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Abstract

The threats faced by cyber-physical systems (CPSs) in critical infrastructure have motivated research into a multitude of attack
detection mechanisms, including anomaly detectors based on neural network models. The effectiveness of anomaly detectors can
be assessed by subjecting them to test suites of attacks, but less consideration has been given to adversarial attackers that craft
noise specifically designed to deceive them. While successfully applied in domains such as images and audio, adversarial attacks
are much harder to implement in CPSs due to the presence of other built-in defence mechanisms such as rule checkers (or invariant
checkers). In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a
CPS. Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then
uses a genetic algorithm to optimise the latter, ensuring that the neural network and the rule checking system are both deceived.
We implemented our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy

O\ of their detectors by over 50% on average, while simultaneously avoiding detection by rule checkers. Finally, we explore whether
these attacks can be mitigated by training the detectors on adversarial samples.
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1. Introduction

Cyber-physical systems (CPSs), in which software compo-
nents are deeply intertwined with physical processes, are ubig-
uitous in critical public infrastructure. The potential disruption
that could result from a compromised system has motivated re-
search into a multitude of CPS attack detection mechanisms,
including techniques based on invariant checking [[1}[2} 3} 4], at-
testation [} 6} [7]], and fingerprinting [8| 9]. A particularly pop-
ular solution is to build anomaly detectors 10, [11, 12} [13] 14}
150 [16]], in which an underlying machine learning (ML) model
is trained on a time series of the system’s physical data in or-
der to judge when future values are deviating from the norm.
Typically, this would be in the form of neural network, a model
that is powerful enough to learn and recognise the complex pat-
terns of behaviour that CPSs exhibit. Many studies have been
performed in recent years to explore the efficacy of such deep
learning anomaly detection approaches in CPSs [17].

The effectiveness of an anomaly detector can be assessed
by subjecting it to a test suite of attacks, and observing whether
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it can correctly identify the anomalous behaviour. These tests
can be derived from benchmarks [18]], hackathons [[19], or tools
such as fuzzers [20} 21], and typically involve manipulating or
spoofing the network packets exchanged between CPS compo-
nents. While studies have shown that neural network-based de-
tectors are effective at detecting these conventional types of at-
tacks [[18 22], 23] 24| 25| 26| 27]], less consideration has been
given to testing their effectiveness at detecting adversarial at-
tacks, in which attackers have knowledge of the model itself
and craft noise (or perturbations{]_-b that is specifically designed
to cause data to be misclassified. If an anomaly detector fails to
detect adversarial attacks, then the CPS relying on the detector
is potentially at risk of a much broader range of attacks, since
their effects can then simply be masked by this specially-crafted
noise.

Adversarial attack algorithms have been applied across sev-
eral different classification domains (including images [28]], au-
dio [29], and malware [30]), but face a number of additional
challenges to overcome in the context of CPSs in critical in-
frastructure. First, given that CPS anomaly detectors work by
comparing the difference between actual and predicted system
states, attackers can either attempt to enlarge this difference
(promoting false positives) or shrink it (promoting false neg-
atives). In other domains, adversarial attacks focus on the for-
mer, but for CPSs, the latter case—when a detector misclas-
sifies a real attack as normal behaviour—can lead to serious

"'We will use noise and perturbation interchangeably.
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consequences. Second, CPS states consist of both continuous
and discrete sensor and actuator data, which leads to a com-
plex interplay between the influence of noise and sensitivity to
attacks. Finally, neural network-based detectors are rarely the
only defence mechanism operating in real systems: typically,
CPSs are also equipped with built-in rule checkers that monitor
for violations of known relationships between specific sensors
and actuators (expressed in the form of invariants). As a conse-
quence, existing adversarial attacks are insufficient on their own
as anomaly detectors and rule checkers must both be deceived.
Existing studies on evading neural network anomaly detectors
(e.g. [311132]) do not assume their presence.

In this work, we present an adversarial attack for testing
recurrent neural network (RNN) anomaly detectors of CPSs,
which we assume to be equipped with additional rule check-
ers. Our approach is inspired by a white-box gradient-based
approach [33]], but adapted to meet the aforementioned chal-
lenges posed by critical infrastructure. In particular, our solu-
tion crafts noise over the continuous and discrete domains of
sensors and actuators to deceive neural network-based anomaly
detectors. Our experiments show that existing adversarial at-
tacks have limited effectiveness in the presence of rule checkers,
S0 we propose a genetic algorithm to optimise the combination
of actuator values in order to simultaneously deceive both the
anomaly detector and the rule checkers.

