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Abstract

The power and communication networks are highly interdependent and form a part of the critical infrastructure of a
country. Similarly, dependencies exist within the networks itself. It is essential to have a model which captures these
dependencies precisely. Previous research has proposed certain models but these models have certain limitations. The
limitations of the aforementioned models have been overcome by the Implicative Interdependency Model, which uses
Boolean Logic to denote the dependencies. This paper formulates the Entity Hardening problem and the Targeted
Entity Hardening problem using the Implicative Interdependency Model. The Entity Hardening problem describes
a situation where an operator, with a limited budget, must decide which entities to harden, which in turn would
minimize the damage, provided a set of entities fail initially. The Targeted Entity Hardening problem is a restricted
version of the Entity Hardening problem. This problem presents a scenario where, the protection of certain entities is
of higher priority. If these entities were to be nonfunctional, the economic and societal damage would be higher when
compared to other entities being nonfunctional. It has been shown that both problems are NP-Complete. An Integer
Linear Program (ILP) has been devised to find the optimal solution. A heuristic has been described whose accuracy
is found by comparing its performance with the optimal solution using real-world and simulated data.

Keywords: Critical Infrastructure, Entity Hardening, Targeted Entity Hardening, Power Network, Communication
Network, Dependency, Interdependency.

1. Introduction

Critical Infrastructures of a nation like Power, Communication, Transportation Networks etc. exhibit strong intra-
network and inter-network dependencies to drive their functionality. The symbiotic relationship that exists between
Power and Communication Network provides an example of the inter-network dependency. To elaborate this further,
consider entities in either network. The Supervisory Control and Data Acquisition System (SCADA) is an integral
entity in the power network controlling the electricity generation and power flow in the power grid. These controls
are essentially carried out by signals generated from the communication network. Similarly, every entity in the
communication network requires power to be operational. These dependencies cause failure in any of these two
networks to have its impact on the other which may eventually lead to a cascade of failures.

Additionally, intra-network dependencies exist as well in a critical infrastructure. In an abstract level, a power
network is composed of the following entities — Generation Bus, Load Bus, Neutral Bus and Transmission Lines.
When a transmission line trips, the power flowing through the transmission lines needs to be redirected to satisfy
load demand of the load buses. This may cause the power flow in some other transmission line to go beyond its
line capacity causing it to trip. Eventually, these failures might result in a cascade of trippings/failures resulting in a
blackout. Cascading failures in power and/or communication network due to intra/inter dependencies have disastrous
effects as seen in power blackouts which occurred in New York (2003) [1], San Diego (2011) [2] and India (2012) [3].
Thus modeling these dependencies is critical in understanding and preventing such failures which might be triggered
by natural as well as man-made attacks.

As noted, modeling these complex dependencies and analysis of failure in these infrastructures are considered to
be highly important. A number of models have been proposed that capture these kind of dependencies [4], [5], [6],
[7], [8], [9], [10], [11]. However, each of these models has their own shortcomings in bringing out the complex nature
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of the dependencies that might exist [12]. Authors in [13] bring out the need to address the complex dependency
which can be explained through the following example. Let ax (which can be a generator, substation, transmission
line etc.) be a power network entity and bw, by, bz (which can be a router, end system etc.) a set of communication
network entities. Consider the dependency where the entity ax is operational if (i) entities bw and (logical AND) by
are operational, or (logical OR) (ii) entity bz is operational. Models in [4], [5], [6], [7], [8], [9], [10], [11] fails to
capture this kind of dependency. Motivated by these findings and limitations of the existing models, the authors in
[13] proposed a Boolean logic based dependency model termed as Implicative Interdependency Model (IIM). For
the example stated above, the dependency of ax on bw, by, bz can be represented as ax ← bwby + bz. This equation
representing the dependency of an entity is termed as Interdependency Relation (IDR). Using this model a number of
problems were studied on interdependent power and communication infrastructure system[13], [14], and [15].

In this paper, we restrict to intra-network dependencies in Power Network and inter-network dependency in Power-
Communication network and utilize the IIM to analyze and solve two important problems pertaining to critical infras-
tructures. For an existing critical infrastructure system, an operator would have the capability to measure the extent
of failure when a certain set of entities fail initially. Consider a scenario where an operator identifies a set of critical
entities which when failed initially would cause the maximum damage. In an ideal case, there would be enough
resources available to support those critical entities from initial failure. However, if the availability of resources is a
constraint, then an operator might have to choose entities which when supported would minimize the damage. We
define the entities to support as the entities to harden and the problem as the Entity Hardening Problem. An entity
xi when hardened is resistant to both initial and induced failure (failing of entities in the cascading process after the
initial failure). In the physical world, an entity can be hardened with respect to cyber attacks (say) by having a strong
firewall. Similarly some entities can be hardened by — (a) strengthening their physical structures for protection from
natural disaster, (b) placing redundant entity a′ for an entity a which can operate when a fails, (c) increasing physical
limits of the entity (maximum power flow capacity of the transmission line, maximum generation capacity of a gen-
erator bus). There exist multiple such ways to harden an entity from different kind of failures. Even though there may
be circumstances under which an entity cannot be hardened, in this paper we relax such possibilities and assume that
there always exist a way to harden a given entity. Hardening entities can prevent cascading failures caused by some
initial failure. Thus this results in protecting a set of entities including the hardened entities from an initial failure
trigger. Using these definitions the Entity Hardening Problem finds a set of k entities that should be hardened (with
k being the resource constraint) in an intra-network or inter-network critical infrastructure system that protects the
maximum number of entities from failure when a set of K entities fail initially.

The second problem, Targeted Entity Hardening, discussed in this article is a restricted version of the Entity
Hardening Problem. For an intra-dependent power network or interdependent power and communication network,
certain entities might have higher priority to be protected. There might exist entities whose non-functionality poses
higher economic or societal damage as compared to other entities. For example, power and communication network
entities corresponding to office buildings running global stock exchanges, the U.S. White House, transportation sectors
like airports etc. presumably are more important to be protected. Let F denote the failed set of entities (including
initial and induced failure) when a set of K entities fail initially. We define a set P (with P ⊆ F) of entities which have
a higher priority to be protected. The Targeted Entity Hardening problem finds the minimum set of entities which
when hardened would ensure that none of the entities in set P fail.

This paper is more inclined towards finding and analyzing the solution of the two problems discussed. Even though
procedures are described to generate dependency equations, they are primarily intended to perform a comparative
analysis of the provided solutions to the problems. For an intra-dependent or inter-dependent critical infrastructure(s)
which can be modeled through IIM, the broader idea is to use the solutions for different decision-making tasks. The
paper is structured as follows. The motivation behind IIM along with a formal description is provided in Section
3. The two hardening problems are more formally defined along with their Decision and Optimization Versions
in Section 4. The computational complexity of the problems along with the solutions to some restricted cases is
provided in Section 5. As both the problems are NP-complete, we provide an optimal Integer Linear Program (ILP)
solutions to them along with sub-optimal Heuristics in Section 6. In Section 7 we describe a procedure to generate
the dependency equations of the IIM model for intra-dependent power network along with a rule defined approach
to generate the same for interdependent power-communication network. For power network, different bus system
data are used to generate the dependency equations which are obtained from MatPower [16]. For interdependent
Power-Communication network we used real world data of Maricopa County, Arizona, USA obtained from Geotel
(http://www.geo-tel.com) for communication network and Platts (http://www.platts.com) for power network. In the
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same section, we provide comparative studies of the heuristic to optimal ILP solutions for both the problem using the
generated dependency equations.

2. Related Work

In the last few years, there has been considerable activity in the research community to study Critical Infrastruc-
ture Interdependency. One of the earliest studies on robustness and resiliency issues related to Critical Infrastructures
of the U.S. was conducted by the Presidential Commission on Critical Infrastructures, appointed by President Clinton
in 1996 [17]. Rinaldi et al. are among the first group of researchers to study interdependency between Critical Infras-
tructures and to propose the use of complex adaptive systems as models of critical infrastructure interdependencies
[18], [19]. Pederson et al. in [20], provided a survey of Critical Infrastructure Interdependency modeling, undertaken
by U.S. and international researchers. Motivated by the power failure event in Italy 2003, Buldyrev et al. in [4], pro-
posed a graph-based interdependency model, where the number of nodes in the power network was assumed to be the
same as the number of nodes in the communication network, and in addition there existed a one-to-one dependency
between a node in the power network to a node in the communication network. The authors opine in a subsequent
paper [6] that the assumption regarding one-to-one dependency relationship is unrealistic and a single node in one
network may be dependent on multiple nodes in the other network. Lin et al. presented an event driven co-simulation
framework for interconnected power and communication networks in [21], [22]. A game theoretic model for a multi-
layer infrastructure networks using flow equilibrium was proposed in [8]. Security of interdependent and identical
Networked Control System (NCS) was studied in [23], where each plant was modeled by a discrete-time stochastic
linear system, with systems controlled over a shared communication network. The importance of simultaneously
considering power and communication infrastructures was highlighted in [24]. The results of a systematic study of
human initiated cascading failures in critical interdependent societal infrastructures were reported in [25]. Focusing
on the blackout of the Polish power grid, the authors in [26] studied the impact of the order of tripping of overhead
lines on the severity of the failure. Analyzing failure in smart grid under targeted initial attack was studied in [27].
The effect of cyber (communication) and power network dependencies in smart grid was studied in [28] for reliability
assessments. Recovery of information of the failed entities in a power grid after a failure event was studied in [29].
As described in Section 1, the models used by each of the papers have shortcomings to analyze different aspects of
vulnerability in critical infrastructures. IIM is used to overcome such limitations and is utilized to address the Entity
Hardening and Targeted Entity Hardening problem in this paper.

