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Abstract

This work investigates the factorization of finite lattices to implode selected intervals while preserv-
ing the remaining order structure. We examine how complete congruence relations and complete
tolerance relations can be utilized for this purpose and answer the question of finding the finest
of those relations to implode a given interval in the generated factor lattice. To overcome the
limitations of the factorization based on those relations, we introduce a new lattice factorization
that enables the imploding of selected disjoint intervals of a finite lattice. To this end, we propose
an interval relation that generates this factorization. To obtain lattices rather than arbitrary or-
dered sets, we restrict this approach to so-called pure intervals. For our study, we will make use
of methods from Formal Concept Analysis (FCA). We will also provide a new FCA construction
by introducing the enrichment of an incidence relation by a set of intervals in a formal context, to
investigate the approach for lattice-generating interval relations on the context side.
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1. Introduction

A lattice L consists of several intervals (which means subsets [u, v] ∶= {c ∈ L ∣ u ≤ c, c ≤ v}). Such
an interval is often considered as a unity. Therefore, a transformation of the lattice that implodes
such an interval (or a set of intervals) is a suitable way to obtain a more compact representation of
the original structure. In this work, we investigate different ways to factorize a lattice to “implode”
selected intervals, meaning to condense an interval into a single element in the following manner:

Definition 1.1. An implosion of a set of disjoint intervals S
1
, . . . , Sk in an ordered set (P,≤P ) is

a surjective, order-preserving map f ∶ (P,≤P ) → (Q ≤Q) on an ordered set Q so that ∣f(Si)∣ = 1 for
all i ∈ {1, . . . , k}.

We pursue two – partially conflicting – goals for such an implosion. The first goal is that the
function f is as compatible as possible with the lattice structure – in the best case, f is a lattice
homomorphism. The second goal is that the remaining part of the lattice remains intact as much
as possible – in the best case, f is injective in L ∖ S. As we will discuss in the sequel, there are
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different ways to realize an implosion of one or more intervals with different trade-offs regarding
our goals.

After recalling some definitions in Section 2 and discussing the state of the art in Section 3, we
will, in Section 4, examine how lattice factorizations based on complete congruence relations and
complete tolerance relations can be utilized for imploding intervals in a lattice. In particular, we
answer the question of finding the finest of those relations that implodes a given interval in the
generated factor lattice while preserving as many of the other elements of the lattice as possible.
While both of these approaches result in an infimum- and supremum-preserving factor lattice, the
imploded intervals are often larger than just the selected interval. It is even possible for the factor
lattice to implode the whole lattice and thus to contain only one element. To preserve all elements
of the lattice except those in selected intervals we investigate then, in Section 5, a new kind of
factorization based on interval relations.

We will use methods of Formal Concept Analysis (FCA) [7] to study the different types of
implosion. In this field, the basic structures are formal contexts which consist of a set of objects,
a set of attributes, and an incidence relation, that represents which object has which attribute.
The maximal sets of objects that share an identical maximal set of attributes are called the formal
concepts and can be ordered by the subset relation. This determines a complete lattice, the concept
lattice corresponding to the formal context. We introduce enrichments of the incidence relation
by intervals and show their one-to-one correspondence to interval relations. Those structures can
be utilized to implode selected intervals in the lattice while preserving the original order relation.
By restricting the approach to pure intervals we also ensure the lattice properties in the generated
structure.

Since every finite lattice is isomorphic to a concept lattice, all statements can be translated to
finite lattices in general. For readability reasons we often omit the word “finite” in the following.
However, all stetements are about finite structures only.´

2. Foundations

In the following, we recall basic notions from FCA and give notations that are used in this
work. For a more detailed introduction, we refer the reader to [7]. A formal context K ∶= (G,M,I)
consists of a set G whose elements are called objects, a set M whose elements are called attributes
and an incidence relation I ⊆ G ×M . In this work, we assume that G and M are both finite.
Two operations, called derivations, are defined on the power set of the objects and the power set
of the attributes as follows: ⋅′∶P(G) → P(M), A ↦ A′ ∶= {m ∈ M ∣ ∀g ∈ A∶ (g,m) ∈ I} and
⋅′∶P(M) → P(G), B ↦ B′ ∶= {g ∈ G ∣ ∀m ∈ B∶ (g,m) ∈ I}. Instead of A′ we also write AI to point
out the used incidence relation. A pair c = (A,B) consisting of an object subset A ⊆ G and an
attribute subset B ⊆ M satisfying A′ = B and B′ = A is called a formal concept of the context
(G,M,I). A is called the extent and B is called the intent of c. A concept of the form c = (g′′, g′)
(c = (m′,m′′)) is generated by g ∈ G (by m ∈M).

On the set of all concepts, B(K), of a formal context K, the order defined by (A1,B1) ≤ (A2,B2)
iff A1 ⊆ A2 determines the concept lattice B(K) ∶= (B(K),≤). For a lattice L we call the formal
context (L,L,≤) the generic formal context of L. It holds that L ≅B(L,L,≤) where every concept
is generated by a single object (a single attribute).

For the structural investigation of a formal context K = (G,M,I) we can reduce the context.
Since we consider only finite structures in this work, the following statements hold unconditionally:
We call an object g ∈ G reducible if an object set X ⊆ G with g /⊆ X and g′ = X ′ exists. Otherwise,
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we call g irreducible. The definition applys analogously to the attribute set. A formal context
K containing no reducible attributes and objects is called reduced. Such a context is called the
standard context of B(K) it is unique up to isomorphism. The concept lattice of a standard context
K is isomorphic to the lattice of every context that is constructed by adding reducible objects or
attributes to K.

An element of a lattice v ∈ L is called ⋁-reducible if v = ⋁{x ∈ L ∣ x < v}. If v = ⋀{x ∈ L ∣ x > v}
holds, v is called ⋀-reducible. Otherwise v is called ⋁-irreducible/ ⋀-irreducible. The set of
all ⋁-irreducible (⋀-irreducible) of a lattice L is denoted by J(L) (M(L)). The formal context
(J(L),M(L)),≤ is isomorphic to the standard context of the lattice L.

A part of a formal context K = (G,M,I) can is called a subcontext S = (H,N,J) with H ⊆ G,
N ⊆M and J = I ∩ (H ×N). We use the notions S ≤ K and [H,N] ∶= (H,N, I ∩ (H ×N)) to enable
a better readability. A special kind of subcontext is a Boolean subcontext of dimension k which is
isomorphic to the context ({1, . . . , k},{1, . . . , k},≠). A subcontext [H,N] ≤ K is called compatible
subcontext if for every concept (A,B) ∈B(K) the pair (A ∩H,B ∩N) is a concept of [H,N]. An
expansion J ⊇ I of the incidence relation is called block relation of the formal context K = (G,M,I),
if gJ is an intent in K and mJ is an extent in K for all g ∈ G and respectively all m ∈M .

For a (concept) lattice L = (L,≤) and S ⊆ L, we call S = (S,≤ ∩(S × S)) suborder of L, and
denote this by S ≤ L. Suborders can be generated by single elements: The ideal of c ∈ L is defined as
(c] ∶= {x ∈ L ∣ x ≤ c}; The filter of c ∈ L is defined as [c) ∶= {x ∈ L ∣ c ≤ x}. For two elements c, d ∈ L

with c ≤ d we call [c, d] ∶= {x ∈ L ∣ c ≤ x ≤ d} the interval between c and d. A special kind of suborder
are the crowns of order k ≥ 3: A crown of order k is a partially ordered set {x1, y1, . . . , xk, yk} in
which xi ≤ yi for i ∈ {1, . . . , k} and xi ≤ yi+1 for i ∈ {1, . . . , k − 1} and x1 ≤ yk are the only relations
in the order.

3. Related Work

For ⋀-sublattices, ⋁-sublattices and lattices – and in general for algebras (i.e., a set with opera-
tions defined on its elements) – homomorphism, congruence relation, and factor algebra are defined
explicitly. In the field of lattice theory, lattice congruences, as defined in [2], where the requirement
is compatibility with suprema and infima for finite sets, are examined. In the realm of ordered sets,
no such operations can be utilized. Thus, there are different approaches to expand these theoretical
aspects on ordered sets.

