y (described in Sec. 4.3) is
created.

(line 12) Attribute extents from KB,y are computed using oc-
curence deliver (described in Section 4.2).

(lines 13–14) The procedure GenerateFrom is recursively called for
attributes in N with the conditional database KB,y and
the corresponding attribute extent.

4.4. Bonus Feature: Pruning

The jumps using closures in CbO significantly reduce the number of vis-
ited nodes in comparison with the näıve algorithm. The closure, however,
becomes the most time consuming operation in the algorithm. The pruning
technique in LCM11 avoids the computation of some closures based on the
monotony property: for any set of attributes B,D Ď Y satisfying B Ď D,
we have that

j P pB Y tiuqÓÒ implies j P pD Y tiuqÓÒ. (6)

When i, j R D and j ă i, the implication (6) says that if j causes pBYtiuqÓÒ

to fail the canonicity test, then it also causes pDYtiuqÓÒ to fail the canonicity
test. That is, if we store that pB Y tiuqÓÒ failed, we can use it to skip the
computation of the closure pD Y tiuqÓÒ for any D Ą B with j R D. We
demonstrate this in the following example.

Example 1. Consider the following formal-context.

11Pruning is not described in papers on LCM, however, it is present in the implemen-
tation of LCM2.

15



H

1 2 3 4

43 4

4
1) canonicity test fails;
store: 4 adds 1

2) stored information
reused for t2u, t3u, t2, 3u

ˆ ˆ

ˆ

Figure 7: Reuse of failed canonicity test information

1 2 3 4
a ˆ ˆ ˆ
b ˆ ˆ ˆ
c ˆ ˆ
d ˆ

Consider the tree of all subsets in Fig. 2 (ignoring the left-first sweep order
for now). The rightmost branch of the tree represents adding the attribute
4 into an empty set. We can easily see, that

t4uÓÒ “ t1, 4u, (7)

and, therefore, the canonicity test Bi “ Di fails. In this case, we have
Bi “ H4 “ H while Di “ t1, 4u4 “ t1u.

Notice that (7) gives us information about the actual set (an empty set
in this case): adding attribute 4 causes that attribute 1 is in the closed
set. Due to (6) this holds true for any superset of the actual set. This
information is then reused for the supersets. Specifically, for sets t2u, t3u, or
t2, 3u, adding attribute 4 causes that attribute 1 is present in the closed set
and, consequently, causes a failing the canonicity test. Figure 7 shows the
described situation.

LCM utilizes the above idea in the following way:

(p0) Whenever the canonicity test fails for pB Y tiuqÓÒ and j is the smallest
attribute in pB Y tiuqÓÒzB, we store the rule “i adds j”. In the pseu-
docode (Algorithm 4), this is achieved through the return value of the

16



procedure GenerateFrom. The procedure returns the lowest attribute
which caused the canonicity to fail (line 6) or 0 if it passed the canon-
icity test (line 20). The returned value is used to form a pruning rule,
which is to be stored (lines 17,18).

(p1) At the beginning of GenerateFrom, i.e. when descending to a subtree,
all rules having the last added attribute (argument y) on the right side
are removed from the stored rules. In the pseudocode, this is done by
a subroutine called RemoveRulesByRightSide (line 3).

(p2) At the end of GenerateFrom, i.e. when backtracking from the current
subtree, all rules from this call are removed. In the pseudocode, this is
done by a subroutine called RemoveAllRulesAddedThisCall (line 19).

(p3) Before computing a closure pDYtiuqÓÒ in a subtree of B, we check the
stored rules to find whether adding i does not add any attribute which
causes the canonicity test to fail. Due to how the rules are handled in
the previous items, (p0)–(p2), it is sufficient to check whether there is
any rule having i on the left side. In the pseudocode, this is done by a
subroutine called CheckRulesByLeftSide (line 15).

