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Multi-period vulnerability analysis of power 

grids under multiple outages: An AC-based 

bilevel optimization approach 
Amin Abedi

*
, Franco Romerio 

Institute for Environmental Sciences, University of Geneva, Switzerland 

 

Abstract-  

This paper describes a methodology for the N-k contingency analysis of bulk power systems. 

The method encompasses the evaluation of contingencies‟ effects on the power system over a 

range of system demand levels. The proposed model is inherently a multi-period bilevel 

optimization problem. Unlike the conventional bilevel optimization problems for the N-k 

contingency analysis, the proposed model considers the effects of reactive power dispatch, 

losses, and voltage profile. In doing so, the problem is formulated as a multi-period AC-based 

bilevel mixed-integer nonlinear programming (MINLP) problem. To guarantee the global 

optimality of the solution, this paper linearizes and then transforms it into a one-level mixed-

integer linear programming (MILP) problem using different linearization techniques and the 

duality theory. The simulation results on the annual load profile of the IEEE Reliability Test 

System (RTS) verify the effectiveness of the proposed model. 

 

Keywords- N-k contingency analysis, bilevel MINLP, Stackelberg game approach, power 

system. 
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Nomenclature  

Indices  

i,j Indices of buses 

kc Index of regular polygon for linearizing the circle 

l Index of lines 

m Index of blocks used for piecewise linearization 

Sets  

D Set of all buses with a demand  

G Set of all buses with a generation  

L Set of all lines 

NB Set of all buses 

T Set of time (days or hours) 

Constants  

B Big M parameter 

ic  
cost coefficients of generators ($/MWh) 

k  Number of outages (interdiction resources) 

M Number of blocks used for piecewise linearization 

n Number of sides of a regular polygon to formulate a circle 

N Number of assets 

max

iPg  
Maximum magnitude of active power of generators at bus i (MW) 

max

iQg  
Maximum magnitude of reactive power of generators at bus i (MVAR) 

min

iQg  
Minimum magnitude of reactive power of generators at bus i (MVAR) 

R(l) Receiving bus of line l 

S(l) Sending bus of line l 

max

ijS  
Maximum magnitude of apparent power of line ij (MVA) 

max

iV  
Maximum magnitude of voltage magnitude at bus i (V) 

min

iV  
Minimum magnitude of voltage magnitude at bus i (V) 

ijY  Admittance of line ij ( )
ij ij ij

Y G jB   

max

ij  
Maximum of voltage angle difference between bus i and j (Rad) 

min

ij  
Minimum of voltage angle difference between bus i and j (Rad) 

ij  
Maximum of each block width for line ij 

Variables  

lH , lT  
Two sets of continuous variables to linearize the product of binary and continuous 

dual variables 

t

iLs  
Active power load shedding at bus i (MW) in time t 

t

iLsq  
Reactive power load shedding at bus i (MVAR) in time t 
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t

ijP  
Active power flow of line ij (MW) in time t 

t

iPg  
Active power of generators at bus i (MW) in time t 

t

iPd  
Active power demand at bus i (MW) in time t 

itV  
Voltage magnitude at bus i (V) in time t 

t

ijQ  
Reactive power flow of line ij (MVAR) in time t 

t

iQg  
Reactive power of generators at bus i (MVAR) in time t 

t

iQd  
Reactive power demand at bus i (MVAR) in time t 

/ t

lZ z  
Upper level decision variable / Binary variable in time t that is equal to 0 if line l 

is out of service and otherwise, is equal to 1 

ijt  
Voltage angle difference between bus i and j (Rad) in time t 

ijm  
Width of the m

th
 angle block of line ij (Rad) 

ij


, ij


 
Positive variables used to eliminate the absolute function  

1, ,

, , , ,

, , , , ,

,,,

, , ,

iij ij i

i i ii ij

i ij

ijm j

ij n ij

ij ijm i



   

    

 

 



 

 
Dual variables that are shown on top of the corresponding equalities or 

inequalities 

1. Introduction 

Energy is a vital commodity in modern societies and power systems play a crucial role in 

providing secure and reliable energy. Protection of the power system as a critical 

infrastructure against different hazards and threats i.e., natural hazards, intentional attacks, 

and random failures [1] has become a growing concern. Furthermore, the interdependencies 

between power systems and communication networks in smart grids are introducing new 

challenges i.e., cyber threats. So, the operators and planners must protect the most vulnerable 

elements of a system under a variety of attack scenarios in order to improve the system 

security and deploying a robust and resilient power system [2]. 

In this context, a key question is which components are critical and must be protected or 

fortified when the protective and financial resources are limited [3]. To this end, it is 

fundamental to develop robust methodologies and tools to assess the vulnerability of a power 

system against external attacks [4]. Hence, the vulnerability analysis and, in particular, 

prioritizing the vulnerable components result in an effective power system protection with 

limited resources [5]. 