3. Implicative Interdependency Model

The need for a model to capture the complex intra and inter network dependencies is elaborated through a descrip-
tive example of interdependent power and communication network. Consider the system shown in Figure 1 where the
power network entities such as generators, transmission lines and substations are denoted by a0 through a11 and com-
munication entities such as GPS transmitters and satellites are denoted by b0 through b4. The Smart Control Center
(SCC) is represented by the variable c0 as it is a part of both the power and the communication network. For the SCC
to be operational, it must receive electricity either from the generator via the different power grid entities, or from the
battery. Similarly, the functioning of the generator will be affected if it fails to receive appropriate control signals from
the SCC. The mutual dependency between the generator and the SCC can be expressed in terms of two implicative
dependency relations — (i) a11 ← b4c0, (ii) c0 ← (b0b3(b1 + b2))(a0a1 + a2a3a4a5a6a7a8a9a10a11). It may be noted
that the SCC will not be operational if it does not receive electric power produced at the generating station and carried
over the power grid entities to the SCC and its battery backup also fails. This dependency can be expressed by the im-
plicative relation c0 ← a0a1 + a2a3a4a5a6a7a8a9a10a11 implying that c0 will be operational (i) if entities a0 and a1 are
operational, or (ii) if entities a2 through a11 are operational. However, the SCC will also not be operational if it does
not receive data from the communication system (IEDs, satellites, etc.). This dependency can be expressed by the rela-
tion c0 ← (b0b3(b1+b2)). This implies that c0 will be operational (i) if entities b1 or b2 is operational, and (ii) if entities
b0 and b3 are operational. Combining the dependency of the SCC on the power grid and the communication network,
the consolidated dependency relation can be expressed as c0 ← (b0b3(b1 +b2))(a0a1 +a2a3a4a5a6a7a8a9a10a11). Like-
wise, the dependency relation for the generating station can be expressed as a11 ← b4c0, implying that the generating
station will not be operational unless it receives appropriate signals from the SCC c0, carried over wired or wireless
link b4. These two implicative relations demonstrate that dependency (or interdependency) is a complex combination
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of conjunctive and disjunctive terms. We term the model capturing this complex dependencies and interdependencies
as Implicative Interdependency Model.

Figure 1: Example of Power - Communication Infrastructure Interdependency

In the IIM an intra-network or inter-network critical infrastructure system is represented by I(E,F (E)), where E
is the set of entities and F (E) is the set of dependency relations. Throughout this paper, an intra-dependent critical
infrastructure or interdependent critical infrastructure is termed as system denoted by I(E,F (E)). The dynamics of
the model is explained through an example. Consider sets A and B (with E = A ∪ B) representing entities in power
and communication network (say) with A = {a1, a2, a3} and B = {b1, b2, b3, b4} respectively. The function F (E) giving
the set of dependency equations are provided in Table 1. In the given example, an IDR b3 ← a2 + a1a3 implies that
entity b3 is operational if entity a2 or entity a1 and a3 are operational. In the IDRs each conjunction term e.g. a1a3 is
referred to as minterms.

Power Network Comm. Network
a1 ← b2 b1 ← a1 + a2
a2 ← b2 b2 ← a1a2
a3 ← b4 b3 ← a2 + a1a3
−− b4 ← a3

Table 1: IDRs for the constructed example

Entities Time Steps (t)
0 1 2 3 4 5 6

a1 0 0 1 1 1 1 1
a2 1 1 1 1 1 1 1
a3 1 1 1 1 1 1 1
b1 0 0 0 1 1 1 1
b2 0 1 1 1 1 1 1
b3 0 1 1 1 1 1 1
b4 0 1 1 1 1 1 1

Table 2: Failure cascade propagation when entities
{a2, a3} fail at time step t = 0. A value of 1 denotes
entity failure, and 0 otherwise

Initial failure of entities in A ∪ B would cause the failure to cascade until a steady state is reached. As noted
earlier, the event of an entity failing after the initial failure is termed as induced failure. Failure in IIM proceeds in
unit time steps with initial failure starting at time step t = 0. Each time step captures the effect of entities killed in all
previous time steps. We demonstrate the cascading failure for the interdependent network outlined in Table 1 through
an example. Consider the entities a2 and a3 fail at time step t = 0. Table 2 represents the cascade of failure in each
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subsequent time steps. In Table 2, for a given entity and time step, ′0′ represents the entity is operational and ′1′

non operational. In this example a steady state is reached at time step t = 3 when all entities are non operational.
IIM also assumes that the dependent entities of all failed entities are killed immediately at the next time step. For
example at time step t = 1 entities a2, a3, b2, b3 and b4 are non operational. Due to the IDR a1 ← b2 entity a1 is killed
immediately at time step t = 2. At t = 3 the entity b1 is killed due to the IDR b1 ← a1 + a2 thus reaching the steady
state.

As noted earlier The model captures the cascading failure that propagates through the entities on an event of
initial failure. Consider E = A ∪ B with A and B representing entities in two separate critical infrastructures. The
cascading failure process is shown diagrammatically in Figure 2a with sets A0

d ⊂ A and B0
d ⊂ B failing at t = 0.

Accordingly, cascading failure in these systems can be represented as a closed loop control system shown in Figure
2b. The steady state after an initial failure is analogous to the computation of fixed point of a function G(.) such that
G(Ap

d ∪Bp
d ) = Ap

d ∪Bp
d , with steady state reached at t = p. It can be followed directly that for an interdependent system

with |E| = m, any initial failure would cause the system to reach a steady state within m − 1 time steps.

(a) Cascading failures reach steady state after p time steps (b) Cascading failures as a fixed point system

Figure 2: Cascading Failures in Multi-layered Networks

We note some of the challenges in generating the IDRs. The main challenge is an accurate formulation of the
IDRs. Two possible ways of doing this would be (i) careful analysis of the underlying infrastructures as in [11],
(ii) consultation with domain experts. In Section 7 we provide techniques to generate IDR for power network and
interdependent power-communication network. However, the underlying assumptions behind the technique pose some
limitations on its applicability to the real world problems. The formulation of IDRs from the interdependent network
is an ongoing research and the problem is solved under the reasonable assumption that these IDRs can be developed.

4. Problem Formulation

As discussed in Section 1, an entity when hardened, is protected from both initial and induced failures. With this
understanding we formally describe the two hardening problems — Entity Hardening and Targeted Entity Hardening.
It is to be noted both the problems return a set of entities to harden. The approach that should be taken to physically
harden the entities rest upon the properties of the entities.

4.1. Entity Hardening Problem
Before stating the problem formally, a brief understanding of entity hardening is provided. Consider the system

with set of dependency relations given by Table 1. With an initial failure of entities a2, a3 the subsequent cascading
failures is shown in Table 2 which fails all the entities in the system. We note three instances where entities a1, a2
and a3 are hardened separately with a2, a3 failing initially. The failure cascade propagation when a1, a2 and a3 are
hardened are shown in Tables 3, 4, and 5 respectively. In the tables the cascading failure is shown till t = 3 because
with initial failure of entities a2, a3 the cascade propagation stops at t = 3 as seen in Table 2. Hardening entity a1
protect entities a1, b1 from failure. Similarly, when a2 is hardened it protect a1, a2, b1, b2, b3 and hardening a3 protect
entities a3, b4. If the hardening budget is 1 the operator would clearly harden the entity a2 as it protects the maximum
number of entities from failure. We now describe the entity hardening problem formally.
The Entity Hardening (ENH) problem
INSTANCE: Given:
(i) A system I(E,F (E)), where the set E represent the set of entities, and F (E) the set of IDRs.
(ii) The set of K initially failing entities E′, where E′ ⊆ E
(iii) Two positive integers k, k < K and EF .
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Entities Time Steps (t)
0 1 2 3

a1 0 0 0 0
a2 1 1 1 1
a3 1 1 1 1
b1 0 0 0 0
b2 0 1 1 1
b3 0 1 1 1
b4 0 1 1 1

Table 3: Failure cascade propagation
when entities {a2, a3} fail at time step
t = 0 and a1 is hardened

Entities Time Steps (t)
0 1 2 3

a1 0 0 0 0
a2 0 0 0 0
a3 1 1 1 1
b1 0 0 0 0
b2 0 0 0 0
b3 0 0 0 0
b4 0 1 1 1

Table 4: Failure cascade propagation
when entities {a2, a3} fail at time step
t = 0 and a2 is hardened

Entities Time Steps (t)
0 1 2 3

a1 0 0 1 1
a2 1 1 1 1
a3 0 0 0 0
b1 0 0 0 1
b2 0 1 1 1
b3 0 1 1 1
b4 0 0 0 0

Table 5: Failure cascade propagation
when entities {a2, a3} fail at time step
t = 0 and a3 is hardened

DECISION VERSION: Is there a set of entities H = E′′, E′′ ⊆ E, |H| ≤ k, such that hardening H entities re-
sults in no more than EF entities to fail after entities in E′ fail at time step t = 0.