FCA aspect:. Similar pruning techniques are also present in FCbO and In-
Close3 and higher:

• FCbO, In-Close3: stores rules of the form “i gives set A”.

• In-Close4: stores rules of the form “i gives an empty extent”.

• In-Close5: stores rules of the form “i adds an attribute which makes
the canonicity test fail” and rules of In-Close4.

All the FCA algorithms utilize only steps (p0), (p2), and (p3); none of them
performs (p1).

LCM’s pruning is weaker than the pruning in FCbO and In-Close3, yet
is stronger than the pruning in In-Close4 and In-Close5.12:

In-Close4 ă In-Close5 ă LCM ă FCbO “ In-Close3.

12In the conference paper, we incorrectly claimed that LCM’s pruning is incomparable
with the pruning in In-Close5.
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Algorithm 4: LCM

def GenerateFrom(A, B, y, K):
input : A – extent

B – set of attributes
y – last added attribute
K – conditional database

1 N Ð `
Ť

xPA xÒ
˘ zB

2 tni | i P Nu ÐFrequencies(K, N)

3 RemoveRulesByRightSide(y)

4 for i P N, i ă y do
5 if ni “ |A| then
6 return i

7 for i P N, i ą y do
8 if ni “ |A| then
9 B Ð B Y tiu

10 N Ð Nztiu

11 print(xA,By)
12 K1 Ð CreateConditionalDB(K, A, N , y)
13 tCi | i P Nu Ð OccurenceDeliver(K1)

14 for i P N, i ą y, (in descending order) do
15 if CheckRulesByLeftSide(i) then
16 j Ð GenerateFrom(Ci, B Y tiu, i, K1)

17 if j ą 0 then
18 AddRule (“i adds j”)

19 RemoveAllRulesAddedThisCall()

20 return 0

GenerateFrom(X, XÒ, 0, xX, Y, Iy)
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5. Frequency Counting

In the previous sections, we do not take into account the frequency of
itemsets, as in FCA, the frequency is not usually assumed. However, the
implementations of FCbO and In-Close4 allow us to pass minimum support
as a parameter, and then enumerate only frequent intents.

The CbO-based algorithms utilize a simple apriori principle: if a set
is infrequent then all its supersets are infrequent. That directly translates
into the tree-like computation of the algorithms – if a node represents an
infrequent set, then its subtree does not contain any frequent set.

In LCM, we make the following modification of the features described in
Section 4.

Data representation. – each arraylist is accompanied with a weight, i.e. num-
ber of objects it corresponds to.

Initialization. – additionally, infrequent attributes are removed and the weights
of rows are set to reflect the number of merged rows. The weight of unique
rows is set to 1.

Conditional databases. – in the step (b), infrequent attributes are removed
as well; and in the step (d), the weights of rows are updated.

6. FP-trees in LCM3

Here, we provide a tutorial-like description of the complete FP-trees with
inner intersections used in the hybrid data structure of LCM3.

Throughout this section, we assume that the input data does not contain
empty rows – they were removed by the initialization procedure (Section 4.1).

6.1. Simple FP-tree

An FP-tree [9] (also called a prefix tree) is a compressed representation
of the input data. It is constructed by reading the data set one row at a time
and mapping each of them onto a path in the FP-tree. The path contains one
node for each attribute of the corresponding row, in descending order w.r.t.
cardinality of the attributes. Multiple transactions can share part of their
paths. Besides their attributes, the nodes contain a number of rows which
share the node. For practicality, nodes corresponding to the same attributes
are linked to lists.

It is not necessary to use the descending order, but it tends to make
the FP-tree more condense. Note that the attributes are sorted by their
cardinality in ascending order in the pre-processing step (Section 4.1) and
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object items

1 d,e
2 b,c,d
3 a,b,c,e
4 a,b,e
5 c,d,e
6 b,c,d,e
7 e
8 c,d,e
9 b,d,e
10 a,c,d

‚

e:8

d:5

c:3

b:1 a:1

b:1

d:2

c:2

b:1

c:1

b:1

a:1

b:1

a:1

list e

list d

list c

list b

list a

Figure 8: Data (left) and its FP-tree representation (right).

then processed from right to left. This way, they are indeed processed in the
descending order.