We evaluate the effectiveness of our adversarial attacks by
implementing them against RNN-based anomaly detectors for
two real-world critical infrastructure testbeds: Secure Water
Treatment (SWaT) [34]], a multi-stage water purification plant;
and Water Distribution (WADI) [35], a consumer distribution
network. We demonstrate that our adversarial tests success-
fully and substantially reduce the accuracy of their anomaly
detectors. Despite the general effectiveness of SWaT’s built-
in rule checkers, our genetic algorithm allows the attacker to
evade them, while still achieving a similar accuracy reduction
in the anomaly detector. Finally, we explore the possibility of
mitigating attacks by training on adversarial samples, finding it
is difficult in general to detect our attacks this way unless they
involve a large amount of noise.

Contributions. Our main contributions are summarised as fol-
lows:

e We define a threat model for CPS adversarial attackers,
and propose a white-box gradient-based attack to con-
struct adversarial tests for deceiving RNN-based anomaly
detectors while simultaneously deceiving rule checkers.

e We implement our adversarial attacker, and test it against
RNN-based anomaly detectors of SWaT and WADI, two
real-world critical infrastructure testbeds.

e We find that our approach significantly reduces the ac-
curacy of the detectors, i.e. around 50% on average, and
evades detection by the rule checkers.

2. Background

In this section, we state our assumptions about the structure
of CPSs, and introduce two real-world examples that our work
will be evaluated on. Following this, we define the threat model
that our attacks will be based on, as well as what characterises
a conventional and adversarial attack. Finally, we provide some
background about the anomaly detectors we are testing, as well
as the rule checkers that are assumed to be installed.

2.1. Cyber-Physical Systems

In general, we assume that CPSs consist of two intercon-
nected parts. First, a ‘physical’ part, in which various physical
processes are monitored by sensors and acted upon by actua-
tors. Second, a ‘cyber’ part, consisting of software components
such as Programmable Logic Controllers (PLCs) [36] that im-
plement some control logic. We assume that sensors, actuators,
and PLCs are connected over a network, with PLCs taking sen-
sor readings as input and computing commands to be returned
to the actuators. Furthermore, we assume the presence of a Su-
pervisory Control and Data Acquisition (SCADA) system, con-
nected to the PLCs, that can supervise the control process and
issue commands of its own.

We assume that CPSs contain two different types of coun-
termeasures against attacks. First, the PLCs may contain some
rule checkers, for checking that the sensor and actuator states
pertain to some invariant properties (e.g. if a certain sensor falls
below a certain range, then a certain actuator should be open).
Such rule checkers are standard for industrial CPSs. Second,
we assume that a neural network-based anomaly detector [37]]
is present in the SCADA.

SWaT and WADI Testbeds. We carry out our studies on two
modern, real-world critical infrastructure testbeds: Secure Wa-
ter Treatment (SWaT) [34]], a water purification plant capable
of producing five gallons of safe drinking water per minute;
and Water Distribution (WADI) [35]], a consumer supply dis-
tribution system. The testbeds are funded by the Singapore
Ministry of Defence and serve as key assets for research to be
ported to protect actual public infrastructure plants. Though
scaled-down, SWaT performs the same processes as actual wa-
ter treatment plants, and was designed in close collaboration
with engineers from PUB (Singapore’s national water agency).
In particular, SWaT is a six-stage plant including processes such
as ultra-filtration, de-chlorination, and reverse osmosis. WADI
consists of three stages, across which water is moved into ele-
vated reservoirs, then supplied to consumer tanks on a pre-set
pattern of demand.