Contingency analysis or N-k contingency assessment is a methodology looking for a set of k 

critical components of the power system whose simultaneous failure would maximize the 

damage, in terms of the amount of involuntary load shedding in the power system. N-k (
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2k  ) contingencies are low-probability events but inherently more severe than N-1 

contingencies in triggering cascading failures and even blackouts [6]. Therefore, the North 

American Reliability Council (NERC) suggests power system planners and operators 

considering N-k contingency analysis in their planning and operation [7]. The difficulty of N-

k contingency selection is that it follows the combination formula. It means that for a very 

modest size power system with N=1000, there are 1000 „N-1‟ contingencies, 499500 „N-2‟ 

contingencies, over 160 million „N-3‟ contingencies, over 40 billion „N-4‟ contingencies and 

so on. So, the number of possible N-k contingencies, even for small values of k, makes total 

enumeration approaches computationally impractical in a large-scale interconnected power 

network [8]. 

Scientists have been developing innovative methods to determine critical components whose 

failures lead to the largest system loss. Generally, there are two different lines of work in the 

literature. Some literature work on the low-order contingencies including single or a small 

number of component failures that have a very high occurrence probability. For instance, the 

N-1 security constraint that all of the regulatory agencies in the world enforce the system 

operators to satisfy it by strict security standards. Within this constraint, the system should 

normally continue to work after any single failure [9]. Analyzing the loss of two elements 

consecutively or N-1-1 contingency analysis is another example of this category [10-12]. It 

should be noted that the reliability concept that defines the ability of the electric power 

system to meet the demand with continuity and an acceptable level of quality, comes under 

the low-order contingencies [13]. 

The second line of works presents not only the low-order but also the high-order 

contingencies. The high-order contingencies include a relatively large number of component 

failures that have a very low occurrence probability but high consequences. The focus of this 

paper is on this type of assessment i.e. the vulnerability analysis of power systems. The 

vulnerability can be social, organizational, economic, environmental, territorial, physical, and 

systemic [14, 15]. Most studies focus on physical and systemic vulnerabilities. Physical 

vulnerability represents the degree of loss of an element due to external pressure such as 

natural hazards [16]. In contrast, systemic vulnerability considers the degree of redundancy, 

functionality, and dependency of a system due to the failure of a specific element or an 

interconnected system [17]. This paper aims to investigate the behavior of the power system 

i.e. systemic vulnerability to identify the critical components under a worst-case scenario 

such as an intentional attack.  

The works can range from analytical approaches (complex network, flow-based, logical, and 

functional methods) to Monte Carlo simulations. A detailed comparison of these approaches 

is recently conducted in [18] (and the references therein). Among them, the optimization-

based problem can directly lead to promising results without the need to rank the sets of 

critical assets. The application of these approaches is considerably increasing in the complex 

problems thanks to the advent of advanced high-speed multiprocessors with large memory. It 

makes the problem tractable for a realistic power system [19]. 

The interdiction model is at the forefront of the models used to identify the worst N-k 

contingency. It has been developed based on a multilevel optimization problem to assess the 

vulnerability of power systems [20]. A multilevel optimization is a mathematical program 
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where an optimization problem contains another optimization problem as a constraint [21]. 

These problems are also known as the hierarchical leader-follower problem or the 

Stackelberg game [22]. The interdiction model basically includes an upper level whose 

objective is to identify exactly k components to maximize the damage (load shedding) in the 

system and a lower level whose objective is mitigating the impacts of attacks and minimizing 

the damage consequences. 

Later, the interdiction model is developed based on two models i.e., bilevel and trilevel 

interdiction models. For instance, Karush-Kuhn-Tucker (KKT) optimality conditions [23] 

and duality theory [24] are used to convert a bilevel attacker-defender model to a one-level 

problem. Arroyo J.M. [25] compared the KKT- and duality-based approaches by introducing 

minimum and maximum vulnerability models. Brown et al. [26] extended the classical 

bilevel interdiction model to a general trilevel defender-attacker-defender model to assign 

limited defensive resources in power systems. Alguacil et al. [27] proposed an approach to 

allocate the defensive resources in a power system to mitigate the vulnerability. Wu et al [28] 

decomposed a planner-attacker-operator model to a master problem and a subproblem using a 

Benders primal decomposition method. Recently, Fang et al. [29, 30] and Che et al. [31] used 

this approach to identify the vulnerability of power grids exposed to natural hazards and the 

hidden N-k contingencies, respectively and finally, Nemati et al. [32, 33] proposed tri-level 

transmission expansion planning (TTEP) under physical intentional attacks.  

The above-surveyed literature uses the simplified formulation of nonlinear AC optimal power 

flow (ACOPF) i.e., the DC optimal power flow (DCOPF) as the lower level. The DCOPF has 

some drawbacks. Technically, it cannot provide precise information on the power system 

since it ignores reactive power, resistance and losses and fixes the voltage values for the 

buses. Mathematically, restricting the available degrees of freedom (e.g., fixed voltages in 

DC-based method) makes the solution non-optimal and less accurate [34].  