Moorth and Karpagavalli introduce a congruence relation on partially ordered sets that is not
a lattice congruence [14]. In particular, the congruence classes of this relation do not have to be
intervals, a strong change of the original structure is valid. Other approaches, as given by Snasel
and Jukl [16] or Kolibiar [10] aim to define congruence relations on ordered sets, that are precisely
the lattice congruence if applied to lattices.

In the field of Formal Concept Analysis, a plenitude of approaches aim to reduce the size of a
data set. A standard method is the alteration of the object set, the attribute set, or the incidence
relation of a formal context or combinations of those approaches. E.g. in [12], a procedure based on
random projection is provided; Dias and Vierira [5] explore the replacement of similar objects by
a prototypical one, and a complementary approach relating on the attribute set is investigated by
Kuitche et al. [11]. In [15], the principles of granulation, as introduced in [17], are applied to consider
different levels of accuracy in formal contexts and concept lattices. Besides alteration, there are
methods based on identifying and selecting meaningful substructures. Considering a formal context,
Hanika et al. [8] select the most relevant attributes related to their ability to reflect the distribution
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of the objects in the concepts. Measuring the attributes on their appearance in contranominal
scales, Dürrschnabel et al. [6] select a set of attributes. Another approach is the direct selection of
entire concepts. This can be done by random sampling [3] or the application of various measures.
To this end, Kuznetsov [13] introduced a stability measure for formal concepts based on the sets
of extent subsets that generate the same intent. The support measure of association rule mining
was borrowed by Stumme et al. [1] to generate iceberg concept lattices, special sub-semilattices
of the original concept lattice. Since we want to preserve existing substructures of a lattice via
factorization, we turn away from measuring the importance of different parts of a formal context
or a (concept) lattice in general.

4. Imploding Intervals with Congruences and Tolerances

This section presents two methods for lattice factorization to implode selected intervals while
preserving certain structural properties of the original lattice. Since we utilize approaches of FCA,
we phrase the statements mostly for concept lattices. However, all statements can be translated to
finite lattices in general.

4.1. Complete Congruence Relations

Following Ganter and Wille [7], we define a (complete) congruence relation of a complete lat-
tice L as an equivalence relation θ on L that satisfies the following condition: xtθyt for t ∈ T ⇒
(⋁t∈T xt)θ(⋁t∈T yt) and (⋀t∈T xt)θ(⋀t∈T yt). Thus, congruence relations preserve the ⋀ and ⋁ op-
erators of L in L/θ.

For every lattice L and every interval S ≤ L at least one congruence relation θ on L exists that
implodes S, meaning that f ∶L→ L/θ with f(x) = [x]θ (the equivalence class of θ including x) is an
implosion of S in L. This is always the case for the trivial congruence relation θ that has a single
θ-class [x]θ = L, meaning that ∣f(L)∣ = 1. To utilize this method to our aim of imploding specific
intervals while preserving as much of the remaining structure as possible, the following question
arises: Given a lattice L and an interval S ≤ L, which congruence relation θ on L is the finest
(meaning that ∣L/θ∣ is as large as possible) so that f ∶L → L/θ is an implosion of S in L and how
can we determine this θ?

The congruence relations on a given lattice L are a closure system. So a unique finest con-
gruence with the required property exists. Also, in the finite case, the congruence relations and
the compatible subcontexts of the reduced formal context K with B(K) ≅ L have a one-to-one
correspondence [7]. We adapt this statement to our question setting as follows:

Lemma 4.1. Let K = (G,M,I) be a reduced formal context and S = [(A,B), (C,D)] ≤ B(K) an
interval. Let H = {A ∪ {g ∈ G ∣ g /∈ C}} and N = {D ∪ {m ∈M ∣m /∈ B}}. The set of all compatible
subcontexts [O,P ] ≤ K with O ⊆ N and P ⊆ H corresponds to the set of all congruence relations θ

on B(K) with f ∶L → L/θ is an implosion of S in L. The largest compatible subcontext [O,P ] ≤ K
with O ⊆ N and P ⊆H corresponds to the finest of those congruence relations.

Proof. The compatible subcontexts of K correspond to the complete congruences of B(K) so that
they induce the complete congruences, and the ordered set of the compatible subcontexts is dually
isomorphic to the congruence lattice [7, p.107]. Due to the order of the congruence lattice, for a given
interval S, the set of all congruence relations θ on L with f ∶L → L/θ is an implosion of S in L are
an order filter, meaning ∃[x]θ with S ⊆ [x]θ. This filter is generated by the unique finest complete
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e a b c d e

1 × × ● ● ●

2 × ● × ● ●

3 × × × ×

4 × × × ● ●

5 × ● × ×

6 ● × × ×

7 ● ● × ●

8 ● ● ● ×

Figure 1: A (concept) lattice B(K)(left) and its corresponding reduced formal context K = (G,M,I) (right). The
intervals S

1
(red) and S

2
(blue) are highlighted in B(K). The finest congruence relation that implodes S

2
partitions

the concepts in two intervals, the one highlighted with dotted boxes and the remaining one. Adding the ●-marked
incidences to I results in the block relation that corresponds to the finest tolerance relation that implodes S

2
.

congruence with this property. Analogously, there is a corresponding compatible subcontext that
is the unique greatest one generating an order ideal of all compatible subcontexts corresponding
to the former mentioned congruences. For every object g of a compatible subcontext the concept
(g′′, g′) is the smallest element of a θ-class of the corresponding congruence θ. Analogously for
every attribute m of a compatible subcontext the concept (m′,m′′) is the greatest element of
a θ-class of the corresponding congruence θ [7, Prop. 40]. Thus, the compatible subcontexts
corresponding to the congruences with a θ-class containing S must not contain the object set
{{g ∈ G ∣ (g′′, g′) ∈ S} ∖A} and the attribute set {{m ∈ M ∣ (m′,m′′) ∈ S} ∖D}. So the greatest
compatible subcontext fulfilling this requirement corresponds to the finest congruence with a θ-class
containing S. However, the possible selection of objects and attributes can be reduced as follows:
Let g /∈H. Then (g′′, g′) ≤ (C,D) and (g′′, g′) /≤ (A,B) and therefore (g′′, g′)∧(C,D) = (g′′, g′) and
(g′′, g′)∧ (A,B) < (g′′, g′) hold. So (g′′, g′) is not the smallest element of a θ-class, and therefore g

is not contained in the compatible subcontext.

Example 4.2. Considering the red highlighted interval S
1

in Figure 1(left), the sets H = {4},
N = {d, e} result from applying Lemma 4.1. The compatible subcontexts of the corresponding re-
duced formal context K (top left) are [∅,∅], [3, a], and [G,M]. Thus, the compatible subcontext
corresponding to the finest (and the only) congruence relation θ, that implodes S

1
is [∅,∅]. So,

the congruence relation we looked for is the trivial one that contains every concept in the same
equivalence class. For S

2
the sets H = {1,2,3,4,7} and N = {a, e} arise. Thus, the compatible

subcontext [3, a] corresponds to the finest congruence relation θ that implodes S
2
. θ partitions the

concepts in two intervals, the one highlighted with dotted boxes and the remaining one.

4.2. Complete Tolerance Relations

Another tool for lattice factorization is the (complete) tolerance relation θ, a reflexive and
symmetric relation on a complete lattice L that satisfies the following condition: xtθyt for t ∈ T ⇒
(⋁t∈T xt)θ(⋁t∈T yt) and (⋀t∈T xt)θ(⋀t∈T yt). As discovered by Czedli [4] they also generate a factor
lattice L/θ, in which, similar to the congruence relations, the ⋀ and ⋁ operators of L are preserved.

Since a tolerance relation does not have to be transitive, we can not expect to find a lattice
homomorphism between L and L/θ. Instead, we have to arrange with a sublattice homomorphism.
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The two possible maps are given by Ganter and Wille in [7, Prop. 56]. This entails to consider
sublattice homomorphism as implosions in this chapter, meaning ∃[x]θ with S ⊆ [x]θ.

Since every congruence relation is a tolerance relation, the trivial tolerance relation to implode a
given interval exists on every lattice. Thus, the question of finding the finest tolerance relation with
this property also arises. The tolerance relations of a lattice are in an one-to-one correspondence
with the block relations of its corresponding formal context. Hence, we propose the following
statement to search for the finest block relation that implodes a chosen interval.