Sensors and actuators. In total, SWaT contains 68 sen-
sors and actuators. Its sensors variously read the level of tanks,
pressure, and flow across the system, whereas its actuators in-
clude motorised valves and pumps. Sensor readings are typ-
ically continuous values, whereas actuators are typically dis-
crete (e.g. ‘open’ or ‘closed’; ‘on’ or ‘off’). Note that a number
of SWaT’s actuators are ‘standbys’ that are intended to be used
only when the primary actuator fails. These are not considered
in our work. After filtering such actuators, there are a total of



Table 1: Example of log data from the SWaT historian

Table 2: Examples of manipulations

Time FIT101 | LIT101 | MV101 | P101 | P102 | Status

10:00:05 | 2.609 523.867 | 2 2 1 Normal
10:00:06 | 2.637 524.103 | 2 2 1 Normal
10:00:07 | 2.652 524221 | 2 2 1 Normal

25 sensors and 26 actuators which are targeted in our study.
WADI contains totally 127 sensors and actuators and we will
use 70 sensors and 51 actuators after filtering, the sensor and
actuators are the same types to those seen in SWaT.

The physical state of a testbed is a fixed ordering of all
the sensor readings and actuator configurations at a particular
timepoint. Table [T]illustrates four such states, but for brevity,
shows only the sensors and actuators involved in the first stage
of SWaT (handling supply and storage). There are two sensors
covering water flow (FIT101) and the tank level (LIT101), as
well as a motorised valve (MV101) controlling at the inflow
pipe of the tank, and a primary pump (P101) and secondary
pump (P102) for pumping water out of the tank. The logged
data over two seconds indicates that water is flowing into the
tank and its level is increasing.

Formally, we will use x to denote a system state, consisting
of a fixed order of actuators and sensors:

X = [Xal, Xa25 Xa3 « - X1, X2, X53 - .. ]

Here, each x, represents an actuator value and each x; repre-
sents a sensor value. X is the set of all possible system states.
Let S be a sequence of system states. We use S[i] to denote
the i-th state in the sequence, S[i : j] to denote the sequence of
system states from time i to j, and S [i :] to denote the sequence
of states from time i to the present.

Communication and control. SCADA workstations are lo-
cated in the plants’ control rooms. A Human Machine Inter-
face (HMI) is also located inside each plant and can be used to
view the process states and set parameters. Control code can be
loaded into the PLCs via the workstations. We can also acquire
data logs (as well as network packet flows) from the historian
at pre-set time intervals.

A multi-layer network enables communication across all
components of SWaT and WADI. A ring network at Layer O of
each stage enables the responsible PLC to communicate with
sensors and actuators, whereas a star network at Layer 1 of the
network enables communication between the PLCs. Supervi-
sory systems such as the workstation and historian sit at levels
further above.

2.2. Threat Model

Given that we are testing the defence mechanisms of CPSs
as an attacker, we define a threat model that states our assump-
tions of what an attacker knows about the system and is capable
of doing within it.

As depicted in Figure[T] our threat model assumes a white-
box setting where an attacker is an insider that has the following
capabilities:

Point Start State Attack Intent

MV-101 | MV-101is closed | Open MV-101 | Tank overflow
P-101 is on .

P-102 and P-102 is off Turn on P-102 | Pipe bursts

LIT-101 Water level Increase by Tank Underflow;
between Land H | 1 mm/s Damage P-101

1. The attacker is able to compromise the data transmitted
from the physical part of the CPS to the PLCs at Layer O
of the network.

2. The attacker has full knowledge about the RNN-based
anomaly detector, including the network architecture, pa-
rameters, inputs, outputs, and other attributes.

3. The attacker is aware of the presence of rule checkers, but
cannot access any information about it other than inputs
(i.e. log data) and outputs (i.e. ‘normal’ or ‘anomalous’),
which means attackers only know if the data can pass the
rule or not.

Compromising transmitted data as in capability (1) is a stan-
dard assumption in CPS attacks. We assume that our insider
is able to do this via the connections between PLCs and sen-
sors/actuators (i.e. Level 0), but the results of this paper would
also hold for the (easier to manipulate) star network at Level
1. Note that (2) is a standard assumption for adversarial attacks
on neural networks in general (e.g. [38]). We assume a more
challenging black-box setting for rule checkers in (3), but our
attacks can be applied in a grey- or white-box setting too. In
particular, it would likely be easier to engineer a more power-
ful adversarial attack with grey- or white box knowledge of the
rule checker systems.