To the best of our knowledge, a few studies considered a real picture of the power grid 

parameters i.e. both active and reactive powers, losses, and voltage profile to assess the 

vulnerability of the power system. Kim et al. [35] used the AC power flow equations and the 

Frank Wolfe algorithm to compute an optimal solution of the problem. However, they 

assumed that attackers are allowed to increase the impedance of transmission lines in the 

model. Modeling component removal needs to introduce binary variables that require 

diff erent and more complicated solution techniques. Recently, a probabilistic N-k model is 

introduced to analyze a probabilistic generalization of the interdiction model using the 

cutting-plane algorithm [8]. They use convex relaxations instead of the DC power flow 

approximation. 

Generally speaking, the ACOPF is a non-linear and non-convex optimization problem [19] 

which is used as the lower level in this paper. Considering the ACOPF for each time period 

(t) as the lower level converts the problem to a bilevel mixed-integer nonlinear programming 

(MINLP) problem that is very complicated and challenging to solve. It should be emphasized 

that employing metaheuristic algorithms or non-linear solvers does not guarantee to have a 

global optimum solution [36]. The aim of this paper is to tackle the new problem and avoid 

the probable local solution for each time period (t). The contributions of the proposed model 

in this paper are threefold:  
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(1) A novel deterministic multi-period AC-based one-level MILP formulation of a bilevel 

MINLP problem is introduced so as to assess the N-k contingency analysis. 

(2) The model considers a real picture of the power grid parameters i.e., both active and 

reactive powers, losses, and voltage profile. 

(3) The planners can decide the level of accuracy by setting the predefined parameters (i.e., n 

and M) that are introduced in the linearization process for each time period (t). 

The remainder of this paper is organized as follows. Section 2 introduces the multi-period 

AC-based bilevel MINLP problem. Section 3 proposes the solution approaches to linearize 

and then, transforming to a one-level MILP problem. Sections 4 and 5 present the test case 

and the numerical results, respectively. Discussions and concluding remarks are finally 

provided in sections 6 and 7, respectively. 

2. The multi-period AC-based bilevel MINLP problem 

In this section, the mathematical formulation of multi-period AC-based bilevel MINLP 

problem is introduced. The model provides the worst-case scenario under multiple outages 

that is of interest in N-k security assessment. This formulation is based on the following 

assumptions that are commonly used for vulnerability and contingency assessment of a power 

system [23-28, 37, 38]: 

1- The rational attacker (the worst-case scenario) is considered trying to maximize the 

damage and can disable multiple assets simultaneously and permanently or at least for 

several hours. As a result, the power flow of other lines will be affected. 

2- The power system has two main components i.e., substations or transmissions and 

transformers. Herein, the targeting assets are transmission lines and transformers, 

because they are usually reachable with low or no security to withstand. However, by 

removing the connected lines and transformers of a load bus, it will be spontaneously 

out of service. 

3- Because two parallel circuits between the buses are usually on the same tower, they 

are modeled as a single line with double capacity. Furthermore, the shunt 

susceptances of the lines are ignored. 

4- A steady-state security model and multi-period scenario are considered where 

typically, the highest load demand forecast is used in each time period (i.e., daily, 

hourly, etc.).  

5- Herein, the system damage is load shedding, that is, the amount of involuntarily 

decreasing the load demand. In the lower level, we assumed the active and reactive 

loads are shed independently [39]. Admittedly, different objective functions as the 

system damage can be defined based on the interest.  

6- The ratings of transmission lines are not only limited by the power flowing in that line 

but also they are dependent on the conductor material and radius and the weather such 

as solar irradiance, ambient temperature, wind speed, and wind direction. In the 

following formulation, a static thermal rating is used. However, applying the dynamic 

thermal rating in the model is also straightforward. 
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According to the multi-period interdiction (attacker-defender) model in Figure 1, the attacker 

as a leader or upper-level problem starts the game with the limited disruptive resources. The 

system operator as a follower or lower-level problem reacts against the set of out-of-service 

assets to mitigate its adverse consequences based on the following formulations whose dual 

variables are shown on top of the corresponding equalities or inequalities: 

*t

i
Z

i NB

Max Ls


    (1) 

Subject to: 

 
,

0.5 (1 ) ; 0,1 ,t t

ij ij

i j N

z k z i j N


        (2) 

*

, , , ,
, , ,

argt t

i i
Pg Qg Ls Lsq

i NB i NBP Q V

Ls Min Ls

 

  
  

  
     (3) 

Subject to: 

| | | ; , ,
i

t t t t

i i D i i D i i D ij

j NB

Pg Ls Pd P i j NB t T


  