Lemma 4.3. Let K be a reduced formal context and S = [(A,B), (C,D)] ≤B(K) an interval. Let
J̃ = I ∪(C ×B). The set of all block relations J ⊇ I with J ⊇ J̃ corresponds to the set of all tolerance
relations θ on B(K) with with B(K)→B(K)/θ being an implosion of S. The finest block relation
J with J ⊇ J̃ corresponds to the finest of those congruence relations.

Proof. Since the set of all block relations is a closure system [7, p.122] there is a unique finest block
relation J which includes J̃ . The tolerance relation θ corresponding to J has a θ-class containing
S due to the initial inclusion of (C ×B) in J [7, Thm. 15].

In Algorithm 1 we give a strategy to find those relations: Given a finite lattice L and an interval
S = [(A,B), (C,D)] ≤ L, in the first step (C ×D) is added to the incidence relation to ensure,
that (A,B) and (C,D) are in the same equivalence-class [7, Thm. 15] and therefore are mapped
to the same element by the factorization. Then for every object g ∈ C and every attribute m ∈ B

it is checked whether it satisfies the conditions for block relations with the new incidence relation
J = I ∪ (C × B). If this is not the case for an object g, for the smallest intent N ⊆ M in B(K)
with gJ ⊂ N all incidences (g,n) with n ∈ N ∖ gJ are added to J . The method for attributes is
analogous. This process is repeated iteratively until the conditions for block relations hold for every
object and attribute. Note that since the intersection of two intents is an intent itself, the smallest
intent selected in every step is unique. The same holds for extents.

Lemma 4.4. Algorithm 1 results in J , the finest block relation that implodes S .

Proof. J is a block relation, since for every g ∈ G and every m ∈M with (g,m) ∈ J and (g,m) /∈ I
holds that gJ is an intent in K and mJ is an extent in K. Also the tolerance relation θ corresponding
to J has a θ-class containing S due to the initial inclusion of (C ×B) in J [7, Thm. 15].

Since the set of all block relations is a closure system [7, p.122] there is a unique finest block
relation θ with the requested properties. Assume J̃ with J̃ ⊂ J to be this finest block relation so
that I ⊂ J̃ ⊂ J . Let (g,m) ∈ J with (g,m) /∈ J̃ be the first incidence that is added by the algorithm
to J while J̃ does not contain it. In each iteration of the strategy, the unique minimal intent
containing the current derivation of g is selected as the new derivation of g. Following J ⊆ J̃ holds.
This means J̃ = J .

Note that in some cases, the addition of the incidences (C ×B) results in the wanted outcome
already. In general, this is not the case, e.g., see Example 4.5.

Example 4.5. As for the lattice B(K) given in Figure 1(left) and the red highlighted interval S
1

the
corresponding formal context K = (G,M,I) (right) is examined to find the finest tolerance relation
θ imploding S

1
. Since S

1
= [({a},{a, b, c}), (G,∅)] the incidence relation J̃ = I ∪G × {a, b, c} is

generated. After this step, the conditions for block relations have to be checked iteratively. As for

the attribute set the condition holds for every attribute since aJ̃ = bJ̃ = cJ̃ = ∅I , dJ = dI and eJ̃ = eI .
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Algorithm 1: Generation of the finest block relation to implode S

Input: K = (G,M, I), S = [(A,B), (C,D)]
Output: J

1 J ∶= I ∪ (C ×B)
2 ext ∶= {H ∣(H,N) ∈B(K)}
3 int ∶= {N ∣(H,N) ∈B(K)}
4 check ∶= C ∪B
5 while ∣check∣ > 0 do

6 x ∶= first(check)
7 if x ∈ G then

8 if xJ /∈ int then

9 candidates ∶= {y∣y ∈ int, x ⊂ y}
10 for y ∈ candidates do

11 my ∶= y ∖ xJ

12 add ∶=min∣my ∣{my}

13 J ∶= J ∪ {(x,m)∣m ∈ add}
14 check ∶= check ∪ add

15 if x ∈M then

16 if xJ /∈ ext then

17 candidates ∶= {y∣y ∈ ext, x ⊂ y}
18 for y ∈ candidates do

19 gy ∶= i ∖ xJ

20 add ∶=min∣gi ∣{gi}
21 J ∶= J ∪ {(g, x)∣g ∈ add}
22 check ∶= check ∪ add

23 check ∶= check ∖ x

24 return J

For the objects 1,2, . . . ,6 also the condition holds. This is not the case for the objects 7 and 8.
Therefore the incidences (7, e) and (8, d) have to be added to J̃ . After this step, the attributes e

and d have to be considered again. Thus the finest block relation J with J̃ ⊆ J is J = G ×M . This
block relation corresponds to the trivial tolerance relation.

When considering the blue highlighted interval S
2
= [({3},{b, c, d, e}), ({3, 5, 6, 8}, {e})], we have

J̃ = I ∪({3,5,6,8}×{b, c, d, e}). The finest block relation J with J̃ ⊆ J is depicted in Figure 1(right)
by the additional ●-incidences.

5. Interval Factorization of Lattices

Our goal in this section is to generate, from a set of intervals S
1
, . . . , Sk ≤ L, a factorization

L/θ that can be obtained by an implosion f of the intervals such that f is injective on L ∖⋃k
i=1 Si

(i.e. ∣f(L ∖⋃k
i=1 Si)∣ = ∣L ∖⋃

k
i=1 Si∣ holds) and f(Si) /= f(Sj) for i, j ∈ {1, . . . , k} with i /= j. To this

end, we present the interval relation θ on L, which enables us to generate factor sets that implode
exactly the chosen intervals. By restricting the interval relations to pure intervals (see Section 5.3)
the generation of lattices is guaranteed.
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5.1. Interval Relations

To overcome the problem of imploding more than the selected interval, we now introduce a new
equivalence relation.

Definition 5.1. Let L be an ordered set and {S
1
, S

2
, . . . , Sk} a set of pairwise disjoint intervals of

L. We call the equivalence relation

θS
1
,S

2
,...,Sk

∶=
k

⋃
i=1

Si × Si ∪ {(x,x) ∣ x ∈ L}

an interval relation on L. If k = 1 holds, we call θ = θS
1

a 1-generated interval relation. For
an interval relation θ ∶= θS

1
,S

2
,...,Sk

we denote the factor set with L/θ ∶= {[x]θ ∣ x ∈ L} and the
equivalence classes of the interval relation by [x]θ ∶= {y ∈ L ∣ xθy}.

Note that θ truly is an equivalence relation. The reflexivity is provided by {(x,x) ∣ x ∈ L}, the
symmetry is given by using only the × operator and the transitivity is based on S

1
, S

2
, . . . , Sk being

disjoint intervals.
Since each equivalence class is an interval, it includes its supremum and its infimum. We denote

them by xθ ∶= ⋁[x]θ and xθ ∶= ⋀[x]θ, respectively. We also use the notations [S]θ and [S]θ for the
infimum and supremum of the equivalence class {x ∈ L ∣ x ∈ S} that is generated by S.

Note that every congruence relation on a complete lattice L is an interval relation on L as well.
More precisely, it is a special case of the lattice interval relations that are defined in Definition 5.21.

Lemma 5.2. Let θ be an equivalence relation on lattice L. The following statements are equivalent:

a) θ is an interval relation.

b) The two following conditions hold for all x1, x2, y1, y2 ∈ L:

i) x1θx2⇒ (x1 ∨ x2)θx1 and (x1 ∧ x2)θx1

ii) x1θx2 and y1θy2, (x1, y1) /∈ θ and x1 > y1⇒ x2 /< y2

Proof. a)⇒ b) Let θ = θS
1
,S

2
,...,Sk

be an interval relation on L. If x1θx2 then x1, x2 ∈ Si for some i

and therefore (x1 ∨ x2), (x1 ∧ x2) ∈ Si hold. Therefore i) holds. Let x1, x2 ∈ Si and y1, y2 ∈ Sj with
Si /= Sj and x1 > y1. Assumed x2 < y2. If x1 ≤ x2 then y1 < x1 ≤ x2 < y2 and thus Si = Sj holds. E

In the case of x1 > x2 and y1 ≥ y2 we have x2 < y2 ≤ y1 < x1 also Si = Sj . E
If x1 > x2 and y1 < y2 then y2 and x1 are both upper bounds of y1 and x2. Since L is a lattice

we have y1 ∨ x2 ≤ y2 and y1 ∨ x2 ≤ y2 and therefore y1 ∨ x2 ∈ Si and y1 ∨ x2 ∈ Sj. E
In all cases, this is a contradiction to the assumptions. Hence ii) holds.

b) ⇒ a): Let θ be an equivalence relation on L as in b). For an arbitrary equivalence class [x]θ
the supremum xθ and the infimum xθ exist in [x]θ because of i). Let y ∈ [xθ, x

θ] with y /∈ [x]θ.
Then y ∈ [xθ, x

θ]⇒ y ≤ xθ, y ≥ xθ. This is a contradiction to ii). So the equivalence classes of θ are
intervals.