2.3. Attacks and Detection Mechanisms

CPS Attacks. With the capabilities given by the threat model,
conventional CPS attacks are carried out by spoofing the sensor
values that are transmitted from the physical part of the sys-
tem to the PLCs, causing the control logic to issue the wrong
actuator commands. For example, if a tank is near-empty, but
an attacker spoofs a tank level sensor that is critically high, the
pump could incorrectly be activated and lead to some under-
flow damage. Other examples are given in Table[2] The SWaT
and WADI testbeds have benchmarks [18]] containing multiple
different attacks of this kind, which have been used to test the
effectiveness of different countermeasures [[18| 22, 23] [24]]. Fur-
thermore, data sets [[18] are available containing several days of
physical data resulting from subjecting the testbeds to these at-
tacks. This data is suitable for training complex ML models
such as RNNs and other kinds of neural networks.

In this work, we aim to test CPSs against more than just
these conventional attacks, by expanding the repertoire of at-
tackers to include adversarial attacks. Using their knowledge
of the underlying RNN of the anomaly detector, adversarial at-
tackers focus on crafting adversarial examples that maximise
some measure of harm, while masking their true effects from
detectors by using carefully applied noise that deceive them.



R

Attacker

Add noise

Sensors and

Actuators

:Commands

Physical part | Cyber part

Anomaly
Data Detector
T el
Logic/commands
SCADA

Figure 1: Overview of a cyber-physical system and an adversarial attacker

To judge the success of a conventional attack, we can check
whether at a certain time point ¢ there is an observable impact in
the physical state, S [7], i.e. the physical state differs from what
it would have been in normal operation. As this is not simple
to conclude in general, we leverage the operator-specified ac-
ceptable ranges of sensor values to identify that the system has
been successfully attacked. For example, in SWaT, LIT101 in-
dicates the water level in the first stage. If the reading is above
1100mm, then while it might not yet have overflowed, it is out-
side its acceptable range, and thus we conclude that the system
is under attack. Note that in SWaT and WADI, these ranges are
never entered during as part of normal operational behaviour—
only in attack scenarios.

To judge whether an adversarial attack is successful is some-
what more complicated. Essentially, the goal is to deceive the
anomaly detector and cause it to give an incorrect classifica-
tion. For example, if the system is behaving normally and is
being classified as such, the goal is to apply a minimal amount
of noise such that the actual behaviour of the system does not
change (i.e. it remains normal), but the anomaly detector clas-
sifies it as anomalous (i.e. a false alarm, decreasing confidence
in the detector). On the other hand, if the attacker is spoof-
ing sensor values and causing the behaviour to be classified as
anomalous, the goal is to craft noise that does not affect the ac-
tual behaviour (i.e. it remains anomalous in the same way) but
causes the detector to classify it as normal. Thus, for the pur-
pose of experimentation, it is important to be able to conclude
that physical effects on the system before the noise is applied
are the same affer it is applied too.

Since the definition of attacks is dynamic with respect to
changes of input data, for every adversarial sample (normal or
anomalous), we have to generate status labels as the ground
truth. Figure 2] presents an overview of how results are gener-
ated. Vertically, Data S is the original attack data, Data S’ is
noisy data after a gradient-based attack by model N, and S” is
selected data by a genetic algorithm to pass rule checker R. (The
details of these steps are given in Section[3]) Horizontally, from
each data set (S, S” and S”), we calculate Y using the ground
truth function 7' and Y¢ by CUSUM function C, where f is the

>  Yr=T(S) _
Data S Comparison > Output(S)
> Yc =C(f(S)
N
Y
> Yr=T(S) comoan
omparison
Data S' P 3| Output(S')
> Y = C(f(SY)
R
Y
> Yr=T(S")

Data S" Comparison »| Output(s")
»| Y¢ =C(f(S")

Figure 2: An overview of input vs output

RNN predictor, and C(f) represents the anomaly detector. We
then get the Output by comparing Y¢ and Yr. The Output in-
side the figure refers to a lists of standards such as precision,
recall and f1. To illustrate this concretely, consider the original
attack data S, and the corresponding data S’ that results from
the application of noise. Suppose a conventional attack is tak-
ing place (note the ground truth Y7), and the anomaly detector
correctly classifies this data as an attack (Y¢ = attack). In S’,
however, some noise has been applied to deceive the detector:
the data is classified as normal (Y- = normal), but the actual
physical effect on the system remains the same (Y7 = attack).
Intuitively, the original conventional attack is still taking place
but has been masked by the noise. Note that if the level of noise
is too much, or the wrong actuator is manipulated, it is possible
to change the ground truth itself, i.e. because the actual physical
effect of the attack has changed.