        (4) 

| | | ; , ,
i

t t t t

i i G i i D i i D ij

j NB

Qg Lsq Qd Q i j NB t T


  



        (5) 

 2 ( cos sin ) ; ,t t

ij l it ij it jt ij ijt ij ijtP z V G V V G B l L t T          (6) 

 2 ( sin cos ) ; ,t t

ij l it ij it jt ij ijt ij ijtQ z V B V V G B l L t T           (7) 

max0 ; ,
i

t

i iPg Pg i G t T


        (8) 

min max ; ,
ii

t

i i iQg Qg Qg i G t T
 

        (9) 

     
2 2 2

max ; ,t t

ij ij ijP Q S l L t T        (10) 

min max ; ,
ii

i it iV V V i NB t T
 

        (11) 

min max ; , ,ij ijt ij i j NB t T          (12) 

0 ; ,
i

t t

i iLs Pd i D t T


         (13) 

0 ; ,
i

t t

i iLsq Qd i D t T


        (14) 

Equation (1) shows the objective function that the attacker is trying to maximize with the 

constraint sets (2)-(14). Equation (2) is the upper-level constraint that shows the maximum 

number of outages (k) is fixed. If lz is 0, the line l is under attack. Otherwise, it is safe. 

Moreover, note that factor 0.5 is multiplied by the total number of line outages because 

l ij jiz z z   and the line ij is considered twice in the formulation. In the lower-level problem 
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(3)-(14), unlike the previous approaches [23-28], the ACOPF is used as the operator tool to 

mitigate the adverse consequences of the outages. Equation (3) is the objective of the system 

operator to minimize the damage. The asterisk in (1) and (3) emphasizes that iLs  are decision 

variables of the lower level problem. Equations (4) and (5) are the nodal power balance 

equations for active and reactive powers, respectively. Equations (6) and (7) represent the 

line flows of active and reactive powers, respectively. Constraints (8)-(14) enforce the limits 

of active and reactive power generations, transmission line capacity, voltage, and voltage 

angle, active and reactive load shedding, respectively. The above-formulated problem is a 

bilevel MINLP problem due to the nonlinearities in equations (6),(7) and (10). In the 

following sections, just for the sake of simplicity, the superscript “t” has been dropped. 

 

 

Figure 1. The multi-period AC-based bilevel MINLP problem. 

3. Solution methodology 

It should be noted that there will be no guarantee to obtain the global solution due to the non-

convexity non-linearity nature of the proposed approach [40] with a non-linear solver or 

evolutionary approaches [19]. Therefore, we transformed it to one-level MILP problem in 

two steps. First, the lower-level problem is transformed to a MILP problem to avoid any local 

solution. Then, the duality theory [41] is used to have a one-level MILP problem in the 

second step. 

3.1. Linearizing lower-level NLP problem 

To linearize the lower-level NLP problem, the phase differences between the bus voltages are 

assumed small enough and the voltage magnitude is close to 1 p.u. for all buses. These 
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assumptions are practically acceptable under the normal operating condition to maintain the 

system far from instability [19]. Based on the aforementioned assumptions, the first-order 

approximation of Taylor‟s series with respect to the variables , ,cos ,sini j ij ijV V    is used for 

nonlinear terms of equations (6)-(7) ( lz is a constant at this level). Then, the quadratic 

function is linearized based on the proposed method in [42] by using 2M piecewise linear 

(PWL) blocks as below: 

  1

((2 1) )

2 1 (1 ) 2 ( )
2

l

M

ij ijm

m
ij l ij i ij i j ij ij ij

m

P z G V G V V B


 

  

  
   

          
  

  
  


  (15) 

  1

((2 1) )

2 1 (1 ) 2 ( )
2

l

M

ij ijm

m
ij l ij i ij i j ij ij ij

m

Q z B V B V V G


 

  

  
   

           
  

  
  


  (16) 

1

; 1 , ,
ijM

i j ijm ij ij

m

m M i j NB


     



         (17) 

0 ; 1 , ,
ijm

ijm ij m M i j NB


          (18) 

; 1 , ,
ijm

ijm jim m M i j NB


        (19) 

Where, (2 1) ijm    and 
ijm  are the slope and the value of the m

th
 block of the voltage phase 

difference of transmission line ij (see Figure 2). Derivation of equations (15) and (16) are 

described in the appendix. The appropriate value for 
ij can be 

M


. The absolute function in 

(17) is modeled by introducing two positive variables i.e., ij


 and ij


. This linearization 

technique of the quadratic function doesn‟t need to have binary variables compared to other 

linearization techniques such as the binary expansion theory [43], the special ordered set of 

type 2 (SOS2) [36]. Nevertheless, this technique adds three sets of continuous variables to the 

problem (M+2 variables for each line). Adding binary variables change the lower-level 

problem to a MILP problem that is impossible to use the duality theory in the next step to 

have a one-level MILP problem [27].  
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Figure 2. Piecewise linear approximation of a nonlinear function. 