OPTIMIZATION VERSION: Find a set of k entities to harden which would maximize the number of protected
entities with entities in E′ failing initially.

Definition 1. KillS et(S ) : For an initial failure of set S , the set of entities that fail due to induced failure in the
cascading process including the entities in set S is denoted by KillS et(S ).

The following points are to be noted regarding the ENH problem — (a) the condition k < K is assumed as with
k ≥ K hardening the K initially failing entities would ensure that there are no induced and initial failure. (b) with
E′ entities failing initially, the entities to be harden are to be selected from KillS et(E′). Hardening entities outside
KillS et(E′) would not result in protection of any non-hardened entity.

4.2. Targeted Entity Hardening Problem
Qualitatively, for a system I(E,F (E)) the objective of the Targeted Entity Hardening problem is to choose a mini-

mum cardinality set of entities to harden, with a set of initially failing entities, such that all entities in a given set P are
protected from failure. We use the example with dependency equations outlined in Table 1 to describe the Targeted
Entity Hardening Problem with P = {b4}. With {a2, a3} being the two entities failing initially, hardening entity a2 (with
a3 failing) would prevent failure of entities a1, a3, b1, b1, b3. Similarly, hardening the entity a3 (with a2 failing) would
prevent the failure of entity b4. Even though hardening a2 prevent failure of more entities than hardening a3, owing
to the problem description a3 has to be hardened which is a solution to the Targeted Entity Hardening problem in this
scenario. It is to be noted that other entities might also be protected from failure when a set of entities are hardened
to protect a given set of entities. The Targeted Entity Hardening problem is formally stated below accompanied with
a descriptive diagram provided in Figure 3 (in the figure direct failure means initial failure) —

The Targeted Entity Hardening (TEH) problem
INSTANCE: Given:
(i) A system I(E,F (E)), where the set E represent the set of entities, and F (E) is the set of IDRs.
(ii) The set of K entities failing initially E′, where E′ ⊆ E.
(iii) The set F ⊆ E contains all the entities failed due to initial failure of E′ entities i.e. KillS et(E′)
(iv) A positive integer k and k < K.
(v) A set P ⊆ F.

DECISION VERSION: Is there a set of entities H = E′′ ⊆ E, |H| ≤ k, such that hardening H entities would re-
sult in protecting all entities in the set P after entities in E′ fail at the initial time step.

OPTIMIZATION VERSION: Find the minimum set of entities in E to harden that would result in protecting all
entities in the set P after entities in E′ fail at the initial time step.
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Hardened 
set of 

entities 𝑯
with 

|𝑯| = 𝐤

Direct 
Failure
of set 𝒀

with 
|𝒀| =K

Interdependency 
Relations
F(𝑨, 𝑩)

Failed entities

Set of 
entities 𝑨

and 𝑩

Entities in 
Target 
Set 𝑷

protected 
from 

failure

Other Entities Protected
from Failure

Figure 3: Pictographic description of the Targeted Entity Hardening problem

5. Computational Complexity Analysis

The computational complexity for both the problems are provided in this section. The problems are proved to be
NP-complete. Additionally, approximate and polynomial solutions to few subcases are provided. The subcases impose
restrictions on the IDRs and the solutions can be applied to interdependent systems whose dependency equations fall
within the definition of the restriction.

5.1. Entity Hardening Problem
We prove that the ENH problem is NP-complete in Theorem 2. Using the results of Theorem 2 an in-approximability

bound of the problem is provided in Theorem 3.

Theorem 2. The ENH Problem is NP Complete

Proof. The Entity Hardening problem is proved to be NP complete by giving a reduction from the Densest p-
Subhypergraph problem [30], a known NP-complete problem. An instance of the Densest p-Subhypergraph problem
includes a hypergraph G = (V, EV ), a parameter p and a parameter M. The problem asks the question whether there
exists a set of vertices |V ′| ⊆ V and |V ′| ≤ p such that the subgraph induced with this set of vertices has at least M
hyperedges that are completely covered. From an instance of the Densest p-Subhypergraph problem we create an
instance of the ENH problem in the following way. Consider a system I(E,F (E)) with E = A ∪ B, where A and B
are entities of two separate critical infrastructures dependent on each other. For each vertex vi and each hyperedge e j
entities bi and a j are added to the set B and A respectively. For each hyperedge e j with e j = {vm, vn, vq} (say) an IDR
of form a j ← bmbnbq is created. It is assumed that the value of K is set of |V |. The values of k and EF are set to p and
|V | + |EV | − p − M (where |A| = |V | and |B| = |E|) respectively.

In the constructed instance only entities of set A are dependent on entities of set B. Additionally the dependency
for an entity ai consists of conjunction of entities in set B. Hence for an entity ai ∈ A to fail, either it itself has to fail
initially or any one of the entity that ai depends on has to fail. It is to be noted that the entities in set B has no induced
failure i.e., there is no cascade. Following from this assertion, with K = |V ′|, failing entities in B would fail all entities
in set A ∪ B. For this created instance E′ is set to B′

If an entity in set A is hardened then it would have no effect in failure prevention of any other entities. Whereas
hardening an entity bm ∈ B might result in failure prevention of an entity ai ∈ A with IDR a j ← bmbnbq provided that
entities bn, bq are also defended. With k = p (and K ≤ |V | = |B|) it can be ensured that entities to be defended are from
set B′.

To prove the theorem, consider that there is a solution to the Densest p-Subhypergraph problem. Then there exist p
vertices which induces a subgraph which has at least M hyperedges. Hardening the entities bi ∈ B′ for each vertex vi in
the solution of the Densest p-Subhypergraph problem would then ensure that at least M entities in set A are protected
from failure. This is because the entities in set A for which the failure is prevented corresponds to the hyperedges in
the induced subgraph. Thus the number of entities that fail after hardening p entities is at most |V | + |EV | − p − M,
solving the ENH problem. Now consider that there is a solution to the ENH problem. As previously stated, the entities
to be hardened will always be from set B′. So defending p entities from set B′ would result in failure prevention of at
least M entities in set A such that EF ≤ |V | + |EV | − p − M. Hence, the vertex induced subgraph would have at least
M hyperedges completely covered when vertices corresponding to the entities hardened are included in the solution
of the Densest p-Subhypergraph problem. Hence proved.
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Theorem 3. For a system I(E,F (E)) with n = |E| and F (E) having IDRs of form in the created instance of Theorem
2, the ENH problem is hard to approximate within a factor of 1

2log(n)λ for some λ > 0.

Proof. The ENH problem with IDRs of form in the created instance of Theorem 2 is a special case of the densest
p-subhypergraph problem. In [30] the densest p−subhypergraph problem is proved to be inapproximable within a
factor of 1

2log(n)λ (λ > 0). The same result applied to the ENH problem as well. Hence the theorem follows.

5.1.1. Restricted Case I: Problem Instance with One Minterm of Size One
The IDRs of this restricted case have a single minterm of size 1. This can be represented as ei ← e j, where ei

and e j are entities of a system I(E,F (E)). Algorithm 1 solves the ENH problem with this restriction optimally in
polynomial time utilizing the notion of Kill Set defined in Defintion 1 with proof of optimality given in Theorem 4.

Algorithm 1: Entity Hardening Algorithm for systems with Restricted Case I type of dependencies
Data: A system I(E,F (E)), set of K entities failing initially E′, E′ ⊆ E, hardening budget k
Result: Set of hardened entitiesH

1 begin
2 For each entity ei ∈ E′ compute the set of kill sets and store it in a set C = {Ce1 ,Ce2 , ...,CeK }, where Cei = KillS et(ei) ;
3 SetH = ∅ ;
4 for (i=1; i ≤ K; i++) do
5 Choose the set Cek having the highest cardinality from C ;
6 Update C ← C \Cek ;
7 for Ce j ∈ C do
8 Update Ce j ← Ce j \Cek ;

9 UpdateH ← H ∪ {ek};
10 If all Kill Sets are empty then break ;

11 returnH

Theorem 4. Algorithm 1 solves the Entity Hardening problem for the Restricted Case I optimally in polynomial time.