Table 3: Examples of rules

Condition Rule Time
LIT101 <500 MVI101 =2 12
LIT101 <250 P101 =1 AND P102 =1 2

LIT301 < 800
AIT201 > 260 & FIT201 > 0.5

P101 =2 OR P102 =2 12
P201 =1 ANDP202=1 | 2

Attack Detection Mechanisms. Finally, we describe in more
detail two different kinds of attack detection mechanisms, both
in the context of SWaT: arule checker [1] and an RNN-CUSUM
anomaly detector [12].

Rule checking. Adepu and Mathur [1] have systematically
derived a set of invariants, consisting of 23 rules that describe
the relationship between sensor and actuator values of SWaT.
The idea of rule checking is to implement a set of pre-defined
rules in the PLCs that should never be violated. For instance,
a sensor value should never exceed its operation range, or reg-
ulations that the system should follow under normal operation.
We use R to denote the set of rules implemented in PLCs for
checking. Once a rule € R is violated, the system will raise
an anomaly alarm to report that the system is in an abnormal
state. Some rules are shown in Table[3 Let us take rule 1 as an
example. The rule specifies that under the condition that sensor
“LIT101” is equal or smaller than 500, the actuator “MV101”
is supposed to be 2 (open) after 12 seconds.

RNN-based anomaly detectors. RNN-based anomaly de-
tection has been adopted by many systems, especially systems
generating time-series data [39} 40l 41} 142]. In both SWaT and
WADI, the idea of such anomaly detectors is to predict the nor-
mal behaviour of the system based on historian data S using a
machine learning model (denoted by f). At run time, the system
looks at the historian data (of a window-size length), uses f to
predict the system state x’, and compares it with the actual sys-
tem state x. If the difference is beyond a threshold, the system
is likely to be abnormal. In the work of Goh et al. [12]], a RNN
with LSTM architecture [43]] is used as the prediction model,
and a CUSUM algorithm (denoted by C) is used to calculate
the differences between the actual value and the predicted value.
This approach has been applied to the first stage of SWaT, and is
shown to be effective for it. In our work, we re-implement their
approach but for all six stages of SWaT, and all three stages of
WADI, as the anomaly detectors for us to test. As many sys-
tems have adopted RNN as a part of their anomaly detectors,
our work is more general then simply SWaT/WADI.

Motivational Attack. To help motivate the study that follows,
we describe the steps that an attacker—an insider—could per-
form to successfully manipulate a CPS. First, using their knowl-
edge of the detector, they could implement an adversarial sam-
ple generator on a device (e.g. Raspberry Pi) installed between
a PLC and its sensors/actuators. Raw data would pass through
this generator first with a window size of 12 seconds, and the
resulting noisy data would be optimised via a GA so as to pass
the rule checkers. The generator would send this camouflaged
noisy data to the PLC. The rule checkers and the RNN-based
anomaly detectors that would assess this data are implemented

Gradient- RNN-
based CUSUM

adversarial anomaly

attack detector

"Attack"/
"Normal"

Data from
sensors/
actuators

if no rule checker

Figure 3: Workflow for adversarial attacks.

inside the PLC and SCADA, i.e. after the adversarial sample
generator step. If the manipulated data avoids detection, then
the consequences of the masked attack (e.g. changing an actua-
tor state) can then take effect on the system.

3. Methodology and Design

Using the threat model and attack scenarios discussed in
Section [2.2] we aim to answer the following questions: (1)
Is our adversarial attack effective on the anomaly detectors of
real-world CPSs? (2) Can we design improved adversarial at-
tack algorithms to deceive both the anomaly detector and the
rule checking system? We design experiments on actual critical
infrastructure testbeds to answer these research questions. To
decrease the performance of CPS anomaly detectors, we must
overcome a number of challenges in our experiment design:

e There are limited works on adversarial attacks on CPSs,
especially for anomaly detectors with RNN models.

e There could be more than one defence mechanism inside
the CPS (e.g. rule checkers). To complete an adversarial
attack, we need to consider all defences.

o A CPS is typically complex and composed of multiple
different sensors and actuators, each with different data
types and ranges.

e CPSs are dynamic and hard to predict—certain changes
may lead to the system shutting or breaking down. Sta-
tistical attacks in other domains do not face this problem.