 

As can be seen, the last nonlinear constraint of the lower-level problem (i.e., equation (10)) 

presents a circle with the radius of 
max

ijS . This circle is linearized by an n-sided convex 

regular polygon using the following n equations [44]: 

,
max

2 2 ( 1) 2 2 ( 1)
sin sin cos c

2
; ,

os

s ,i 1n 0
k l

ij ij

ij kc n i j NB

kc kc kc kc
P Q

n n n n

S
n



   



           
            

          

 
   

 


 (20) 

In fact, the linearization of (10) adds “n” equations for each line. A small n forces more 

restrictions on transmission line capacity and probably leads to the infeasible problem while a 

big n increases the number of equations and simulation time. The appropriate value for n can 

be 64 [19, 36]. Thereafter, the problem is completely a bilevel MILP which can be 

transformed into one-level MILP in the next section using the duality theory [41]. 

3.2. Transforming to an equivalent one-level MILP problem 

The duality theory states that every linear programming (LP) problem (the primal problem) 

has another LP problem (the dual problem) that can be derived from it. The dual problem will 

be a maximization problem when the primal problem is a minimization problem and vice 

versa. Furthermore, each variable (constraint) in the primal problem becomes a constraint 

(variable) in the dual problem [41]. So, in order to transform the bilevel max-min problem to 
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a max-max problem, the duality theory is used below. Then, the max-max problem is 

reformulated to a one-level max problem as follows. 

1, ,

| |

max max min max min

, , , , ,

, , , , ,

, ,
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Where the primal variables are shown on top of the corresponding equalities or inequalities. 

This transformation introduces a new nonlinearity to the model i.e., the product of binary and 

continuous dual variables ( l lz  and l lz  ) in equations (21), (25)-(27). This product can be 
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easily linearized using two sets of continuous variables lT  and lH  [27, 45] that is introduced 

in the appendix.  

4. Test system 

The IEEE Reliability Test System (RTS) and IEEE 57-bus are used in this paper. The IEEE 

57-bus test case is only used for comparison. It represents a portion of the American Electric 

Power system (in the U.S. Midwest) and has 57 buses, 7 generators, and 42 loads [46]. Data 

availability makes the IEEE RTS an ideal test case for multi-period bulk power system 

vulnerability analysis. It contains 24 buses, 32 generators, and 38 branches (lines plus 

transformers) as shown in Figure 3. The transmission lines operate at two different voltage 

levels, 132 kV and 230 kV. The system working at 230 kV and 132 kV are represented in the 

upper half and the lower half of Figure 3, respectively. Detailed data of the systems can be 

found in [46, 47]. Furthermore, the annual load profile of the IEEE RTS is shown in Figure 4. 

This profile can be adapted to seasonal patterns. If the first week is assumed the first week of 

the calendar year, then the profile shows the annual peak occurring in the week prior to 

Christmas (winter). If the week number one is assumed to be the first week of August, then 

the annual peak will occur in the month of July (summer) [47]. 

 

Figure 3. Topology of IEEE 24-bus reliability test systems (RTS). 
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Figure 4. System daily peak loads in one year with highlighted annual peak load. 

5. Numerical results 

The proposed model has been successfully applied to the test systems. In this numerical 

study, the minimum and maximum of the voltage magnitude of buses are assumed to be 0.95 

and 1.05 p.u., respectively [48]. The problems are solved on a laptop running with an Intel 

Core i7, 2.2 GHz processor, and 8 GB RAM. The CPLEX solver which uses the branch and 

cut algorithm is employed under GAMS (General Algebraic Modeling System) [49]. 

Furthermore, the ACOPF function of MATPOWER in MATLAB environment [48] is also 

used for comparing the results.  

In linearization, it is assumed M=80 and n=64. Larger values for these parameters do not 

change the results [19, 36]. With these assumptions, Table 1 shows the comparison of 

statistic data for different test cases. It compares the average elapsed time of the models with 

the different numbers of nonzero elements, single equations, single variables, and binary 

variables. As discussed before, the difficulty of N-k contingency selection is that it follows 

the combination formula. Trendline of the simulation time shows that in the low-order 

contingencies and the orders that the objective function does not change afterward (e.g., k=13 

in the IEEE RTS network), the simulation time is the minimum value while the number of 

samples is increasing (Figure 5). 
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Table 1. Comparison of statistic data of different test cases 

Model statistics 
IEEE 24-bus IEEE 57-bus 

DC-based AC-based DC-based AC-based 

Blocks of equations 12 25 12 25 

Blocks of variables 12 87 12 87 

Nonzero elements 1993 49300 4476 112781 

Single equations 533 6684 1200 15289 

Single variables 512 16153 1157 36994 

Binary variables 68 68 156 156 

Average elapsed time/simulation (min) <1 ~2 ~4 ~23 

 

 

Figure 5. Comparing enumeration-based approach and this approach in the case of simulation time for the IEEE 

RTS network. 