The following examples depict the construction of an FP-tree and ex-
tracting a conditional dataset from it.

Example 2 (Initial construction of an FP-tree). Consider the data depicted
in Fig. 8. The attributes, sorted by their cardinality, follow the alphabetical
order:

(smallest) a ă b ă c ă d ă e (largest).

Therefore, for instance, the first row will be added into the FP-tree as path
(root)–(e)–(d). Figure 9 shows the FP-tree after adding the first, second,
and third row. Figure 8 (right) shows the FP-tree after adding all the rows.

Example 3 (Extraction of conditional FP-tree). Let us construct a condi-
tional FP-tree for attribute a from the FP-tree in Fig. 8 as follows:

(a) Take only the paths which contain the attribute a.

(b) Update numbers to match the numbers of a.

(c) Remove nodes a (and their successors, which is trivial in this case).

(d) Remove infrequent items, if frequency is considered. In Fig. 10, ‘list d’
contains only one node with count 1. That means that only one row
contains ta,du. If this is seen as infrequent, we can remove the d’s
node.
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‚
e:1

d:1

list e

list d

‚
e:1

d:1

d:1

c:1

b:1

list e

list d

list c

list b

‚
e:2

d:1

d:1

c:1

b:1

c:1

b:1

a:1

list e

list d

list c

list b

list a

Figure 9: First three steps of the construction of the FP-tree for data from Fig. 8.
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steps (c) and (d)

‚

e:2

c:1c:1

b:1 b:1

list e

list c

list b

steps (a) and (b)

‚

e:8Ñ2

a:1

d:2Ñ1

c:2Ñ1c:1

b:1

a:1

b:1

a:1

list e

list d

list c

list b

list a

Figure 10: Construction of the conditional FP-tree for attribute a from the FP-tree in
Fig. 8.
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‚

00001:8

00011:5

00111:3

01111:1 10110:1

01011:1

00010:2

00110:2

01110:1

00101:1

01101:1

11101:1

01001:1

11001:1

list e

list d

list c

list b

list a

Figure 11: Complete FP-tree corresponding to the FP-tree in Fig. 8.

6.2. Complete FP-trees and inner intersections

Uno et al. use a so-called complete FP-tree, where each node contains
a set of attributes on the path from the node up to the root, stored as a
bitarray. See Fig. 11 for an example.
Note that in the complete FP-tree, each node has a unique bitarray, which
we can use as an identifier. Furthermore, for each non-root node, we have
complete information about the related set. We do need to follow the path
to the root to find the set. Therefore, we can omit the tree structure, and
store just the lists (Fig. 12, ignore the rightmost column for now).

The lists play the role of buckets for the occurrence deliver (described in
Section 4.2). For example, the ’list c’ in Fig. 12 says that the bucket contains
6 “ 3` 2` 1 objects:

• three of them have the attributes c,d,e;

• two of them have the attributes c,d but not e, and

• one has the attributes c,e but not d.

We have no information about the presence or absence of attributes a and b.
We will see later that we actually do not need it here, as we will have sufficient
information in the inner intersection.

While an FP-tree, or complete FP-tree, is sufficient for mining frequent
itemsets, we need additional information for closed sets. Specifically, inner
intersections (described in Section 4.3). For that reason, we add to each
node an intersection (stored as a bitarray) of all rows which it represents
(see Fig. 12).

23



11101:1 11101

list a 11001:1 11001

10110:1 10110

01110:1 01110

01111:1 01111

list b 01011:1 01011

01101:1 11101

01001:1 11001

00111:3 00111

list c 00110:2 00110

00101:1 11101

list d
00011:5 00011

00010:2 00110

list e 00001:8 00001

Figure 12: Complete FP-tree with inner products.