We provide an an overview of our workflow in Figure[3] For
a basic CPS set up, data from sensors and actuators go directly
to a RNN predictor for attack detection. We thus first apply a
gradient-based adversarial attack to deceive the anomaly detec-
tor directly. As highlighted earlier, many CPSs also implement
a rule checking system (see Section to check if the data re-
spects some invariant properties. For such systems, if the adver-
sarial attack is able to deceive a RNN predictor but is detected
by the rule checking system, we further use a genetic algorithm
in order to deceive the rule checker. Algorithm [I] shows the
overall picture on how we generate adversarial examples to by-
pass both defences. In the following, we introduce the details
step-by-step.



Algorithm 1: Overall Algorithm
Input: Data S;; RNN predictor model f; rule Checker
R; noise level
Output: adversarial examples
1 Get gradient direction from f of loss w.r.t. inputs data
S
2 Apply the noise 6 to S; along or opposite the sign of
gradients to get S7;
3 Use Genetic Algorithm to generate S’ to pass rule
checker;
4 return S

Table 4: Upper and Lower Control Limit

Senor Upper Control Limit | Lower Control Limit
FIT101 2 -1.5
LIT101 50 2

3.1. RNN predictor

Following [12], we train an RNN in LSTM architecture
from normal data S, as our prediction model. The trained model
is a many-to-one prediction model f : S — X which takes a
certain sequence (parameterised by window size) of data histo-
rian as input and makes the prediction of the output of the com-
ing timestamp. For example, a window size of 10 represents a
sequential input of the past 10 timestamps.

Once we obtain the predicted output at each timestamp, we
then adopt the CUSUM algorithm [44] to decide whether the
system is in an abnormal state as follows. The difference d at
timestamp i (denoted as d[i]) is calculated from the predicted
value x’[{] by the RNN model and the actual value x[i]; the
difference d will then be added cumulatively with an allowable
slack c¢. We calculate the CUSUM for each sensor with both
positive and negative value by the following formula:

S H[i] = max(0, S H[i — 1] + d[i] - ¢)
SL[i] = min(0, S L[i — 1] + d[i] + ¢) (1)
di] = X'[i] - x[i],

where SH represents the set of high cumulative sum and SL
represents the low cumulative sum, d is the difference between
the predicted value x and actual value x’, and c is the allowable
slack which is defined as 0.05 multiplied by the standard devi-
ation of S. Furthermore, two thresholds, i.e. an Upper Control
Limit (UCL) and a Lower Control Limit (LCL), for SH and SL
to respectively compare with are required to check whether the
system is in an abnormal state. Normally, UCL and LCL are
defined according to an experiment for validating the training
data. Table [d] shows the UCL and LCL from stage 1 of SWaT
as an example.

The threshold selection for CUSUM is according to the val-
idation of the attack data. We compare the CUSUM value for
each sensor with attack labels, and set the threshold as the low-
est peak of the CUSUM value that indicates an attack. Figure[d]
presents a CUSUM value example for sensor LIT101, the top

------P --------------------- 411---:-----
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=20
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b 10000 20600 30600 40(?;00
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N ‘| ‘ ||
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Figure 4: A CUSUM value example for sensor LIT101

graph is the negative CUSUM value S L of LIT101. The bottom
picture is the actual label of data: 1 means ‘under attack’ and
0 means ‘normal status’. By comparing the two graphs, every
peak value that is over the threshold from the S L indicates an
attack. We choose the lowest peak value as the threshold and it
is indicated by the red dot line with value of —2. We calculate
all thresholds accordingly.

To answer the research questions, we design experiments
with the following concerns: RNN predictors (as described by
Goh et al. [12])) are trained using normal data, in which there
are 51 features for SWaT and 21 features for WADI. Recall
that these RNNs make a prediction of the data at time ¢ from a
window of continuous data, which we use to compare with the
actual records to decide if it is normal or an attack. In our exper-
iments, we choose different window sizes for SWaT and WADI.
For SWaT, we use 12s, which is the maximum delay from the
rule checking system. For WADI, we use 10 timestamps, due
to the slow speed of change in its physical processes. As the
system is dynamic and the ground truth is changing whenever
data is changing (see the difficulty discussed in Section [3), we
compare the results of the ground truth model Y7 = T(S) with
the results from the anomaly detector Yo = C(f(S)) to calcu-
late the original anomaly detector accuracy of data S, and get
the difference between Y7 and Y to get accuracy of data S”.