Proof. It is shown in [13] that the kill set for all entities in the interdependent network can be computed in O(n3)
where n = |E|. Thus computing the kill sets of K entities would have a time complexity of O(Kn2). Each update in
line 8 would take O(n) time and hence the total computation of the inner for loop can be done in O(Kn). The outer for
loop iterates for K times thus the time complexity of lines 4 − 9 is O(K2n). Hence Algorithm 1 runs in O(Kn2).

For two kill sets Cei and Ce j , it can be shown that either Cei ∩ Ce j = ∅ or Cei ∩ Ce j = Cei or Cei ∩ Ce j = Ce j [13].
Using this assertion the set E′ can be partitioned into disjoint subsets EX1 , EX2 , .., EXm where kill sets of two entities
ea, ebhave no elements in common with ea ∈ EXi and eb ∈ EX j and i , j. Additionally, for any given subset of entities
EXz there exist an entity ek ∈ EXz whose kill set is a super set of kill sets of all other entities in EXz . Thus each of the
disjoint subset has an entity whose kill set is the super set among all other entities in that subset. Algorithm 1 chose
such an entity in line 5 for every iteration and updates in line 8 would make the kill set of all the remaining entities
in the partition to be empty and hence would not be hardened in future iterations. Clearly choosing these entities
would globally maximize the total number of protected entities from failure. Hence the Algorithm 1 is proved to be
optimal.

5.1.2. Restricted Case II: Problem Instance with an Arbitrary Number of Minterm of Size One
The IDRs of this restricted case have arbitrary number of minterm of size 1. This can be represented as ei ←∑p

q=1 eq, where ei and eq are entities of a system I(E,F (E)) and the number of minterms are p. The ENH problem
with respect to this restricted case is NP-complete and is proved in Theorem 5. We provide an approximation bound
for this restricted case of the problem in Theorem 8 using the results of Theorem 5. The approximation bound uses
the notion of Protection Set (Definition 6). The Protection Set of an entity can be computed in O((n)2) where n = |E|
and m are number of minterms.

Theorem 5. The ENH problem for Restricted Case II is NP Complete
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Proof. The ENH problem for case III is proved to be NP complete by giving a reduction from the Set Cover Prob-
lem. An instance of the Set Cover problem is given by a set S = {x1, x2, ..., xn} of elements, a set of subsets
S = {S 1, S 2, ..., S m} where S i ⊆ S and a positive integer M. The decision version of the problems finds whether there
exist at most M subsets from set S whose union would result in the set S . From an instance of the set cover problem
we create an instance of the ENH problem in the following way. Consider a system I(E,F (E)) with E = A∪B, where
A and B are entities of two separate critical infrastructures dependent on each other. For each element xi in set S we
add an entity ai in set A. For each subset S i in set S we add an entity bi in set B. For all subsets in S, say S p, S m, S n,
which has the element xi an IDR of form ai ← bm + bn + bl is added to F (E). The values of positive integers k and
EF are set to M and m − M respectively. It is assumed that the value of K = m and E′ = B.

The constructed instance ensures that the entities to be hardened are from set B. This is because hardening an
entity ai ∈ A would only result in prevention of its own failure whereas hardening an entity b j ∈ B would result in
failure prevention of its own and all other entities in set A for which it appears in its IDR.

Consider there exists a solution to the Set Cover problem. Then there exist M subsets whose union results in the
set S . Hardening the entities in set B corresponding to the subsets selected would ensure that all entities in set A are
prevented from failure. This is because for the dependency of each entity ai ∈ A there exist at least one entity (in set
B) that is hardened. Hence the number of entities that fails after hardening is m−M which is equal to EF , thus solving
the ENH problem. Now, consider that there is a solution to the ENH problem. As discussed above the entities to be
hardened should be from set B′. To achieve EF = m − M with k = M, no entities in the set A must fail. Hence for
each entity ai ∈ A at least one entity in set B that appears in its IDR has to be hardened. Thus, it directly follows that
the union of subsets in set S is equal to the set S , solving the Set Cover Problem. Hence proved.

Definition 6. For an entity ei ∈ E the Protection Set is defined as the entities that would be prevented from failure by
hardening the entity ei when all entities in E′ fail initially. This is represented as P(xi|E′).

Theorem 7. For two entities ei, e j ∈ A ∪ B, P(ei|E′) ∪ P(e j|AE′) = P(ei, e j|E′) when IDRs are in form of Restricted
Case II.

Proof. Assume that defending two entities ei and e j would result in preventing failure of P(ei, e j|E′) entities with
|P(ei|E′)∪ P(e j|E′)| < |P(ei, e j|E′)|. Then there exist at least one entity ep < P(ei|E′)∪ P(e j|E′) such that it’s failure is
prevented only if ei and e j are protected together. So two entities em and en (with em ∈ P(ei|E′) and en ∈ P(e j|E′) or vice
versa) have to be present in the IDR of ep. As the IDRs are of restricted Case II so if any one of em or en is protected
then ep is protected, hence a contradiction. On the other way round P(ei, e j|E′) contains all entities which would be
prevented from failure if ei or e j is defended alone. So it directly follows that |P(ei|E′) ∪ P(e j|E′)| > |P(ei, e j|E′)| is
not possible. Hence the theorem holds.

Theorem 8. There exists an 1 − 1
e approximation algorithm that approximates the ENH problem for Restricted Case

II.

Proof. The approximation algorithm is constructed by reducing the problem for this restricted case to Maximum
Coverage problem. An instance of the maximum coverage problem consists of a set S = {x1, x2, ..., xn}, a set S =

{S 1, S 2, ..., S m} where S i ⊆ S and a positive integer M. The objective of the problem is to find a set S ′ ⊆ S and
|S ′| ≤ M such that ∪S i∈SS i is maximized. Consider a system I(E,F (E)) with E = A ∪ B, where A and B are entities
of two separate critical infrastructures dependent on each other. For a given initial failure set E′ = A′ ∪ B′ with
|A′| + |B′| ≤ K, let P(ei|A′ ∪ B′) denote the protection set for each entity ei ∈ A ∪ B. We construct a set S = A ∪ B
and for each entity ei a set S ei ⊆ S such that S ei = P(ei|A′ ∪ B′). Each set S ei is added as an element of a set S. The
conversion of the problem to Maximum Coverage problem can be done in polynomial time. By Theorem 7 defending
a set of entities X ⊆ S would result in failure prevention of ∪ei∈XS xi entities. Hence, with the constructed sets S
and S and a positive integer M (with M = k) finding the Maximum Coverage would ensure the failure protection of
maximum number of entities in A ∪ B. This is same as the ENH problem of Restricted Case II. As there exists an
1 − 1

e approximation algorithm for the Maximum Coverage problem hence the same algorithm can be used to solve
this restricted case of the ENH problem using this transformation.
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5.2. Targeted Entity Hardening Problem
In this subsection we prove the computational complexity of the Targeted Entity Hardening Problem to be NP-

complete in Theorem 9.

Theorem 9. The TEH problem is NP-complete

Proof. We proof that the Targeted Entity Hardening is NP complete by a reduction from Set Cover problem. An
instance of the Set Cover problem consists of (i) a set of elements U = {x1, x2, . . . , xn}, (ii) a set of subsets S =

{S 1, S 2, . . . , S m} with S i ⊆ U ∀S i ∈ S, and (iii) a positive integer M. The problem asks the question whether there
is a subset S′ of S with |S′| ≤ M such that

⋃
S k∈S

′ S k = U. From an instance of the Set Cover problem we create an
instance of the Targeted Entity Hardening Problem as follows. Consider a system I(E,F (E)) with E = A ∪ B, where
A and B are entities of two separate critical infrastructures dependent on each other. For each element x j in U we add
an entity a j in set A. Similarly for each subset S i in set S we add an entity bi in set B. For each element xi ∈ U which
appears in subsets S m, S n, S p ∈ S (say) we add an IDR ai ← bm + bn + bp to F (E). There are no IDRs for entities in
set B which prevents any cascading failure. The value of K is set to |S| and E′ = B which fails all entities in A ∪ B.
The set of P entities to be protected is set to A and k is set to M.

Consider there exists a solution to the Set Cover problem. Then there exist a set S′ of cardinality M such that⋃
S k∈S

′ S k = U. For each subsets S k ∈ S
′ we harden the entity bk ∈ B. So in each IDR of the A type entities there

exist a B type entity that is hardened. Hence all A type entities will be protected from failure thus solving the Targeted
Entity Hardening problem.

On the other way round consider there is a solution to the Targeted Entity Hardening problem. This ensures either
that for each entity a j ∈ A (i) a j itself is hardened, or (ii) at least one entity from set B in a j’s IDR is hardened. For
scenario (i) arbitrarily select an entity bp in a j’s IDR and include it in set C. For scenario (ii) include the hardened
entities in the IDR of a j into set C. This is done for each entity a j ∈ A. For each entity in set C select the corresponding
subset in set S. The union of these set of subsets would result in the set U. Thus solving the set cover problem. Hence
the theorem is proved.