 

5.1. Accuracy of the lower-level problem and its strong duality 

Before proceeding to implement the proposed method on the IEEE RTS network, the 

accuracy of the linearized ACOPF problem in the lower level and its dual problem are 

investigated. In doing so, the exact nonlinear ACOPF using MATPOWER package and 

proposed linearized ACOPF method are compared. The objective function for the ACOPF 

problem is introduced as the total operation cost of the generators in the form of 
i i

i G

c Pg


  

[48]. 

For the exact ACOPF and DCOPF models using MATPOWER package, the objective 

functions are 44196 $/h and 41904 $/h, respectively, whereas the objective function is found 

to be 44322 $/h using the lower-level problem in this paper. The results show an error of 5.2 

% for the exact DC-OPF method and a very small error of 0.3 % for the linearized ACOPF in 

the lower-level problem. Furthermore, the objective function is found to be 44322 $/h using 
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its dual problem. This result demonstrates the strong duality in the problem where the optimal 

values of the primal and dual problems are equal [45]. 

5.2. Comparison between the proposed approach and the previous literature 

The previous literature uses the DCOPF as the operator tool in the lower level problem whose 

objective is minimizing the damage consequences [23-28]. It means that the reactive power, 

variation of voltage magnitude, power losses, and the line resistance are ignored [50]. It also 

approximated the small angle. It considers that the differences of the voltage angle between 

the neighboring buses i and j are insignificant, that is, sin(θij)≈θij and cos(θij)≈1 [51]. Hence, 

to derive the DC-based approach [23-28] for a fair comparison, the equations (1)-(14) are 

revised based on the above assumptions. So, equations (5), (7), (9), (11) and (14) are ignored 

and equations (6) and (10) are reformulated based on the assumptions.  

Then, both models are applied to the test cases. The results show that small differences in 

total load sheddings, lead to proposing different critical lines in the IEEE RTS network. For 

instance, when k is 8, the proposed approach and the previous approach [23-28] find 6 similar 

critical lines (i.e., 7-8(l11), 11-13(l18), 12-13(l20), 15-21(l25, l26), 16-17(l28), 20-23(l36, l37)) 

while they propose different lines (1-5(l3), 12-23(l21)) and (9-12(l15), 10-12(l17)), respectively 

as the 7
th

 and 8
th

 critical lines. In other words, the Jaccard similarity index (JSI) for these two 

sets of lines is 0.6 and the average JSI is 0.9 for this test case.  

The effects of reactive power, losses, etc. are more highlighted in a network under stress (not 

in IEEE 24-bus [52]). So, IEEE 57-bus is selected as the second test case to compare both 

models. Figure 6 shows that the objective function (LS) of the previous method in all 

simulations are lower/equal and so, optimistic compared to the proposed AC-based approach. 

It presents the fact that restricting the available degrees of freedom (e.g., fixing voltages in 

DC-based method) makes the solution less optimal and accurate [34]. Furthermore, the DC-

proposed critical lines are tested with ACOPF. The results show that the critical lines are not 

the real critical lines. This phenomenon has clearly happened when k is 4 and 5. Figure 7 also 

shows five worst-case load shedding scenarios (k=1 to 5) and their related lines based on both 

models. In this network, the average JSI is about 0.6. Note that thanks to the proposed 

approach the calculated load shedding is more accurate (with the same k presents more 

damage) and also, it provides more precise information about the critical lines that is vital for 

planning and remedial actions. 
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Figure 6. Load shedding for IEEE 57-bus as a function of number of outages (k). 

 

Figure 7. The IEEE 57-bus and optimal solutions for k=1 to 5 using both models. 
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5.3. Multi-period contingency analysis with daily peak loads 

The system daily peak load of the IEEE RTS network (Figure 4) is used in the model to find 

out the effects of contingencies over a range of system demand levels (Figure 8). It should be 

noted when all lines are out of service, the system operator is forced to shed 1607 MW which 

is 56% of total demands. The remainders are directly connected to the generators‟ buses. The 

method determined that this total possible system load is shed with only 13 simultaneous 

outages. In addition, the results show that the maximum damage is in midweek of the high-

demand season while the minimum load shedding is on weekends of the low-demand season. 

The maximum damages sometimes don‟t change significantly with the increase of the 

outages e.g., maximum load shedding of N-7 comparing with N-8 or change significantly 

e.g., maximum load shedding of N-4 comparing with N-5 (68% increase(. This point is very 

important in the intentional attack-based studies where the interdiction resources are limited. 

Last but not least, this network is not N-1 secure. However, it occurs only on the 352
nd

 day of 

the year (see Figure 4). This is a hidden N-1 contingency using the previous approaches [23, 

53] because the main reason is the dominant flow of reactive power in that area (lines 

connected to bus 6). Hence, the proposed approach helps the decision makers of the energy 

sector for long-term operation planning in the power system. 