8



x

y

[x]θS
1
,S

2

[y]θS
1
,S

2

Figure 2: Example of a lattice L (left) with a red highlighted interval S ≤ L and two elements x, y that are not
comparable. In the factor set L/θS (right) the equivalence class corresponding to S is highlighted in red. Now the
elements [x]θS and [y]θS are comparable.

5.1.1. Defining ≤θ for 1-generated interval relations

Since implosions are defined as order preserving maps, on the factor set L/θ the question remains
which order the factorization should impose. To answer this we now define the relation ≤θ on
the factor set L/θ. We start with the case of a 1-generated interval relation θ = θS as presented
in Definition 5.5. Our construction is motivated by the aim to preserve all comparabilities of L

in L/θ. So, for an element x ∈ L that is smaller than at least one element of S, it should also
[x]θ ≤θ [S]θ hold. Dually, for an element y ∈ L that is larger than any element of S should also
[S]θ ≤θ [y]θ hold. Therefore also the elements [x]θ and [y]θ should become comparable in L/θ.
This is illustrated in Figure 2.

To define the order ≤θ with the required properties, we first have to define some areas of an
ordered set generated by an interval.

Definition 5.3. Let L be an ordered set and S an interval of L. We define the sets

S! ∶= {x ∈ L ∖ S ∣ ∃y ∈ S ∶ y < x},

S# ∶= {x ∈ L ∖ S ∣ ∃y ∈ S ∶ x < y} and

S∥ ∶= {x ∈ L ∖ S ∣ ∄y ∈ S ∶ y < x or x < y}.

Proposition 5.4. Let L be an ordered set and let S be an interval of L. Then S, S!, S# and S∥ are
pairwise disjoint and together cover L. In other words, {S,S!, S#, S∥} is a partition of the elements
in L, with possibly empty classes.

Proof. Let S = [u, v]. Then S! = [u) ∖ S and S# = (v] ∖ S. Since [u, v] is an interval S! ∩ S# = ∅.
Also S∥ = L ∖ (S ∪ S! ∪ S#) holds.

An example for this division of the order elements can be seen in Figure 3.

Definition 5.5. Let L be an ordered set and S ≤ L an interval. We define [x]θ ≤θ [y]θ ∶⇔ (xθ ≤ yθ

or x ∈ S#, y ∈ S!).

Example 5.6. Utilizing congruence or tolerance relations to implode the red highlighted interval
in Figure 1, the trivial factor lattice, consisting of a single element, arose. With the new construc-
tion, we preserve everything outside of the interval: In Figure 4 the original lattice B(K) and the
factor set B(K)/θS for the interval relation θS are depicted. In B(K)/θS the interval S implodes,
but the rest of the lattice is preserved. On the other hand, not all joins and meets are preserved.
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Figure 3: For the interval S (red), the sets S! (blue), S# (green) and S∥ (yellow) are highlighted. In this example,
all four sets are intervals. They are not pure but build up a lattice-generating interval relation.

a

c

b

d

[a]θ=[d]θ

[c]θ

[b]θ

Figure 4: A (concept) lattice B(K) with a pure interval S (highlighted red) on the left. The lattice B(K)/θS is
pictured on the right. Some elements of the lattices are labeled.

Following, we take a look into the order properties of the factor set with the previously defined
relation. For a lattice L, in general L/θ is neither a lattice (see Figure 5 below) nor even an ordered
set (see Figure 6). However, considering only one interval with size larger one, L/θ is always an
ordered set:

Lemma 5.7. Let θ = θS be an interval relation on the ordered set L. Then ≤θ is an order on L/θ.

Proof. Reflexivity: ≤ is an order on L, meaning x ≤ x for all x ∈ L and especially xθ ≤ x ≤ xθ.
Therefore [x]θ ≤θ [x]θ holds in L/θ.

Transitivity: Let [x]θ ≤θ [y]θ and [y]θ ≤θ [z]θ in L/θ. In the case that xθ ≤ y
θ and yθ ≤ z

θ in L

either yθ = y
θ and therefore xθ ≤ z

θ. Otherwise, in the case of yθ /= y
θ we have y ∈ S, x ∈ S# ∪ S and

z ∈ S! ∪ S and then [x]θ ≤θ [z]θ. In the case x ∈ S#, y ∈ S! and yθ ≤ z
θ holds z ∈ S! and therefore

[x]θ ≤θ [z]θ. The case y ∈ S#, z ∈ S! and xθ ≤ y
θ is analogous.

Anti-symmetry: Let [x]θ ≤θ [y]θ and [y]θ ≤θ [x]θ. If xθ ≤ y
θ and yθ ≤ x

θ, follows [x]θ = [y]θ
directly since either xθ = x

θ or xθ = x
θ or xθ = yθ and xθ = yθ. The cases x ∈ S#, y ∈ S!, yθ ≤ x

θ and
y ∈ S#, x ∈ S!, xθ ≤ y

θ can not occur as well as the case of x ∈ S#, y ∈ S!, y ∈ S#, x ∈ S!.

Lemma 5.8. Let L be an ordered set and θ = θS an interval relation on L. Then ≤θ is the smallest
order on L/θ so that the map ϕ∶L → L/θ, x ↦ [x]θ is surjective and order-preserving.

Proof. The surjectivity follows directly from the fact that for every [x]θ ∈ L/θ we have x ∈ L as
representative. The order is preserved due to the definition of ≤θ: If x ≤ y in L holds, we have
xθ ≤ y

θ and therefore [x]θ ≤θ [y]θ in L/θ.
We show that ≤θ is the smallest of those relations by contraposition: Let R be an order on

L/θ so that ϕ is surjective and order-preserving. Assumed there are x, y ∈ L with [x]θ ≤θ [y]θ and
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Figure 5: A lattice L with a red highlighted interval
S ≤ L (left). The factor set L/θS (right) is no lattice
but still an ordered set. The equivalence class [S]θ is
highlighted in red.

Figure 6: “Penrose crown”: a lattice L with three
pairwise comparable intervals S

1
(red), S

2
(green),

S
3
(blue)≤ L (left). The factor set L/θS

1
,S

2
,S

3
(right)

is not even an ordered set. It holds [S
1
]θ ≤ [S

2
]θ ≤

[S
3
]θ ≤ [S

1
]θ. Thus ≤θ is not anti-symmetric and,

therefore no order relation.

x

y

z

[x]θS
1
,S

2

[y]θS
1
,S

2

[z]θS
1
,S

2

Figure 7: In the lattice L (left) – with intervals S
1
, S

2
≤ L highlighted in red and green, respectively – the with three

elements x, y, z that are not comparable. In the factor set L/θS
1
,S

2
(right) the equivalence classes corresponding

to S
1

and S
2

are highlighted red and green, respectively. Now the elements [x]θS
1
,S

2
, [y]θS

1
,S

2
and [z]θS

1
,S

2
are

comparable.

[x]θ /R [y]θ. Since ϕ is order-preserving we know that x /≤ y in L and moreover no element of the
θ-class [x]θ is less or equal an element of the θ-class [y]θ. In particular, xθ /≤ y

θ holds in L. Thus,
x ∈ S# and y ∈ S! due to the definition of ≤θ. Therefore, we have xθ ≤ [S]

θ and [S]θ ≤ y
θ and due

to ϕ being order-preserving also [x]θR[S]θ and [S]θR[y]θ. Consequently, [x]θR[y]θ follows from
the transitivity of the order R. E

5.1.2. Defining ≤θ in general

Considering more than one interval with size larger one, we define the relation ≤θ on L/θ, by
generalizing Definition 5.5 as follows:

Definition 5.9. Let L be an ordered set and θ ∶= θS
1
,...,Sk

an interval relation on L. We define

the relation [x]θ ≤θ [y]θ∶⇔ (xθ ≤ yθ or ∃i1, . . . , il ∈ {1, . . . , k} with xθ ∈ S
#
i1
, [Si1

]θ ∈ S
#
i2
, . . . ,

[Sil−1
]θ ∈ S

#
il
, yθ ∈ S!il).

The relation is illustrated in Figure 7.
Note that ≤θ for one interval in Definition 5.5 is a special case of ≤θ in Definition 5.9. Therefore

we use the notion ≤θ in the following both for imploding one as well as multiple intervals.
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We can show that considering several intervals, ≤θ is always a preorder on L/θ, i.e., it is always
reflexive and symmetric but ot necessarily anti-symmetric:

Lemma 5.10. Let L be an ordered set and θ = θS
1
,...,Sk

an interval relation on L. Then ≤θ is a
preorder on L/θ.