5.2.1. Restricted Case I: Problem Instance with One Minterm of Size One
This restriction imposed on the IDRs is the same as that of restricted case I of the ENH problem. Using the

definition of Protection set (Definition 6) and the result in Theorem 10 we design an algorithm (Algorithm 2) that
solves the problem for this restricted case optimally in polynomial time (proved in Theorem 11).

Theorem 10. Given a system I(E,F (E)) with IDRs of form restricted case I and E′ ⊂ E entities failing initially,
for any entity ei and e j with ei , e j either (a) PS (ei|E′) ⊆ PS (e j|E′), (b) PS (e j|E′) ⊆ PS (ei|E′), or (c) PS (ei|E′) ∩
PS (e j|E′) = ∅.

Proof. Consider a directed graph G = (V, ED). The vertex set V consists of a vertex for each entity in E. For each IDR
of form y ← x there is a directed edge (x, y) ∈ ED. In this proof the term vertex and entity is used interchangeably as
an entity is essentially a vertex in G. It can be shown that G is either (a) Directed Acyclic Graph (DAG) with maximum
in-degree of at most 1 or, (b) contain at most one cycle with no incoming edge to any vertex in the cycle and maximum
in-degree of at most 1, or (c) collection of graphs (a) and/or (b). Consider a vertex xi ∈ V . Let G′ = (V ′, E′D) be a
subgraph of G with V ′ consisting of xi and all the vertices that has a directed path from xi. Moreover, the edge set E′D
consists of all edges (x, y) ∈ ED with x, y ∈ V ′ except for any edge (y, xi) with yi ∈ V ′. Such a subgraph G′ would
be a directed tree with (i) one or more entities in V ′\{xi} is in A′ ∪ B′. Let X denote the set of such entities which
satisfy this property, or (ii) no entities in V ′\{xi} is in E′. If the entity xi is hardened then for case (i) all the entities
in V ′ would be protected from failure except for entities in all subtrees with roots in X. The set of entities in such
subtrees are contained in a set Z (say). For this condition if e j ∈ V ′\Z then PS (e j|E′) ⊂ PS (ei|E′). Else if e j ∈ Z then
PS (xi|E′) ∩ PS (e j|E′) = ∅. For case (ii) for any entity x j ∈ V ′ the condition PS (e j|E′) ⊆ PS (Ei|E′) always holds (the
equality holds for graphs of type (b) as stated above). This property holds for all entities in the entity set E. Hence
proved.

Theorem 11. Algorithm 2 solves the Targeted Entity Hardening problem with IDRs having single minterms of size 1
optimally in polynomial time.
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Algorithm 2: Algorithm for TEH problem with IDRs in form of Restricted Case I
Data: A system I(E,F (E)), set E′ with |E′| = K entities failing initially and the set P of entities to be protected from

failure.
Result: A set of entities H to be hardened.

1 begin
2 For each entity ei ∈ (E) compute the Protection Sets PS (ei|E′) ;
3 Initialize H = ∅ ;
4 while P , ∅ do
5 Choose the Protection Set with highest |PS (ei|E′) ∩ P|;
6 Update H ← H ∪ {ei} ;
7 Update P← P\PS (ei|E′);
8 for all d j ∈ E do
9 PS (e j|E′) = PS (e j|E′)\PS (ei|E′);

10 return H ;

Proof. The Protection Sets of the entities can be found in a similar way as that of computing Kill Sets defined in [13].
It can be shown that computing these sets for all entities in E can be done in O(n3) where n = |E|. The while loop in
Algorithm 2 iterates for a maximum of n times. Step 5 can be computed in O(n2) time. The for loop in step 8 iterates
for n times. For any given e j and ei, PS (e j|E′) = PS (e j|E′)\PS (ei|E′) can be computed in O(n2) time with the worst
case being the condition when |PS (ei|E′)| = |PS (e j|E′)| = n. As step 9 is nested in a for loop within the while loop
this accounts for the most expensive step in the algorithm. The time complexity of this step is O(n4). Thus Algorithm
2 runs polynomially in n with time complexity being O(n4).

In Algorithm 2 the while loop iterates till all the entities in P are protected from failure. In step 5 the entity ei with
protection set PS (ei|E′) having most number of entities belonging to set P is chosen to be hardened. Correspondingly
the entity ei is added to the hardening set H. The set P is updated by removing the entities in PS (ei|E′). Similarly all
the protection sets are updated by removing the entities in PS (ei|E′).

We use the result from Theorem 10 to prove the optimality of Algorithm 2. An entity ei is selected to be hardened
at any iteration of the while loop has maximum number of entities in PS (ei|E′) ∩ P. All entities e j with PS (e j|E′) ⊆
PS (ei|E′) would have PS (e j|E′)∩P ⊆ PS (ei|E′)∩P. Moreover there exist no entity ek for which PS (ei|E′) ⊂ PS (ek |E′)
otherwise ek would have been hardened instead. Hence there exist no other entity that protect other entities in P
including PS (ei|E′)∩ P. So Algorithm 2 selects the minimum number of entities to harden that protects all entities in
P.

5.2.2. Restricted Case II: IDRs having arbitrary number of minterm of size 1
For instance created in Theorem 9 the IDRs were logical disjunctions of minterms with size 1. We consider this

restriction to design an approximation algorithm for the TEH problem and is shown in Theorem 12.

Theorem 12. The Targeted Entity Hardening Problem is O(log(|P|) approximate when IDRs are logical disjunctions
of minterms with size 1.

Proof. We first compute the protection set PS (ei|E′) for all entities ei ∈ E. Each protection set is pruned by removing
entities that are not in set P. Now the Targeted Entity Hardening Problem can be directly transformed into Minimum
Set Cover problem by setting U = P and S = {PS (e1|E′), PS (e2|E′), ..., PS (x|E||E′)}. Selecting the corresponding
entities of the protection sets that solve the Minimum Set Cover problem would also solve the Targeted Entity Hard-
ening problem. There exists an approximation ratio of order O(log(n)) (where n is the number of elements in set U)
for the Set Cover problem. Therefore using the approximation algorithm that solves the Set Cover problem, the same
ratio holds for the Targeted Entity Hardening problem with n = |P|. Hence proved.

6. Optimal and Heuristic Solution to the Problems

Owing to the problems being NP-complete, we provide optimal solutions to them by formulating Integer Linear
Program (ILP). For both the problems we also provide sub optimal heuristic that runs in polynomial time.
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6.1. Solutions to the Entity Hardening Problem
6.1.1. Optimal Solution using Integer Linear Programming

We propose an Integer Linear Program (ILP) that solves the ENH problem optimally. For a system I(E,F (E))
let G = {g1, g2, ..., gn} be variables denoting entities in set E. Given an integer K, G is a array of K 1’s and n − K 0’s
where gi = 1 if the entity ei ∈ E fails at t = 0 and gi = 0 if the the entity is operational at t = 0. Thus the array G gives
the set of K entities failing initially. Additionally for each entity e j ∈ E a set of variables x jd with 0 ≤ d ≤ n − 1 and
d ∈ I+ ∪ {0} are created. The value of x jd = 1 denotes that the entity x j is in failed state at t = d and x jd = 0 denotes
it is operational. As noted earlier for |E| = n the cascade can proceed till n − 1 so the range of d is [0, n − 1]. Using
these definitions the objective of the ENH problem is as follows —

min
( n∑

i=1

xi(n−1)

)
(1)

The constraints guiding the problem are as follows:

Constraint Set 1:
n∑

i=1
qxi ≤ k , with qxi ∈ [0, 1]. If an entity xi is hardened then qxi = 1 and 0 otherwise.

Constraint Set 2: xi0 ≥ gi − qxi . This constraint implies that only if an entity is not defended and gi = 1 then
the entity will fail at the initial time step.

Constraint Set 3: xid ≥ xi(d−1),∀d, 1 ≤ d ≤ n − 1, in order to ensure that for an entity which fails in a particular
time step would remain in failed state at all subsequent time steps.

Constraint Set 4: Modeling of constraints to capture the cascade propagation for IIM is similar to the constraints
established in [13] with modifications to capture the hardening process. A brief overview of this constraint is pro-
vided here. Consider an IDR ei ← e jepel + emen + eq. The following steps are enumerated to depict the cascade
propagation with respect to this constraint:
Step 1: Replace all minterms of size greater than one with a variable. In the example provided we have the transformed
minterm as ei ← c1 + c2 + eq with c1 ← e jepel and c2 ← emen (c1, c2 ∈ {0, 1}) as the new IDRs.
Step 2: For each variable c, a constraint is added to capture the cascade propagation. Let N be the number of entities
in the minterm on which c is dependent. In the example for the variable c1 with IDR c1 ← e jepel, constraints
c1d ≥

x j(d−1)+xp(d−1)+xl(d−1)

N ∀d ∈ [1, n − 1] are introduced (N = 3 in this case). If IDR of an entity is already in form
of a single minterm of arbitrary size, i.e.,ei ← e jepel (say) then constraints xid ≥

x j(d−1)+xp(d−1)+xl(d−1)

N − qxi and xid ≤

x j(d−1) + xp(d−1) + xl(d−1)∀d ∈ [1, n − 1] are introduced (with N = 3). These constraints satisfies that if the entity ei is
hardened initially then it is not dead at any time step.
Step 3: Let M be the number of minterms in the transformed IDR as described in Step 1. In the given example with
IDR ei ← c1 + c2 + eq constraints of form xid ≥ c1(d−1) + c2(d−1) + xq(d−1) − (M−1)−qxi and xid ≤

c1(d−1)+c2(d−1)+xq(d−1)

M ∀d ∈
[0, 1] are introduced. These constraints ensures that even if all the minterms of ei has at least one entity in dead state
then it will be alive if the entity is hardened initially.