 

Figure 8. Effects of the contingencies with daily peak loads. 

5.4. Multi-period contingency analysis with hourly peak loads 

In the next step, this analysis is conducted similarly for the hourly peak loads of the 352
nd

 day 

when the demands are the daily peak load of the year. Figure 9 shows the distribution of load 

shedding for the hourly peak loads of the 352
nd

 day. The results show that the maximum 

damage is at around 5 to 7 p.m. while the minimum load shedding is at around 3 to 5 a.m. 

during the night. It is interesting to note that based on the used hourly peak loads, this 

network is not N-1 secure for hours between 4-7 p.m. when the hourly load profile (see 

Figure 4) has a peak. This information is essential for the decision makers of power system 

security sectors and operators making a robust and fast remedial action to protect the power 
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system. Furthermore, operators can use this approach for a day‐ ahead steady‐ state security 

assessment. 

The model allows having critical lines for each contingency and time. Table 2 presents the 

critical lines and the consequences when the demand for the buses is the annual peak load. In 

this topology, the critical lines are the lines removing them leads isolating load buses in low-

order contingencies (e.g., Figure 10 (a)). With increasing k, the model tries to separate the 

generation zone from the load zone. The generation zone of this topology is in 230 kV area 

where the generation capacity is much more than the required demands. Figure 10 (b) shows 

that the lines l7, l21, l22, and l23 are the critical lines where removing them separates two zones. 

In the higher order of contingency, the model suggests removing all of the efficacious lines 

between generation buses and demands. The efficacious lines are the lines that removing 

them increases the load shedding. For instance, line 27 in Figure 10 (c) is not effective 

because the demand is much more than the generation capacity in bus n15. On the contrary, 

bus n18 has much more generation capacity than the demand in the generation zone of Figure 

10 (c). Therefore, removing lines in that zone is not effective. To summarize the results, 

according to the simulation results, the potential critical lines are radial lines (e.g., l11), 

parallel lines (e.g., l25 and l26, l36, and l37) and the lines connecting the generation to demand 

zones in a nearly centralized generation such as IEEE RTS. 

 

Figure 9. Effects of the contingencies with hourly peak loads. 
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Table 2. Outcomes of the proposed model when the demand of the buses is the annual peak load. 

k Critical lines 
Load shedding 

(MW) 

Simulation time 

(Min) 

1 l10 2 0.03 

2 l29, (l36, l37)
* 

309 0.19 

3 l11, (l25, l26)
*
, l28 405 0.47 

4 l7, l21, l22, l23 526 3.66 

5 l21, l22, (l25, l26)
*
, l28, (l36, l37)

*
 883 2.60 

6 l18, l20, l21, (l25, l26)
*
, l28, (l36, l37)

*
 1204 3.25 

7 l11, l18, l20, l21, (l25, l26)
*
, l28, (l36, l37)

*
 1374 2.82 

8 l3, l11, l18, l20, l21, (l25, l26)
*
, l28, (l36, l37)

*
 1377 1.80 

9 l11, l18, l20, l21, l23, l24, (l25, l26)
*
, l29, (l36, l37)

*
 1430 2.22 

10 l1, l4, l5, l11, l15, l17, l18, (l25, l26)
*
, l28, (l36, l37)

*
 1469 1.11 

11 l2, l3, l4, l5, l11, l15, l17, l18, (l25, l26)
*
, l28, (l36, l37)

*
 1552 1.07 

12 l2, l3, l4, l5, l11, l18, l20, l21, (l25, l26)
*
, l28, l29, (l36, l37)

*
 1552 0.60 

13 l2, l3, l4, l5, l11, l15, l17, l18, l23, l24, (l25, l26)
*
, l29, (l36, l37)

*
 1607 0.16 

* The lines in the parentheses are the parallel lines between two nodes. 

 

 

Figure 10. Topology of IEEE RTS under different contingencies, (a) N-2 (b) N-4 (c) N-13. 

6. Discussions and future works 

The main aim of this paper is to develop an approximation model of the original non-convex 

bilevel MINLP problem that is NP-hard and computationally challenging. The original 

problem includes an upper level whose objective is to identify exactly k components to 

maximize the damage (i.e. load shedding) in the system and a lower level whose objective is 
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mitigating the impacts of attacks and minimizing the damage consequences using ACOPF. 

We have not done any approximation for the upper-level problem. So, the upper-level 

solution of the approximation model is also valid for the original problem. The main 

approximation is performed in the lower-level problem where we used the duality theory and 

some proposed linearization techniques to replace it with a linear problem (LP).  