Proof. Reflexivity: ≤ is an order on L, meaning x ≤ x for all x ∈ L and especially xθ ≤ x ≤ xθ.
Therefore [x]θ ≤θ [x]θ holds in L/θ.

Transitivity: Let [x]θ ≤θ [y]θ and [y]θ ≤θ [z]θ in L/θ. If [x]θ = [y]θ or [y]θ = [z]θ the statement
is similar to the proof of Lemma 5.7. Assume [x]θ /= [y]θ /= [z]θ. If xθ ≤ y

θ and yθ ≤ z
θ in L then

either yθ = yθ and therefore xθ ≤ zθ or there is an interval Si with y ∈ Si. In this case xθ ∈ S
#
i

and zθ ∈ S!i hold. In both cases follows [x]θ ≤θ [z]θ. If xθ ≤ y
θ and ∃Si1

, . . . , Sil
as described with

yθ ∈ S
#
i1

and zθ ∈ S!il then xθ ∈ S
# and [S]θ ∈ S

#
i1

for the interval S = ([y]θ,≤). Then [x]θ ≤θ [z]θ.

The case of yθ ≤ z
θ and ∃Si1

, . . . , Sil
as described with xθ ∈ S

#
i1

and yθ ∈ S!il) follows analogously. If

∃Si1
, . . . , Sil

and Sj1
, . . . , Sjl

as described with xθ ∈ S
#
i1

, yθ ∈ S!il), yθ ∈ S
#
j1

and zθ ∈ S!jl) there is an

interval S = ([y]θ,≤) so that [Sil
]θ ∈ S

# and [S]θ ∈ S
#
j1

. Then [x]θ ≤θ [z]θ.

Note that ≤θ as given in Definition 5.9 is the same relation as [x]θ ≤θ [y]θ ∶⇔ (xθ ≤ yθ or
∃i1, . . . , il ∈ {1, . . . , k} with xθ ∈ S

#
i1

, [Si2
]θ ∈ S

!
i1

, . . . , [Sil
]θ ∈ S

!
il−1

, yθ ∈ S!il).
We observe that ≤θ is the transitive closure of a simpler relation as follows:

Lemma 5.11. Let L be an ordered set and θ an interval relation on L. Let [x]θ ≤∗ [y]θ ∶⇔ xθ ≤ y
θ

be a relation on L/θ. Then ≤θ is the transitive closure of ≤∗.

Proof. Let x, y ∈ L and Si an interval of θ. Then xθ ∈ S
#
i is equivalent to xθ ≤ [Si]

θ. Further, yθ ∈ S!i
is equivalent to yθ ≤ [Si]θ. Since [Si]θ ≤ [Si]

θ, the statement follows directly.

5.2. Order-preserving Interval Relations

Up to now, we have only shown (in Lemma 5.10) that ≤θ is a preorder and Figure 6 showed
that it will not always be anti-symmetric. We now investigate the order properties of ≤θ in more
detail:

Definition 5.12. Let L be an ordered set and θ an interval relation on L. We call θ order-preserving
on L if (L/θ,≤θ) is an ordered set.

Considering a 1-generated interval relation, from Lemma 5.10 follows directly:

Corollary 5.13. Let L be an ordered set and θ an interval relation on L. If θ is 1-generated, θ is
order-preserving.

For more than one interval, we can provide a necessary and sufficient condition for an interval
relation θ to be order-preserving in Theorem 5.15.

Definition 5.14. Let L be an ordered set and 2 ≤ k. A set {S
1
, . . . , Sk} of intervals in L are

called Penrose crown of order k in L if they are pairwise disjoint and if [S
1
]θ ∈ S

#
2
, [S

2
]θ ∈ S

#
3
, . . . ,

[Sk−1]θ ∈ S
#
k
, [Sk]θ ∈ S

#
1
.
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[S1]θ [S2]θ [S3]θ [S4]θ [S5]θ [S6]θ

[S1]
θ [S2]

θ [S3]
θ [S4]

θ [S5]
θ [S6]

θ

Figure 8: Penrose crown of order 6.

We call such a constellation of intervals a Penrose crown, named after the “impossible staircase”
created by L. Penrose and R. Penrose in 1958 (and previously by O. Reutersvärd in 1937) [? ].
The construction became popular by M.C. Escher’s lithograph “Ascending ans Descending”. The
intervals in the lattice in Figure 6 form a Penrose crown of order 3. Another example is illustrated
in Figure 8.

Theorem 5.15. Let L be a finite lattice and θ = θS
1
,...,Sk

an interval relation on L. θ is order-
preserving if and only if there exists no Penrose crown {Si1

, . . . , Sil
} in L with i1, . . . , il ∈ {1, . . . , k}.

Proof. "⇒": Assumed some intervals S
1
, . . . , Sl ≤ L exist as described. Then [S

1
]θ ≤θ [Sl]θ and

[Sl]θ ≤θ [S1
]θ by definition of ≤θ. Since [S

1
] /= [Sl] the preorder ≤θ is not anti-symmetric and

therefore not an order.
"⇐": Assume the relation ≤θ is not an order. Then there are two equivalence classes [Si]θ and

[Sj]θ with [Si]θ ≤θ [Sj]θ, [Sj]θ ≤θ [Si]θ and [Si]θ /= [Sj]θ in L/θ. For two intervals S,T with
[S]θ /= [T ]θ it holds that [S]θ ≤ [T ]

θ ⇒ [S]θ ∈ T
#. Due to the definition of ≤θ, one of the following

cases has to occur. In the case of [Si]θ ≤ [Sj]
θ and [Sj]θ ≤ [Si]

θ {Si, Sj} is a Penrose crown of order

2. In the case of [Si]θ ≤ [Sj]
θ and [Sj]θ /≤ [Si]

θ we have [Sj]θ ∈ S
#
1
, [S

1
]θ ∈ S

#
2
, . . . , [Sl]θ ∈ [Si]θ

#

because of [Sj]θ ≤θ [Si]θ. The case of [Sj]θ ≤ [Si]
θ and [Si]θ /≤ [Sj]

θ follow analogously. In the case
of [Sj]θ /≤ [Si]

θ and [Si]θ /≤ [Sj]
θ we have [Sj]θ ∈ S

#
1
, [S

1
]θ ∈ S

#
2
, . . . , [Sl]θ ∈ [Si]θ

# and [Si]θ ∈ S
#
m,

[Sm]θ ∈ S
#
m+1, . . . , [Ss]θ ∈ [Sj]θ

#.

Since a Penrose crown consists of at least two intervals, an interval relation is always order
preserving if at most one of its intervals consists of more than one element:

Lemma 5.16. Let L be an ordered set and θ = θS
1
,...,Sk

an interval relation on L. If ∣[Si]θ∣ ≥ 2 for
at most one i ∈ {1, . . . , k}, θ is an order-preserving interval relation.

Proof. If θ includes no interval of size 2 or larger, L/θ = L. If θ = θS
1

with ∣S
1
∣ ≥ 2 the statement

follows from Lemma 5.7.

In the case of L being a lattice, such a constellation can not occur if at most two intervals of
the interval relation θ include more than a single element of L:

Lemma 5.17. Let L be a finite lattice and θ = θS
1
,...,Sk

an interval relation on L. If ∣[Si]θ∣ ≥ 2 for
at most two i ∈ {1, . . . , k}, θ is an order-preserving interval relation.

Proof. If θ includes no or one interval of size 2 or larger, the proof is the same as in Lemma 5.16.
Let θ = θS

1
,S

2
with ∣S

1
∣, ∣S

2
∣ ≥ 2. Assume that [S

1
]θ ∈ S

#
2

and [S
2
]θ ∈ S

#
1
. Then [S

1
]θ ∨ [S2

]θ ∈ S1

and [S
1
]θ ∨ [S2

]θ ∈ S2
. Hence, the intervals S

1
S
2

are not disjoint. This is a contradiction to θ

being an interval relation.