3.2. Adversarial Attacks

Our next step is to construct adversarial examples which
aim to deceive the anomaly detectors. We consider two cases.
Firstly, we construct adversarial examples to deceive only the
RNN predictor. Secondly, we take a step further to deceive both
the RNN predictor and the rule checking system, which is more
realistic and challenging.

In both cases, we assume a white-box attack in which the
attacker can access the trained RNN model (and its parameters)
and is able to compromise the data transmitted to the PLCs. The
goal of the attacker is thus finding a minimum perturbation ¢ on
the original input x such that the detector will make a different
decision from the original one. Formally, given the input x at
each timestamp and the RNN detector f, the objective of an



attacker is to:

min ¢
(2)

s.t., fx) = f(x+0)and ||| < T
where 7 is a small value that restricts the manipulation range of
x according to a certain norm || - || (to measure the distance of
the modification). The success of such an attack will deceive
the detector in two ways. In the case that the detector detects an
actual anomaly, the adversarial attack will be able to bypass the
detector and put the system in danger (without noticing that the
system is in the abnormal state). In the case that the detector de-
tects an actual normal status, the adversarial attack will deceive
the detector into raising false alarms. Though there are a lot of
works on adversarial attacks on feed-forward networks in mul-
tiple domains [43} 46l 47, 48], there are relatively few on RNN
as anomaly detectors and in the CPS domain which combines
discrete and continuous values. We introduce in detail how we
solve the problem in the CPS setting.

Adversarial Attacks on RNNs. In the primary setting, we aim
to construct adversarial examples only for the RNN detector.
In contrast to traditional adversarial attack domains for classi-
fication (e.g. image or audio), the anomaly detector uses the
CUSUM algorithm to check the difference between the pre-
dicted output and the actual output, then classifies normal or
abnormal behaviour, with the system raising an anomaly alarm
if the difference between them is beyond a threshold. Thus,
we distinguish two scenarios in order to deceive the CUSUM
checker. The first scenario is to mask the normal states to be
recognised as abnormal. This results in a similar case with Eq.[2]
as follows.

min ¢

3
s, If(x+6) —y»ll = Aand ||6]| < 7

where x is the original state, y* is the actual output of the sys-
tem, A is the acceptable difference (threshold for classifying
anomaly). Notice that in this scenario the original state X is
classified as normal, i.e., || f(X + &) — y)|| < A.

The second scenario is to mask an anomaly as a normal
system state. The formalisation is slightly different as follows.

min o @
s, If(x+6) —yo)ll <Aand |6l < 7
Notice that in this scenario the original state x is classified as
anomalous, i.e., ||[f(X + &) — y#)|| > A.

The remaining key challenge to solve Eq. 3] and Eq. [] is
to calculate the perturbation 6. For this, we adopt the idea of
gradient-based attacks [49]], which perturbs the input along the
gradient direction to maximise the change in the model predic-
tion. The perturbation can be formalised as:

X’=x+0
)
0 = € sgn(V,I(x, y*))

where x’ is the resultant adversarial example, € is a constant
representing the magnitude of the perturbation and / is the loss
function. In this work, we choose Mean Square Error (MSE) as
the loss function. This is suitable for solving Eq. [3| where we
aim to find a perturbation which would enlarge the difference
between f(x) and y*. On the other hand, to solve Eq. i we
need to do the opposite and shrink the difference. To achieve
this, we add perturbation along the opposite direction of the
gradient instead. That is,

X’=x-0
(6)
0 = € sgn(V,I(x, y%))

Notice that in Eq.[5|and [f] € is a constant. This is not suit-
able for CPS setting with variables of discrete values. To solve
the problem, we adapt the perturbation as follows and propose
an adapted version of the Eq[5|and Eq[6]in practice:

if S, =normal

< = X + 6,
|x-6, ifS, = attack (7
6 = sgn(Vil(x,y")) - €

where €is a diagonal matrix, and the value of each element from
€ is defined according to the data type of each feature which
represents the magnitude of the perturbation for each feature.
The smaller that € is, the less is the perturbation.