With objective (1) along with the constraints minimize the number of entities failed at the end of the cascading failure
with a hardening budget of k and K entities failing initially. The ILP gives an optimal solution to the ENH problem,
however its run time is non-polynomial.

6.1.2. Heuristic Solution
In this subsection we provide a greedy heuristic solution to the Entity Hardening problem. For a given system

I(E,F (E)) with set of entities E′(|E′| = K) failing initially and hardening budget k, a heuristic is developed based on
the following two metrics — (a) Protection Set as defined in Section 5, (b) Cumulative Fractional Minterm Hit Value
(CFMHV) (Definition 14).

Definition 13. The Fractional Minterm Hit Value of an entity e j ∈ E in a systemI(E,F (E)) is denoted as FMHV(e j, X).
It is calculated as FMHV(e j, X) =

∑m
i=1

1
|si |

. In the formulation m are the minterms in which e j appears over all IDRs
except for the IDRs of entities in set X. The parameter si denotes ith such minterm. If entity e j is hardened (or protected
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from failure) then the computed value provides an estimate of the future impact on protection of other non operational
entities.

Definition 14. The Cumulative Fractional Minterm Hit Value of an entity e j ∈ E is denoted as CFMHV(e j). It
is computed as CFMHV(e j) =

∑
∀xi∈PS (e j |E′) FMHV(xi, PS (xi|E′)). This gives a measure of the future impact on

protecting non functional entities when the entity e j is hardened and entities PS (e j|E′) are protected from failure.

Using these definitions a heuristic is formulated in Algorithm 3. For each iteration of the while loop in the
algorithm, the entity having highest cardinality of the set PS (xi|A′ ∪ B′) ∩ P is hardened. This ensures that at each
step the number of entities protected is maximized. In case of a tie, the entity having highest Cumulative Fractional
Minterm Hit Value among the set of tied entities is selected. This causes the selection of an entity that has the potential
to protect maximum number of entities in subsequent iterations. Thus, the heuristic greedily maximizes the number
of entities protected when an entity is hardened at the current iteration with metric to measure its impact of protecting
other non operational entities in future iterations. Algorithm 3 runs in polynomial time, more specifically the time
complexity is O(|P|k(n + m)2) (where n = |E| and m = Number of minterms in F (E)).

Algorithm 3: Heuristic Solution to the ENH Problem
Data: A system I(E,F (E)), set of entities E′ failing initially with |E′| = K and hardening budget k.
Result: Set of hardened entitiesH .

1 begin
2 InitializeH ← ∅ andD ← ∅;
3 Update F (E) as follows — (a) let Q be the set of entities that does not fail on failing K entities, (b) remove IDRs

corresponding to entities in set Q, (c) update the minterm of remaining IDRs by removing entities in set Q;
4 Update E ← E \ Q ;
5 while (|H| is not equal to k) do
6 For each entity ei ∈ E\D compute the Protection Sets PS (ei|E′) ;
7 For each entity ei ∈ E\D compute CFMHV(ei);
8 if There exists multiple entities having same value of highest cardinality of the set PS (ei|E′) then
9 Let ep be an entity having highest CFMHV(ep) among all ep’s in the set of entities having highest cardinality

of the set PS (ei|A′ ∪ B′);
10 If there is a tie choose arbitrarily;
11 UpdateH ← H ∪ {ep} ;
12 UpdateD ← D∪ PS (ep|E′);
13 Update F (E) by removing entities in PS (ep|E′) both in the left and right side of the IDRs ;

14 else
15 Let ei be an entity having highest cardinality of the set PS (ei|E′);
16 UpdateH ← H ∪ {ei} ;
17 UpdateD ← D∪ PS (ei|E′);
18 Update F (E) by removing entities in PS (ei|E′) both in the left and right side of the IDRs ;

19 returnH ;

6.2. Solutions to the Targeted Entity Hardening Problem
6.2.1. Optimal solution using Integer Linear Program

The ILP formulation of the TEH problem is similar to that of ENH problem. The only difference being there is
no hardening budget in TEH problem and additionally there is a set P ⊂ E of entities that should be protected from
failure. We use the same notations as of the ILP that solves the ENH problem. Using this the objective of the TEH
problem is formulated as follows:

min
( n∑

i=1

qxi

)
(2)

The constraint sets 2,3, and 4 of the ENH problem is employed in the TEH problem as well along with an additional
constraint set as described below:
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Additional Constraint Set: For all entities ei, ∈ P, xi(n−1) = 0. This ensures that all the entities in set P are protected
from failure at the final time step.

With these constraints, the objective in (2) minimizes the number of hardened entities that results in protection of
all entities in set P.

6.2.2. Heuristic Solution
In this subsection we provide a greedy heuristic solution to the TEH problem. For a given system I(E,F (E)) with

set of entities as E′(|E′| = K) failing initially and set of entities to protet being P, a heuristic is developed based on the
following two metrics — (a) Protection Set as defined in Section 5, (b) Prioritized Cumulative Fractional Minterm
Hit Value (PCFMHV) (Definition 16).

Definition 15. The Prioritized Fractional Minterm Hit Value of an entity e j ∈ E in an interdependent network
I(E,F (E)) is denoted as FMHV(e j, X). It is calculated as PFMHV(e j, P) =

∑m
i=1

1
|si |

. In the formulation m are
the minterms in which e j appears over IDRs in non operational entities in set P. The parameter si denotes ith such
minterm. If the e j is hardened (or protected from failure) the value computed provides an estimate future impact on
protection of other non operational entities in set P.

Definition 16. The Prioritized Cumulative Fractional Minterm Hit Value of an entity e j ∈ E is denoted as PCFMHV(e j).
It is computed as PCFMHV(e j) =

∑
∀xi∈PS (e j |E′) PFMHV(xi, PS (xi|E′)). This gives a measure of future impact on

protecting non functional entities in P when the entity e j is hardened and entities PS (e j|E′) are protected from failure.

Algorithm 4: Heuristic solution to the TEH problem
Data: A system I(E,F (E)), set of K vulnerable entities and the set P of entities to be protected from failure.
Result: A set of entities H to be hardened.

1 begin
2 InitializeD = ∅ and H = ∅ ;
3 Update F (E) as follows — (a) let Q be the set of entities that does not fail on failing K entities, (b) remove IDRs

corresponding to entities in set Q, (c) update the minterm of remaining IDRs by removing entities in set Q;
4 while P , ∅ do
5 For each entity ei ∈ E\D compute the Protection Sets PS (ei|E′) ;
6 For each entity ei ∈ E\D compute PCFMHV(ei);
7 if There exists multiple entities having same value of highest cardinality of the set PS (ei|E′) ∩ P then
8 Let ep be an entity having highest CFMHV(ep) among all ep’s in the set of entities having highest cardinality

of the set PS (ei|A′ ∪ B′);
9 If there is a tie choose arbitrarily;

10 Update H ← H ∪ {ep} ;
11 UpdateD ← D∪ PS (ep|E′);
12 Update P← P\PS (ep|E′);
13 Update F (E) by removing entities in PS (ep|E′) both in the left and right side of the IDRs ;

14 else
15 Let ei be an entity having highest cardinality of the set PS (ei|E′) ∩ P;
16 Update H ← H ∪ {ep} ;
17 UpdateD ← D∪ PS (ei|E′);
18 Update P← P\PS (ei|E′);
19 Update F (E) by removing entities in PS (ei|E′) both in the left and right side of the IDRs ;

20 return H ;

Using these definitions, the heuristic is formulated in Algorithm 4. For each iteration of the while loop in the
algorithm, the entity having highest cardinality of the set PS (xi|A′ ∪ B′) ∩ P is hardened. This ensures that at each
step the number of entities protected in set P is maximized. In case of a tie, the entity having highest Prioritized
Cumulative Fractional Minterm Hit Value among the set of tied entities is selected. This causes the selection of the
entity that has the potential to protect maximum number of entities in updated set P in subsequent iterations. Thus,
the heuristic greedily minimizes the set of entities hardened which would cause protection of all entities in P. The
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heuristic overestimates the cardinality of H from the optimal solution. Algorithm 4 runs in polynomial time, more
specifically the time complexity is O(|P|n(n + m)2) (where n = |E| and m = Number of minterms in F (E)).