Moreover, the case mentioned in Theorem 5.15 can only occur if L contains a Penrose crown of
order l ≥ 2. If L is a lattice, it has to contain a Penrose crown of order l ≥ 3 and therefore a crown
of the same order as suborder.
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Corollary 5.18. Let L be an ordered set and θ an interval relation on L. If L does not contain a
Penrose crown of order l ≥ 2, then θ is order-preserving.

Corollary 5.19. Let L be a lattice and θ an interval relation on L. If L does not contain a crown
of order l ≥ 3 as a suborder, then θ is order-preserving.

Since a dismantlable lattice L – meaning the iterative elimination of all doubly irreducible
elements results in the elimination of the whole lattice – never contains a crown [9], every interval
relation on such a lattice is order preserving.

Corollary 5.20. Let L be an ordered set and θ an interval relation on L. If L is planar than θ is
order-preserving.

As shown, for an order preserving interval relation θS
1
,...,Sk

, we have an implosion of the intervals
S
1
, . . . , Sk as defined in Definition 1.1. In the following section we investigate the preservation of

the lattice properties.

5.3. Lattice-generating Interval Relations

So far, we have been interested in interval relations with factor sets that are ordered sets. Now
we focus on interval relations where the resulting factor set is even a lattice. Therefore we restrict
us to the case where L is a (finite) lattice.

Definition 5.21. Let L be a finite lattice and θ an interval relation on L. We call θ a lattice-
generating interval relation on L if (L/θ,≤θ) is a lattice.

Note that every congruence relation is a lattice-generating interval relation since the equivalence
classes form pairwise disjoint intervals and the order (denoted by ≤c in the following lemma) which
is defined on the factor lattice L/θ for a congruence relations θ is equal to ≤θ:

Lemma 5.22. Let L be a complete lattice and θ a complete congruence relation on L. Then the
orders ≤θ and [x]θ ≤c [y]θ∶⇔ xθ(x ∧ y) are identical on L/θ.

Proof. "⇐": Let [x]θ ≤c [y]θ and therefore (x ∧ y) ∈ [x]θ. Since x ∧ y ≤ y holds, we have xθ ≤

(x ∧ y) ≤ y ≤ yθ and consequently [x]θ ≤θ [y]θ.
"⇒": Let [x]θ ≤θ [y]θ. In the case of xθ ≤ y

θ we have xθxθ and yθyθ and therefore (due to the
definition of congruence relations) (x ∧ y)θ(xθ ∧ y

θ) = xθ. Then [x]θ ≤c [y]θ holds.
If xθ /≤ y

θ then there are intervals S
1
, . . . , Sk in θ with xθ ≤ [S1

]θ, [S
1
]θ ≤ [S2

]θ, . . . , [Sk]θ ≤ y
θ.

Then we have [x]θ ≤c [S1
]θ ≤c ⋅ ⋅ ⋅ ≤c [y]θ.

We will now provide a characterization of lattice-generating interval relations.

Definition 5.23. Let L be a finite lattice and S ≤ L an interval. We call S a nested interval of L
if there are two intervals T ,U ≤ L so that S,T ,U are a Penrose crown of order 3 in L. We call S
a pure interval of L if it is not nested.

Corollary 5.24. Let L be a finite lattice and S ≤ L an interval. S is nested if and only if there are
x, y ∈ S∥, a ∈ S! and v ∈ S# with y = x ∨ v,x = y ∧ a, y /≤ a and v /≤ x.

An example of a lattice with a nested and a pure interval is given in Figure 9. Also, both
highlighted intervals in the lattice in Figure 1 (and therefore the one in Figure 4) are pure. In the
1-generated case, the pure intervals are exactly the lattice-generating intervals:
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v x

ya

Figure 9: On the left, a nested interval S of the lattice L is highlighted in red. S is part of a Penrose crows of order
3 with the Intervals [x,a] and [v, y]. As presented in Figure 5 L/θS is no lattice. On the right, a pure interval is
highlighted in red.

Lemma 5.25. Let θ = θS be an interval relation on lattice L. Then θ is lattice-generating if and
only if S is pure.

Proof. "⇒": We show the contraposition: Let S be a nested interval, meaning ∃x, y ∈ S∥, a ∈ S! and
v ∈ S# with y = x ∨ v,x = y ∧ a, y /≤ a and v /≤ x. For all elements d ∈ S#, e ∈ S! holds [d]θ <θ [e]θ in
L/θS . It follows that [v]θ <θ [a]θ in L/θS and ∃[c]θ ∈ S! with [v]θ <θ [c]θ ≤θ [a]θ and [x]θ <θ [c]θ.
So [y]θ and [c]θ are two different minimal upper bounds of [v]θ and [x]θ. Thus L/θS is not a
lattice.

"⇐": We show the contraposition: L/θ is an ordered set by Lemma 5.7. Suppose Lθ is not a
lattice. Then exist [x]θ, [v]θ in L/θ with two smallest upper bounds or two greatest lower bounds.
Due to the duality of lattices, we only examine the case of two incomparable smallest upper bounds
[a]θ, [y]θ. We have [x]θ /= [v]θ in L/θ and thus x /= v in L. Since L is a lattice and the factorization
does not affect the order of the elements in S#, S! and S∥ we have that v,x are not both in the
same of those sets. Otherwise [x]θ ∨ [v]θ = [x ∨ v]θ holds.

In addition, we show that x /∈ S: If x ∈ S and v ∈ S!, we have [x]θ ∨ [v]θ = [v]θ. If x ∈ S and
v ∈ S#, we have [x]θ ∨ [v]θ = [x]θ. If x ∈ S and v ∈ S, we have [x]θ ∨ [v]θ = [v]θ = [x]θ. If x ∈ S and
v ∈ S∥, we have [x]θ ∨ [v]θ = [xθ ∨ v]θ or otherwise L would not be a lattice. Analogous, one can
show that v /∈ S.

In case of x or v in S! we have: W.l.o.g. let v ∈ S!. If x ∈ S# we have [x]θ∨ [v]θ = [v]θ. If x ∈ S∥

we have [x]θ ∨ [v]θ = [x ∨ v]θ Therefore the only possibility for [x]θ and [v]θ having two minimal
upper bounds is x ∈ S∥ and v ∈ S# with v /≤ x (or the other way around).

W.l.o.g. let y = v ∨ x in L. Since x ∈ S∥ and v ∈ S# we have y ∈ S! ∪ S∥. If y ∈ S! we have
[x]θ ∨ [v]θ = [xθ ∨ v]θ ≤θ [y]θ as the supremum of [x]θ and [v]θ. So let y ∈ S∥. Then [y]θ is a
smallest upper bound of [x]θ and [v]θ. Let [a]θ /= [y]θ be another smallest upper bound of [x]θ
and [v]θ. Then either x /≤ a or v /≤ a in L. Due to the definition of the order in L/θ we have v /≤ a,
x ≤ a and a ∈ S! in L. Then S is a nested interval.

The example shown in Figure 5 illustrates the implosion of a nested interval S in a lattice L.
In this case, L/θS is an ordered set but no lattice.

Let L be a finite lattice and S
1
, S

2
two disjoint pure intervals of L. Note, that in general S

2

is not a pure interval in L/θS
1
. Consequently, an interval relation θ = θS

1
,...,Sk

it not necessarily
lattice-generating just because it is pure - Figure 10 shows a counterexample. Also, not every
lattice-generating interval relation consists of only pure intervals as can be seen in Figure 3.

This means that, having an interval relation θS with a nested interval S, it is possible to alter
θ in a way that purifies it by adding additional intervals. In this case, it is necessary to make the
elements a and y or the elements x and v comparable in the lattice. Some possibilities to purify
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Figure 10: A lattice L with two pure intervals that are red and blue highlighted (left). If the red interval is factorized,
the blue interval becomes nested (middle). If the blue interval is factorized, the red interval becomes nested (right).

a nested interval are illustrated in Figure 11. Note that the purification of an interval can also
necessarily require several new intervals since there are possibly more than just one set of elements
a, v, x, y that make S nested. Also, each additional interval may interact with the other added
intervals as well as with S so that new problematic elements can arise.