Then, the accuracy of this approximation in the lower-level problem is investigated. First, the 

linearized ACOPF problem has been validated using an open-source software i.e., 

MATPOWER (see section 5.1). As the DCOPF problem is a simple version of ACOPF, 

deriving the DC-based approach from our proposed model is quite straightforward (see 

section 5.2). Then, these two problems are modelled with the same input and assumptions 

which ensures a fair comparison. 

Our one-level MILP problem allows the use of high performance, efficient and reliable 

algorithm as well as off-the-shelf solvers such as Cplex to the desired precision level instead 

of employing a non-linear solver that does not guarantee to have a global optimum solution 

[19]. As our model is an approximation, the resultant solution is not necessarily the same as 

the global solution of the original bilevel MINLP problem but it will be very close when our 

approximation assumptions are valid (see section 2). Another application of the proposed 

model is to use it as a warm-start strategy to solve the original bilevel MINLP problem using 

a probable direct solution or metaheuristic algorithms. Exploring these ideas can be 

considered as good future extensions of our work. 

In this paper, the 2M piecewise linear (PWL) blocks and the n-sided convex regular polygon 

are used for the approximation of nonlinear terms in the lower-level problem. The accuracy 

of our model can be improved by adding more linear terms (i.e., n and M). Noted, the 

linearization technique for the quadratic function (i.e. PWL) does not need any binary 

variables given small voltage angles [42] which makes it much more tractable as compared to 

other linearization techniques which use either binary variables in their formulations [43] or 

the special ordered set of type 2 (SOS2) [36]. A large M or n improves the accuracy but 

increases the number of equations and accordingly the computational burden. Furthermore, a 

small n enforces more restrictions on transmission line capacity and might lead to the 

problem infeasibility. We set the linear terms based on the recommendations in [19, 36] for 

our test cases. Finding an optimal value of linear terms for a large-scale power system is good 

future work. 

Our proposed model is a steady-state security model and a multi-period scenario is 

considered where typically, the highest load demand forecast is used in each time period. 

Dynamic modeling, implementing the uncertainty of the loads and generations, and robust 

assessment of uncertainty are other interesting topics that can be explored in our future work.  

7. Conclusion 

A novel multi-period AC-based approach is presented to analyze N-k contingencies in order 

to enhance the resilience of a bulk power system under multiple outages. This method is 

based on the Stackelberg game theory which includes an upper level whose objective is to 

identify exactly k components to maximize the damage (load shedding) in the system and a 

                  



21 

 

lower level whose objective is mitigating the impacts of attacks and minimizing the damage 

consequences. Unlike the literature, in order to provide a more precise and real picture of the 

reactive power flow, losses as well as voltage profile, ACOPF is used in the lower-level 

problem as the operator‟s (defender‟s) tool. The resulting formulated problem is an AC-based 

bilevel MINLP problem in each time. To guarantee a globally optimal solution, The 

formulated problem is linearized and recast to the one-level MILP problem using the 

linearization techniques and the duality theory. The linearized ACOPF shows a very small 

error of 0.3% by assuming the predefined linearization parameters i.e., M=80 and n=64. The 

multi-period analysis is conducted with hourly and daily peak loads of the IEEE RTS. The 

method presents load shedding and the critical lines for each contingency over a range of 

system demand levels of this test system. Furthermore, the results show that in the congested 

systems especially where the reactive power flows predominate on some lines or buses such 

as cables or bus 6 in this case, the assessment cannot be adequately conducted only by the 

active power flows.  

 

Appendix 

To linearize equations (6) and (7), the practical assumptions are assumed for all buses. (i.e., 

the phase differences between the bus voltages are too small and the voltage magnitude is 

close to 1 p.u.). Then, the first-order approximation of Taylor‟s series with respect to the 

variables , , ,i j ij ijV V c n is used as follows: 

     2 1 2
l

ij l ij i ij i j ij ij ijP z G V G V V c B n


         (35) 

     2 1 2
l

ij l ij i ij i j ij ij ijQ z B V B V V c G n


          (36) 

Where, 

2( )
cos 1

2

i j

ij ijc
 




    and sinij ij i jn      . Then, the quadratic function 

linearized based on the proposed method in [42] by using 2M piecewise linear (PWL) blocks 

as below: 
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c m M i j N
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 ; ,
ij

ij i j ij ijn i j N


            (38) 

 ; ,
ij

ij jin n i j N


     (39) 

In order to linearize the product of binary and continuous dual variables ( l lz  and l lz  ) in 

equations (21), (25)-(27). This product can be easily linearized using two sets of continuous 

variables lT  and lH  [27, 45]. For instance, l l lT z   can be linearized as follows: 
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(1 ) (1 )

l l l

l l l

l l l

T H

Bz T Bz

B z H B z

 

  

    

  (40) 

Where, B has to be big enough so that if 0( 1)lz or , the inequalities of equation (40) would 

be nonbinding constraints. Equation (40) shows when 1lz  , lT  will be equal to l . 

Otherwise, lT  will be equal to zero. 
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