It is to be noted if Algorithm 3 and 4 returns H (or H as in ENH problem) with |H| ≥ K then we harden entities
belonging to the set of K initially failing entities. This is because hardening these K initially failing entities would
protect all entities in the interdependent network from failure.

7. Generating IDRs and Experimental Results

7.1. Generating Dependency Equations for Power Network
In this subsection, we describe a strategy to generate dependency equations of an intra-dependent power network.

We restrict to load bus, generator bus, neutral bus and transmission line as the entities in the power network. For a
given power network, AC power equations are solved to determine the direction of flow in the transmission lines. We
use the power flow solver available in MatPower software for different bus systems [16]. For a given set of buses and
transmission lines, the MatPower software uses load demand of the bus, impedance of the transmission lines etc. to
solve the power flow and outputs the voltage of each bus in the system. We restrict to real power flow analysis. For
a given solution, the real part of generation is taken as the power generated by a generator bus. Similarly, the real
part of the load demand is taken as demand value of a load bus. For two buses e1 and e2 connected by a transmission
line e12 the power flowing through the transmission line is calculated as P12 = Real(V1 ∗ ( V1−V−2

I12
)∗), where V1 is the

voltage at bus e1, V2 is the voltage at bus e2, I12 is the impedance of the transmission line e12 and ( V1−V−2
I12

)∗ denotes
the complex conjugate of ( V1−V2

I12
). P12 is the real component of the power flowing in the transmission line e12. Power

flows from bus e1 to e2 if P12 is positive and from bus e2 to e1 otherwise.
The generation of the dependency equation is explained through a nine bus system shown in Figure 4. The figure

represents a system I(E,F (E)) with set E consisting of generator buses from G1 through G3, load buses L1 through
L4, neutral buses {N1,N2} and transmission lines T1 through T9. The values in the red blocks denote the amount of
power a generator is generating, the green block being the load requirements and blue neutral (value of 0). The value
in the grey blocks correspond to power flow in the transmission lines. The transmission lines don’t have any IDR.
The IDRs for a bus b1 is constructed by the following — (a) let b2, b3 be the buses and b12 (between b1 and b2) and
b13 between (b1 and b3) be the transmission lines for which power flows from these buses to b1, (b) the dependency
equation for the bus b1 is constructed as conjunction of minterms of size 2 (consisting of the bus from which power is
flowing and the transmission line) with each conjunction corresponding to bus that has power flowing to it. For this
example the dependency equation b1 ← b12b2 + b13b3 is created. Using this definition the dependency equations for
the buses in Figure 4 are created and is shown in Table 6.

The following points are to be noted regarding the generation rule — (a) The transmission lines can only fail
initially due to a man made attack or natural disaster. Hence it entails the underlying assumption that the transmission
lines would have enough capacity to transmit any power that is required to flow in it, (b) The generator bus is also
only susceptible to initial failure and is assumed to have a generation capacity that is enough to supply the power
demanded by a instance of power flow, (c) Neutral and Load buses are prone to both initial and induced failure. For
example consider the failure of transmission lines T9 and T1 at t = 0. Owing to this the load bus L1 and neutral bus
N2 fails at t = 2. At t = 3 load bus L2 fails due to the failure of buses L1,N2. It is to be noted that load bus L3 does not
fails as it still receives power from N1 as transmission line T4 is expected to have a capacity that can support a power
flow equal to the demand of L3.

Owing to the underlying assumptions in the the creation of dependency equations, there is a limitation to its ap-
plicability to real world problems. However, with respect to power network, creating dependency equations like the
one discussed is a preliminary step. Further research is required to be done to have a more accurate abstract represen-
tation of the dependency equations that can have widespread applicability to real world problems. The purpose of this
subsection is — (1) presenting a preliminary way the dependency equations can be generated for power network, (2)
larger data sets that can be used to measure the performance of the optimal solution to the heuristic.

7.2. Generating Dependency Equations for Interdependent Power-Communication Network
In this subsection, we describe rules to generate dependency relations for interdependent power and commu-

nication network infrastructure as used in [13]. Real world data of Maricopa County, Arizona , USA was taken.
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Dependency Equations
L1 ← T1G1
L2 ← T2L1 + T7N2
L3 ← T3L1 + T4N1
L4 ← T6N1 + T8N2
N1 ← T5G3
N2 ← T9G2

Table 6: IDRs of the buses in Figure 4 Figure 4: Example of Power Network Dependency

This county is one of the most densest populated region of Arizona with approximately 60% residents. Specifi-
cally, we wanted to measure the amount of resource required to protect entities in particular regions of the county
when these regions have a set of entities failing initially. The data for power network was obtained from Platts
(http://www.platts.com/) that contains 70 generator buses (including solar homes that generate minuscule unit of
power) and 470 transmission lines. The communication network data was obtained from GeoTel (http://www.geo-
tel.com/) consisting of 2, 690 cell towers, 7, 100 fiber-lit buildings and 42, 723 fiber links. Figures 5a and 5b displays
the snapshot of power network and communication network for a particular region of Maricopa county. In Figure 5a
the orange dots represent the generator buses and continuous yellow lines represent the transmission lines. In Figure
5b fiber-lit buildings are represented by pink dots, cell towers by orange dots and fiber links by continuous green lines.

The load of the power network are assumed to be cell towers and fiber-lit buildings. There exist other entities that
draws electrical power. Since it is not relevant for the comparative analysis of the heuristic and the ILP such entities
are ignored. The interdependent power-communication system is represented mathematically as I(E,F (E)) with
E = A∪B. A and B consist of the entities in the power network and communication network respectively. With respect
to this data the power network consist of three type of entities — generating stations, load (which are cell towers and
fiber-lit buildings) and transmission lines (denoted by a1, a2, a3 respectively). The communication network comprises
of the following type of entities — cell towers, fiber-lit buildings and fiber links (denoted by b1, b2, b3 respectively).
It is to be noted that the fiber-lit buildings and cell towers are considered as both power network entities as well as
communication network entities. From the raw data the dependency equations are constructed using the following
rules.

Rules: We take into consideration that an entity in the power network is dependent on a set of entities in the communi-
cation network for either being operational and vice-versa. To keep things uncomplicated, we consider the dependency
equations with at most two minterms. For the same reason we consider the size of each minterm is at most two.

Generators (a1,i, 1 ≤ i ≤ p, where p is the total number of generators): We assume that every generator (a1.i) is, i)
dependent on the closest Cell Tower (b1, j), or, ii) closest Fiber-lit building (b2,k) and the corresponding Fiber link (b3,l)
connecting b2,k and a1,i. Hence, we have a1,i ← b1, j + b2,k × b3,l.

Load (a2,i, 1 ≤ i ≤ q, where q is the total number of loads): The power network loads do not depend on any entities in
communication network

Transmission Lines (a3,i, 1 ≤ i ≤ r, where r is the total number of transmission lines): The transmission lines in the
power network do not depend on any entities in communication network.

Cell Towers (b1,i, 1 ≤ i ≤ s, where s is the total number of cell towers): The Cell Towers depend on two components,
i) the closest pair of generators, and, ii) corresponding transmission line, connecting the generator to the cell tower.
Thus we have b1,i ← a1, j × a3,k + a1, j′ × a3,k′ .

Fiber-lit Buildings (b2,i, 1 ≤ i ≤ t, where t is the total number of fiber-lit buildings): The Fiber-lit Buildings depend
on two components, i) the closest pair of generators, and, ii) corresponding transmission line, connecting the generator
to the fiber-lit buildings. Thus we have b2,i ← a1, j × a3,k + a1, j′ × a3,k′ .

Fiber Links (b3,i, 1 ≤ i ≤ u, where u is the total number of fiber links): The Fiber Links aren’t dependent on any power
network entity. These links require power only for the amplifiers connected to them. The amplifiers are required if the
length of the fiber link is above a certain threshold. We consider only those fiber links which are ’quite long’, need
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power. The fiber links depend on the closest pair of generators and the transmission lines connecting the generators
to the fiber link under consideration. Thus we have b3,i ← a1, j × a3,k + a1, j′ × a3,k′ . We do not consider that these fiber
links need any power as we cannot determine the length of the fiber links or the exact threshold value due to the lack
of data.

(a) Snapshot of Power Network (b) Snapshot of Communication Network

Figure 5: Snapshots of the real world data corresponding to power and communication network

7.3. Comparative Study of the ILP and Heuristic for the Problems
A comparative study of the ILP and heuristic solution for both the problems is done in this subsection. A machine

with intel i5 processor and 8 GB of RAM was used to execute the solutions. The coding was done in java and a student
licensed IBM CPLEX external library file is used to execute the ILP. 8 different bus systems available from MatPower
with number buses 24, 30, 39, 57, 89, 118, 145, 300 were used to generate the dependency equations for power network
(using the rules described in Section 7.1). The time to generate the dependency equations were less than 2ms. Within
the Maricopa county 4 disjoint regions were considered labeled as Region 1 through 4. Dependency equations for the
interdependent power-communication network were generated for these regions using the rules described in Section
7.2. The java codes along with data files of the generated dependency equations are open sourced and is available in
the following url https://github.com/jbanerje1989/HardeningProblem.