Since our goal was to find a factorization to generate a lattice that can be obtained by a
surjective, order-preserving mapping, the lattice-generating interval relation fulfills this purpose.
However, the lattice operations ⋁ and ⋀ are not generally preserved by ϕ, i.e., ϕ is, in general,
not a lattice homomorphism. For example consider the two concepts a and b in Figure 4 (left).
Their infimum in the original lattice is c. Nevertheless, in the factor set (right) [a]θ ∧ [b]θ ≠ [c]θ.
However, it is possible to determine where the lattice operations ⋁ and ⋀ are not preserved after
a factorization using an interval relation:

Lemma 5.26. Let L be a finite lattice and θ = θS a lattice-generating interval relation on L. Let
u, v,w,x, y, z ∈ L with u ∧ v = w and x ∨ y = z. Then:

i) u ∈ S ∪ S!, v,w ∈ S#, v /= w⇒ [u]θ ∧ [v]θ /= [w]θ

ii) x ∈ S ∪ S#, y, z ∈ S!, y /= z⇒ [x]θ ∨ [y]θ /= [z]θ

iii) [u]θ ∧ [v]θ /= [w]θ⇒ u ∈ S ∪ S!, v ∈ S# ∪ S∥, v /= w

iv) [x]θ ∨ [y]θ /= [z]θ⇒ x ∈ S ∪ S#, y ∈ S! ∪ S∥, y /= z

Proof. We show i): Because u ∈ S ∪ S! and v ∈ S# we have [v]θ ≤θ [u]θ. Since w < v we have
[w]θ <θ [v]θ. This means [u]θ ∧ [v]θ = [v]θ /= [w]θ.
ii) can be shown analogously.

We show iii): We show the contraposition: Assumed v = w, we have v ≤ u and therefore
[u]θ ∧ [v]θ = [v]θ = [w]θ. Thus, let v /= w. In case of u, v ∈ S ∪S! we have w ∈ S or w ∈ S!. If w ∈ S,
we have [u]θ ∧ [v]θ = [S]θ = [w]θ, if w ∈ S! the order between the three elements is not affected by
the factorization and [u]θ ∧ [v]θ = [w]θ as well. In case of u, v ∈ S∥ ∪ S# we have w ∈ S# or w ∈ S∥.
The order between the three elements is not affected by the factorization and [u]θ ∧ [v]θ = [w]θ.
iv) can be shown analogously.

As seen in it previous section, crowns play an essential role in determining whether an interval
relation is ordered. Those substructures can also be used to determine the pureness of an interval
(relation) as follows:

Lemma 5.27. Let L be a finite lattice and S = [S�, S⊺] an interval on L. Then the following
equivalence holds:

S is nested in L⇔ S� and S⊺ are elements of a crown of order 3 in L

16
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Figure 11: For the lattice L with a nested interval S (red), the diagrams show all different possibilities to purify the
interval relation θS by adding an additional interval Snew(blue) with ∣S∣ = 2.

Proof. "⇐": Let A3 ≤ L be a crown consisting of x1 = S�, x2, x3, y1 = S⊺, y2 and y3. By definition of
a crown we have y2 ∈ S

!, x3 ∈ S
# and x2, y3 ∈ S

∥ with x2 = y2 ∧ y3, y3 = x2 ∨ x3, y3 /≤ y2 and x3 /≤ x2.
Thus, S is nested in L.
"⇒": Let S be nested with the elements a, v, x, y. Then we have the relations x ≤ a, S� ≤ a, v ≤ y,
v ≤ S⊺, x ≤ y and S� ≤ S⊺ as the only relations between those elements. Thus the set s, v, x, y,S�, S⊺
is a crown of order 3 in L.

Using this, we can now generalize Corollary 5.19 to lattice-generating interval relations:

Lemma 5.28. Let L be a lattice and θ an interval relation on L. If L does not contain a crown of
order 3 as a suborder, then θ is lattice-generating.

Corollary 5.29. Let L be a lattice and θ an interval relation on L. If L is planar θ is an order-
preserving interval relation on L.
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1 × ×

2 × ● ● ×

3 × ● ● ×

4 × ×

5 × ×

6 × × ● × ● ×

7 × × ● × ● ×

8 × × × ×

9 × × × ×

10 × × × ×

11 ×

12 × × × × × × × × × × × ×

1 2 3 4 5 6 7 8 9 10 11 12

1 × ×

2 × ● ● ● ● ×

3 × ● ● ×

4 × ×

5 × ×

6 × × ● ● × ● ● ×

7 × × ● × ● ×

8 × × × ×

9 × × × ×

10 × × × ×

11 ×

12 × × × × × × × × × × × ×

Figure 12: A lattice L with a two pure intervals S
1
, S

2
(red and blue highlighted) (top left) and the lattice L/θS

1
,S

2
(top

right). For K = (G,M,I), the generic formal context of L, the enrichments (G,M,IS
1
,S

2
) (bottom left) and

(G,M, (IS
1
)S

2
) = (G,M, (IS

2
)S

1
) (bottom right) are given. The incidences that are added by the enrichment

are depicted by ●.

Using a lattice-generating interval relation, a lattice arises by factorization so that exactly the
chosen intervals of the original lattice implode. In the following, we investigate this approach on
the context side.

5.4. Context Construction for Interval Factorization

Since every finite lattice is isomorphic to a concept lattice B(K) of a formal context K and
formal contexts tend to be smaller than their corresponding concept lattices, we will now discuss
the corresponding context constructions of our approach.

Definition 5.30. Let K = (G,M,I) be a formal context and {S
1
, S

2
, . . . , Sk} a set of pairwise

disjoint intervals of B(K) with Si = [(Ai,Bi), (Ci,Di)]. The incidence relation

IS
1
,...,Sk

∶= I ∪
k

⋃
i=1

(Ci ×Bi)

is the enrichment of relation I by the intervals S
1
, . . . , Sk. We call the context KS ∶= (G,M,IS) the

enrichment of context K by the interval S.

Note that simultaneously considering a set of intervals and the iterative enrichment of a relation
generally does not end in the same context. An example is presented in Figure 12.
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Therefore, we present the following statements just for single intervals. We present a one-to-one
correspondence between the set of the enrichments of the incidence relation by an interval for a
generic formal context K and the interval relations θS on B(K) in the following lemma. Note
that the statement does not hold for reduced formal concepts in general. This fact is discussed
in Lemma 5.36 in more detail.

Lemma 5.31. Let L be a lattice and K = (G,M,I) its generic formal context. If θS is an interval
relation on L, then IS = I ∪ (C × B) is an enrichment of I by the interval S = [(A,B), (C,D)].
Conversely, for every enrichment IS of I by an interval S the relation θS is an interval relation on
B(K).

Proof. Since S is a single interval, the statement follows directly from the definitions of enrichments
and interval relations.

In a generic formal context we can also determine weather an interval is pure or nested in the
corresponding concept lattice.

Lemma 5.32. Let L be a finite lattice and K = (G,M,I) its generic formal context. Let θS be an
interval relation on L. S is nested interval in L if and only if there exists S = [H,N] ≤ K with S

being a Boolean subcontext of dimension 3, [S]θ ∈N , [S]θ ∈H and [S]θI[S]
θ.

Proof. Follows directly from Lemma 5.27: A lattice contains a Boolean suborder of dimension 3 if
and only if it contains a crown of order 3 as a suborder. Due to the definition of a generic formal
context, there is a Boolean subcontext [{a, b, c},{x, y, z}] of dimension 3 in K precisely if there is a
Boolean Suoborder of dimension 3 and therefore a crown of order 3 as suborder in the corresponding
lattice so that a, b, c are the lower elements of the crown and x, y, z are the upper elements of the
crown.

In Lemma 5.31 we considered K to be generic. Otherwise, additional reducible concepts may
vanish even if they are not in the chosen interval, as presented in the following example.

Example 5.33. In Figure 13 two contexts that generate (up to isomorphism) the same concept lat-
tice are represented. Both have enrichments by the interval S = [(4′′,4′), (G,G′)]. Consider context
K̃ = (G̃, M̃ , Ĩ) presented in Figure 13 (bottom left) and its corresponding formal context B(K̃) =
B(K) (top right). The enrichment of Ĩ by the red highlighted interval S = [(4′′,4′), (13′′,13′)] is
given by adding the ● to Ĩ. B(KS) is presented in the figure (bottom right). It consists of the new

generated interval (red) and the remaining concepts in the original order, i.e. B(K̃S) ≅ B(K̃)/θS.
If K (top middle), the standard context of B(K), is considered, the enrichment of the incidence
relation by the same interval results in the smaller lattice (top right). Since in B(K), e.g., the con-
cepts (5′′,5′) and (6′′,6′) only differ in an attribute set that is totally included in S, their difference
vanishes by the enrichment if no attribute o or l persists to differ them.