Example 4. In our running example, the node 00111 represents three rows
– namely, 5,6, and 8. Their intersection is tc,d,eu, therefore, the node has
the inner intersection 00111.

6.3. Construction of the complete FP-tree with inner products

The construction of the complete FP-tree with inner products has two
steps. In the first step (initial step), we put the input data into the corre-
sponding lists. In the second step (extension step), we extend the items in
the list to a path to the root.

Initial step: We traverse through the rows of the input data. For each row,
we find the list which corresponds to its lowest attribute (with respect to the
cardinality order). If there already is a node with the same set in the list, we
just increase its counter by one13. Otherwise, we make a new node for the
set; its counter is set to 1 and its inner product is the same as the row (an
intersection of one set is the same set). The node is put in the list.

Example 5. The fifth row in the running example, specifically tc,d,eu
should be put to ‘list c’. We create a new node with set (bitarray) 00111, its
counter being set to 1, and its inner intersection is again 00111. Later, we
process the eighth row – also tc,d,eu. As we already have a node with the
set 00111 in ‘list c’, we just increase its counter by one.

Figure 13 shows an “unfinished” FP-tree after the initial step.

13or its weight
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object items

1 d,e
2 b,c,d
3 a,b,c,e
4 a,b,e
5 c,d,e
6 b,c,d,e
7 e
8 c,d,e
9 b,d,e
10 a,c,d

11101:1 11101 3
list a 11001:1 11001 4

10110:1 10110 10

01110:1 01110 2
list b 01111:1 01111 6

01011:1 01011 9

list c 00111:2 00111 5,8

list d 00011:1 00011 1

list e 00001:1 00001 7

Figure 13: “Unfinished” complete FP-tree with inner intersections after the initial step;
the numbers on the right side are the numbers of the row in the original data. They are
not part of the FP-tree, they are there just for ease of understanding.

Extension Step: For each list in the descending order (with respect to the
cardinality order), do the following: For each node xset A, k, IIy, where A
is a set, k is a counter, and II is an inner intersection, in the list, make a
new set (bitarray) A1 removing the lowest attribute from the set stored in
the node. If the new set A1 is non-empty, take the list which corresponds
to its lowest new attribute. Then, if there is a node with the set A1 in the
list, increase its counter by k and intersect its inner intersection with II.
Otherwise, make a node xA1, k, IIy and put it in the list.

Example 6. Assuming the result of the initial step in Fig. 13, we take sets
in the nodes in ‘list a’ and remove their lowest attribute (being attribute
a). We obtain 01101, 01001, and 00110. The former two belong to ‘list b’.
There are no nodes with these sets in the list, therefore we create new nodes
for them and copy their counters and inner intersection from the original
nodes. The last one belongs to ‘list c’. Again, there is no node with the set
00110. Therefore we put a new node into it. The intermediate result after
extending all nodes in ‘list a’ is shown in Fig. 14 (left).

Similarly, we continue with nodes in ‘list b’ (including the new nodes).
When we process the node with set 01110, we remove its lowest attribute
and obtain 00110. We see that it belongs to ‘list c’ and there is already a
node with this set. Therefore, we just increase its counter and intersect its
inner intersections with the values from the original node. The intermediate
result after extending all nodes in ‘list b’ is shown in Fig. 14 (right).