The number of entities in each of the 12 data sets are enumerated in Table 7. To determine the initially failing
entities we used the ILP solution of K most vulnerable entities in [13]. The K most vulnerable entities problem finds
a set of K entities in a system I(E,F (E)) which when failed at t = 0 causes the maximum number of entities to fail.
For a given data set representing a system I(E,F (E)), for both the problems the initially failing entities was taken as
a set E′ (|E′| = K) such that — (a) The set E′ constitutes the K most vulnerable entities in the system, (b) Failing the
entities in set E′ would cause failure of at least |E|/2 entities in total. The cardinality of the set E′ along with the total
number of entities failed are enumerated in Table 7.

In comparing the ILP and heuristic solution of the ENH problem we considered 5 distinct hardening budgets for
each data set. With K being the number of initially failing entities in a data set the hardening budgets were chosen
between [1,K − 1] (with value of K obtained from Table 7). It is also ensured that the hardening budgets chosen
had a high variance. Figures 6 - 17 shows the total number of entities protected from failure for each data set using
the ILP and heuristic solution. The run-time performance of the solutions are provided in Table 8 (in the table ’Heu’
refers to the heuristic solution and Hi refers to the hardening budget corresponding to the ith budget from left used
in the bar graph plots). From Figures 6 - 17 it can be seen that the heuristic performs almost similar to that of the
ILP solution in terms of quality. The maximum percent difference of the total number of entities protected in the ILP
when compared to the heuristic solution occurs for a hardening budget of 39 in the 145 bus system (Figure 12) with
the percent difference being 3.1%. In terms of run-time, heuristic outperforms the ILP with the heuristic computing
solutions nearly 200 times faster in larger systems (as seen for the 300 bus system in Table 8). Hence it can be
reasonably argued that the heuristic produces fast near optimal solutions for the ENH problem.

A similar kind of experimental analysis is performed for the TEH problem. 5 distinct protection sets P were
considered for each data set. Let F denote the set entities failed in total when K entities fail initially. The cardinality
of set F and the value of K was taken from Table 7 for each data set. The cardinality of the protection set for a given
data set was chosen between [1, |F| − 1] ensuring that the chosen values have high variance. For a given cardinality
C the protection set P was constructed by choosing C entities from the set F corresponding to a particular data set.
Figures 18 - 29 shows the comparison of the Heuristic solution with the ILP in terms of total number of entities
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hardened for a given cardinality of protection budget. The run-time comparison of the solutions are provided in Table
9. A maximum percent difference of 25% (ILP compared with Heuristic) in the number of entities hardened can be
seen in Region 2 for a |P| value of 13 (Figure 27). However, for most of the cases the heuristic produces near optimal
or optimal solution. The heuristic also compute the solutions nearly 200 times faster than the ILP for larger systems
as seen in Table 9. Hence it can be claimed that the heuristic solution to the TEH problem produces near optimal
solution at a much faster time compared to the ILP solution.

DataSet Num. Of Entities K Num. of Entities Killed
24 bus 58 8 29
30 bus 71 13 36
39 bus 84 17 42
57 bus 135 26 68
89 bus 295 78 147
118 bus 297 89 149
145 bus 567 191 284
300 bus 709 145 355

Region 1 48 6 26
Region 2 46 8 23
Region 3 48 6 24
Region 4 53 8 27

Table 7: Number of entities, K value chosen and number of entities failed when the K vulnerable entities are failed initially for
different data sets
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Figure 12: Comparison of ILP solution
with Heuristic for 145 bus system
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Figure 13: Comparison of ILP solution
with Heuristic for 300 bus system
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Figure 14: Comparison of ILP solution
with Heuristic for Region 1 (ENH)
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Figure 15: Comparison of ILP solution
with Heuristic for Region 2 (ENH)
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Figure 16: Comparison of ILP solution
with Heuristic for Region 3 (ENH)
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Figure 17: Comparison of ILP solution
with Heuristic for Region 4 (ENH)

Running time (in sec)
DataSet H1 H2 H3 H4 H5

ILP Heu ILP Heu ILP Heu ILP Heu ILP Heu
24 bus 0.45 0.01 0.25 0.01 0.72 0.01 0.23 0.01 0.21 0.01
30 bus 2.44 0.01 0.38 0.01 0.38 0.01 0.35 0.01 0.34 0.01
39 bus 0.80 0.01 0.50 0.01 0.49 0.01 0.48 0.01 0.47 0.01
57 bus 2.67 0.03 1.73 0.01 2.21 0.01 2.27 0.01 1.68 0.01
89 bus 23.2 0.05 14.6 0.03 14.6 0.03 14.5 0.03 14.7 0.75

118 bus 20.9 0.04 16.2 0.06 17.2 0.09 17.1 0.02 17.1 0.02
145 bus 85.2 0.05 71.0 0.10 71.3 0.18 68.4 0.06 78.3 0.07
300 bus 282 0.15 222 1.56 217 0.85 253 0.39 264 0.40

Region 1 0.53 0.01 0.36 0.01 0.34 0.01 0.36 0.01 0.36 0.01
Region 2 13.8 0.01 12.9 0.01 12.8 0.01 13.1 0.01 13.2 0.01
Region 3 1.92 0.01 1.36 0.01 1.29 0.01 1.31 0.01 1.44 0.01
Region 4 1.48 0.01 1.43 0.01 1.10 0.01 1.06 0.01 1.05 0.01

Table 8: Run time comparison of Integer Linear Program and Heuristic for different Data Sets (ENH)
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Figure 19: Comparison of ILP solution
with Heuristic for 30 bus system
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Figure 20: Comparison of ILP solution
with Heuristic for 39 bus system

(TEH)



20

1    1

11    11
13    14

18    18

22    22

1 14 27 40 53
0

5

10

15

20

25

30 ILP solution
Protection Budget

Figure 21: Comparison of ILP solution
with Heuristic for 57 bus system
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Figure 22: Comparison of ILP solution
with Heuristic for 89 bus system
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Figure 23: Comparison of ILP solution
with Heuristic for 118 bus system
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Figure 24: Comparison of ILP solution
with Heuristic for 145 bus system
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Figure 25: Comparison of ILP solution
with Heuristic for 300 bus system
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Figure 26: Comparison of ILP solution
with Heuristic for Region 1 (TEH)
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Figure 27: Comparison of ILP solution
with Heuristic for Region 2 (TEH)
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Figure 28: Comparison of ILP solution
with Heuristic for Region 3 (TEH)
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Figure 29: Comparison of ILP solution
with Heuristic for Region 4 (TEH)

Running time (in sec)
DataSet P1 P2 P3 P4 P5

ILP Heu ILP Heu ILP Heu ILP Heu ILP Heu
24 bus 0.42 0.01 0.22 0.01 0.20 0.01 0.19 0.01 0.19 0.01
30 bus 0.57 0.01 0.37 0.01 0.34 0.01 0.34 0.01 0.31 0.01
39 bus 0.82 0.01 0.49 0.01 0.49 0.01 0.46 0.01 0.47 0.01
57 bus 2.23 0.02 1.69 0.02 2.00 0.02 2.07 0.02 1.91 0.01
89 bus 17.3 0.05 14.4 0.08 14.4 0.16 14.0 0.11 14.1 0.07

118 bus 17.6 0.13 17.3 0.15 16.9 0.10 16.3 0.08 17.0 0.07
145 bus 79.0 0.06 76.6 0.26 77.2 0.27 75.7 0.24 74.9 0.25
300 bus 302 0.18 241 1.01 234 1.41 229 1.03 230 1.20

Region 1 0.55 0.01 0.40 0.01 0.43 0.01 0.35 0.01 0.34 0.01
Region 2 14.5 0.01 13.5 0.01 13.4 0.01 13.4 0.01 13.3 0.01
Region 3 1.58 0.01 1.40 0.01 1.29 0.01 1.29 0.01 1.29 0.01
Region 4 1.36 0.01 1.12 0.01 1.21 0.01 1.09 0.01 1.03 0.01

Table 9: Run time comparison of Integer Linear Program and Heuristic for different Data Sets (TEH)
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8. Conclusion

In this paper, we have studied the Entity Hardening problem and the Targeted Entity Hardening problem in Crit-
ical Infrastructure network(s). We have used the IIM model to capture the interdependencies and dependencies that
exist between power-communication network and power network in isolation respectively. Using such a model, we
have formulated the Entity Hardening and the Targeted Entity Hardening problems. Both problems are proved to be
NP-Complete. For both the problems, the optimal solution, obtained from the ILP, is compared with the developed
heuristic solution using dependency equations generated from power-communication network data of the Maricopa
County, Arizona and power network data of different bus systems obtained from MatPower. As noted in the Experi-
mental Analysis for both the problems the performance of the heuristics are comparable to that of ILP and solutions
are produced in much lesser time.
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