This illustrates that the lattice, based on the enrichment of an incidence by an interval of a
corresponding context, depends on the selection of the context. It is clear that using the generic
formal context leads to an upper bound for the size of the arising lattice, since all concepts are
generated by a single object and a single attribute. In the following, we determine the objects and
attributes necessary for generating a lattice isomorphic to the one obtained using the generic formal
context.
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1 × × ●

2 × ● ×

3 ● × × × ×

4 × × ×

5 ● × ● × ×

6 ● ● × × ×

7 ● ● ● ×

8 ● ● ● ×

1,2,4

3,5,67

8

a,b,c

d

e

a b c d e f g h i j k l m n o

1 × × ● ● ● × ● ×

2 × ● × ● ● × × ●

3 ● × × × × ● × × × ● × × ● ×

4 × × × × × × × ×

5 ● × ● × × ● ● × ● × × ●

6 ● ● × × × ● ● × ● × ● ×

7 ● ● ● × ● ● × ● ●

8 ● ● ● × ● ● × ● ●

9 × × × × × × × × × × × × × × ×

10 ● × × ● × × ● ●

11 ● ● × ● ● × ● ●

12 ● × ● ● ● × ● ●

13 ● ● ● ● ● × ● ●

14 × ● ● ● ● × ● ●

15 ● ● ● × × ● ● × ● × ●

f

9

h
3

1,2,3,
10,11,

12,13,14

a,b,c,g,i,
j,k,n

l
5

m
15

o
6

d

e

7

8

Figure 13: A (concept) lattice B(K) = B(K̃) with a pure interval S highlighted red (top left). The object and
attribute labels highlighted in blue are reducible. The corresponding reduced formal context K = (G,M,I) (top
middle) and an corresponding generic formal context K̃ = (G̃, M̃ , Ĩ) (bottom left) have additional incidences marked
by ●, that represent the enrichments of the contexts by S. B(KS) is displayed on the top right, and B(K̃S) on the
bottom right.
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Definition 5.34. Let θS be an interval relation on the lattice L with S ≤ L an interval. We call
x ∈ L θ-⋁-irreducible if either x ∈ J(L) or for x /∈ S if ∣{y ∈ L∖S ∣ y is an lower neighbour of x}∣ ≤ 1
holds. Analogous we call an element x ∈ L θ-⋀-irreducible if either x ∈ M(L) or for x /∈ S if
∣{y ∈ L ∖ S ∣ y is an upper neighbour of x}∣ ≤ 1 holds.

Definition 5.35. Let θS be an interval relation on the lattice L with S ≤ L an interval. Let
U = {x ∈ L ∣ x is θ −⋀−irreducible} and V = {x ∈ L ∣ x is θ −⋁−irreducible}. We call a context
K = (H,N,≤) with V ⊆H ⊆ L and U ⊆ N ⊆ L a θ-irreducible context of L.

Lemma 5.36. Let L be a lattice, θS an interval relation on L, K = (G,M,I) the generic context
of L, and K = (H,N,≤) a θ-irreducible context of L. Then B(H,N,≤) ≅B(G,M,IS) holds.

Proof. We show that every object g ∈ G with g /∈ H is reducible in (G,M,IS). If g /∈ H, we have
c = (g′′, g′) is not θ-⋁-irreducible in L ≅ B(K). Let c1, . . . , cl /∈ S with l ≥ 2 be the lower neighbors
of c in B(K). Since the original order relation is preserved by the factorization, [c1]θ, . . . , [cl]θ are
lower neighbors of [c]θ in B(K)/θ. Therefore g is reducible in (G,M,IS). Analogous θ-⋀-reducible
elements are unnecessary for the attribute set.

It follows that not the whole generic context has to be considered in the following but only the
context containing all θ-⋁-irreducible elements as the object set and all θ-⋀-irreducible elements as
the attribute set. E.g. the concept (15′′,15′) = (m′,m′′) in Figure 13 is neither θ-⋁-irreducible nor
θ-⋀-irreducible. Therefore, object 15 and attribute m have no impact on the factor set.

Lemma 5.37. Let L be a finite lattice, K = (G,M,I) a θ-irreducible context of L, and S ≤ L an
interval. Then:

i) S is pure ⇔ B(KS) ≅ L/θS

ii) S is nested ⇔ B(KS) /≅ L/θS and B(KS) is the Dedekind–MacNeille completion of L/θS.

Proof. i): "⇒:" We assume K = (L,L,≤) to be the generic context of L and thus KS = (L,L,≤S).
The factor lattice L/θS is isomorphic to the concept lattice of its generic context (L/θS, S/θS,≤θ).
Via definition of the order ≤θ, for two elements [g]θ, [m]θ ∈ L/θ we have [x]θ ≤θ [y]θ if and only if
x ≤ y or x ≤ [S]θ and y ≥ [S]θ in L. Considering KS , for two elements x, y ∈ we have x ≤S y if and
only if x ≤ y or x ∈ {c ∈ L ∣ c ≤ [S]θ} and y ∈ {c ∈ L ∣ c ≥ [S]θ}. By identifying each element x ∈ L

with the equivalence class [x]θ ∈ L/θ, the isomorphism between B(KS) and L/θ follows.
"⇐:" If B(KS) ≅ L/θS holds, L/θS is a lattice and therefore S is pure.
ii): "⇒:" If S is nested, L/θS is an ordered set but no lattice and thus B(KS) /≅ L/θS

holds. With [7, Theorem 4] follows, that the formal context (L/θS,L/θS,≤θ) corresponds to the
Dedekind–MacNeille completion of L/θS. Further, as seen before, the concept lattices corresponding
to KS and (L/θS,L/θS,≤θ) are isomorphic.

"⇐:" If B(KS) is the Dedekind–MacNeille completion of L/θS , B(KS) is isomorphic to the
concept lattice B((L/θS ,L/θS,≤)). Since B(KS) /≅ L/θS holds, L/θS is not a lattice and therefore
S is nested in L.

Therefore we can transfer the statement of ϕ ∶ L → L/θ, x ↦ [x]θ being surjective and order-
preserving to formal contexts:
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Lemma 5.38. Let L be a lattice, S = [(AS ,BS), (CS ,DS)] ≤ L a pure interval, and K = (G,M,I)
a θ-irreducible context of L. Then the map

ϕ ∶B(K)→B((G,M,IS))

(A,B)↦

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(CS ,BS) , (A,B) ∈ S

(A,B ∪BS) , (A,B) ∈ S#

(A ∪CS ,B) , (A,B) ∈ S!

(A,B) , (A,B) ∈ S∥

is surjective and order preserving.

Proof. follows directly from Lemma 5.37.

6. Discussion and Conclusion

In this work, we presented methods to factorize a lattice so that selected intervals implode. We
started with the investigation of factor lattices generated by complete congruence relations in Sec-
tion 4.1 and presented an approach to find the finest congruence relation, i.e., the one with as many
different congruence classes as possible, to implode a selected interval. Since every congruence re-
lation is an equivalence relation, the elements of the original lattice can be mapped to the elements
of the factor lattice in a unique way. This property does not hold when using complete tolerance
relations, a generalization of the complete congruence relations, instead. In both cases, the gener-
ated factor lattice preserves the original ⋀- and ⋁-relations. However, both approaches can result
in an over-aggressive reduction of the lattice size, imploding not only the selected interval because
these construction results in bigger classes. To overcome this problem, we introduced another kind
of factorization based on newly introduced interval relations in Section 5. Its equivalence classes
include precisely the selected intervals so that it is possible to implode selected disjoint intervals
while preserving all other elements of the original lattice and their order. As a trade-off, the origi-
nal ⋀ and ⋁ operations are no longer preserved in this case. To ensure that a lattice arises as the
factor set, we restrict the approach to single pure intervals. In this case, by taking advantage of
the one-to-one correspondence between interval relations and enrichments of incidence relations by
intervals in the corresponding context, we get the corresponding context of the factor set directly.
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