When this step is finished for all the lists, we obtain the complete FP-tree
shown in Fig. 12.
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11101:1 11101

list a 11001:1 11001

10110:1 10110

01110:1 01110

01111:1 01111

list b 01011:1 01011

01101:1 11101

01001:1 11001

list c
00111:2 00111

00110:1 10110

list d 00011:1 00011

list e 00001:1 00001

11101:1 11101

list a 11001:1 11001

10110:1 10110

01110:1 01110

01111:1 01111

list b 01011:1 01011

01101:1 11101

01001:1 11001

list c
00111:3 00111

00110:2 00110

00101:1 11101

list d 00011:2 00011

list e 00001:2 00001

Figure 14: Intermediate result of the construction of the complete FP-tree with inner
intersections from Example 6 after extending all nodes in ‘list a’ (left) and ‘list b’ (right).

list b
01101:1 11101

01001:1 11001

list c 00110:1 10110

00101:1 11101

list d 00010:1 10110

list e 00001:2 11001

Figure 15: Conditional complete FP-tree for attribute a with inner intersections extracted
from the FP-tree from Fig. 12

6.4. Conditional database

We already said that the lists of a complete FP-tree serve as the buckets
for occurrence deliver. Now, we show that we can easily use them for the
construction of the conditional database.

To construct the conditional database for an attribute, simply take its
list and perform the extension step of the construction of the FP-tree, and
then remove (or just ignore) the list and the lists of lower attributes. If a
minimal support is required, we can also remove infrequent lists.

Example 7. In our running example, we can extract a conditional database
for attribute a by taking the ‘list a’, performing the extension step, and
removing the ‘list a’. The result is shown in Fig. 15. Note, that if we remove
the infrequent item d, we receive the same conditional database as in the
simple FP-tree in Example 3.
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11101:1 11101

list a 11001:1 11001

10110:1 10110

01110:1 01110

01111:1 01111

list b 01011:1 01011

01101:1 11101

01001:1 11001

00111:3 00111

list c 00110:2 00110

00101:1 11101

list d
00011:5 00011

00010:2 00110

list e 00001:5 00011

11101:1 11101

list a 11001:1 11001

10110:1 10110

01110:1 01110

01111:1 01111

list b 01011:1 01011

01101:1 11101

01001:1 11001

00111:3 00111

list c 00110:2 00110

00101:1 11101

list d
00011:3 00111

00010:2 00110

list e 00001:4 00101

Figure 16: Complete FP-tree with inner intersections where (left): we removed ‘list e’ and
used its space for the conditional FP-tree of attribute d; (right): we removed ‘list d’ and
‘list e’ and used their space for the conditional FP-tree of attribute c.

6.5. Reuse of the lists/buckets

The occurrence deliver (in Section 4.2) reused buckets when it used the
right to left sweep through the search space. A similar principle can be
used with an FP-tree. Indeed, whenever the algorithm finishes processing a
conditional FP-tree, the space allocated for it can be then used by the next
conditional FP-tree. This is better demonstrated in the next example.

Example 8. The conditional FP-tree for e is trivial: it is an empty tree.14

When we finish processing the attribute e, we can remove its list and use that
space for the conditional FP-tree of attribute d. Note that this conditional
FP-tree has only the ‘list e’. Figure 16 (left) shows the situation where we
removed ‘list e’ and used its space for the conditional FP-tree of attribute d.

Analogously, when we finish processing the attribute d, we can delete the
‘list d’ and ‘list e’ and use their space for the conditional FP-tree of attribute
c. This is shown in Figure 16 (right).

6.6. Extraction of intents

For each list in a (conditional) complete FP-tree, the intersection of inner
intersections of its nodes is an intent. LCM can easily compute the intersec-
tions and print them out whenever they satisfy the canonicity test.

14This holds generally true; the highest attribute has empty conditional FP-tree.
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7. Conclusions

We analyzed LCM from the point of view of FCA and concluded that it is
a CbO-based algorithm with additional features directed towards processing
sparse data. We also compared the additional features with those of FCbO
and InClose2+ known in the FCA community.

Future research:. We see two main directions for our upcoming research:

• The investigation of other algorithms for closed frequent itemset mining
and putting them into context with FCA algorithms.

• Experimental evaluation of the incorporation of LCM’s features in
CbO-based algorithms; this could lead to fast implementations of the
algorithms.
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