We distinguish three different types of features (to solve the
challenge introduced in Section E]) i.e. actuators, valves and
pumps, and thus add different perturbations on them. For sen-
sors, we add a perturbation A, which represents the percentage
of the perturbation w.r.t. the original value. There are two types
of actuators, valves and pumps. After normalisation, there are
three values for valves: 0 for opening/closing, 0.5 for close and
1 for open. For pumps, there are two values: O for close and 1
for open. In order to follow the character of discrete values for
actuators, we define the € of valves as 0.5 and the € of pumps is
defined as 1. In summary, the diagonal matrix € are defined as:

A, ifﬁ[j]eﬁ, where U C F
&; =105, if F[jl€ V,, where V,,C F
1, if Flj1€V,, whereV,c F
where F is the set of all features, U is the set of Sensors, V_,),, is

the set of all valves, and V; is the set of all pumps. To give an
example, if we only consider data from stage 1, € =

001 O 0 0 O

0 001 O O O
0 0 05 0 O
0 0 0 1 0
0 0 0 0 1

In addition, to make sure the modified data are realistic, we
always clip the adversarial examples to [0, 1] (with sensor val-
ues normalised). For example, for a pump with original value
1, if the sign of the gradient at V/,[i, j] is positive, the perturbed
pump value will be 2, which is not acceptable. We thus clip it
back to 1.



Table 5: Parameters for SWaT and WADI experiments

sensor actuator
A (sensor) | A (valves) | A (pumps)
sensor (1%) 0.01 0 0
sensor (10%) 0.1 0 0
all (1%) 0.01 0.5 1
all (10%) 0.1 0.5 1
all (10%) + GA 0.1 0.5 1

Algorithm 2: Adversarial examples construction for
RNN detector
Input: Data S;; RNN predictor model f
Qutput: adversarial examples
6« sgn(Vxl(x,y")) - €;
if S; is normal data then
| S]— Si+6;
else
| S S;-6;
end
if S7 cannot pass rule checker then
| S7 « GA(S’[i]);
else
| S7 S
end
return S

o e N R W N =

=
N - S

To assess our research questions, we design an experiment
to explore how much noise (i.e. A, the percentage of perturba-
tion) is required for the attack to be effective at reducing the
accuracy of the anomaly detector. We thus design the exper-
iments as following: (1) 1% noise (4 = 0.01) applied to all
sensor values, but actuator values unchanged; (2) 10% noise
(4 = 0.1) applied to all sensor values, but actuator values un-
changed; (3) 1% noise applied to all values, including actuators
(4 = 0.5 for valves and 4 = 1 for pumps); (4) 10% noise ap-
plied to all values, including actuators (4 = 0.5 for valves and
A =1 for pumps). The attack scenarios and parameters are enu-
merated in Table E] (GA parameters will be discussed in RQ2).
The same logic has been applied to WADI.

Additionally, though the method we applied to RNN pre-
dictors is aiming to maximise the error of CUSUM, it is still
able to be generalised to other neural networks with different
targets. As the core idea is adding noise along gradients, which
has been shown to be effective for different kinds of neural net-
works [29] 38 45| 149]], the attacker can generate adversarial
samples according to attack targets with other neural network
models such as deep feed forward neural networks and convo-
lutional neural networks. The attack targets could be wrong
predictions, mis-classification, etc.

In summary, we construct adversarial examples for the RNN
detector by adding noise for two different attack scenarios in
the above way. Algorithm 2] shows the details. In case the con-
structed adversarial example could not pass the rule checking
system at line 7, we move to the next step to bypass it further.

Adversarial Attacks and Rule Checkers. Rule checkers are
widely used to detect anomalies of CPSs in many existing works
[7,136, 150} 51]. In our experiment, we find that a gradient-based
attack for RNN anomaly detectors alone could be easily de-
tected by rule checkers in practice. Therefore, we aim to con-
struct adversarial examples to bypass both the RNN detector
and the rule checking system as well by imposing an additional
perturbation which is still as small as possible. Note that from
our threat model, we assume the attackers only know if the data
can pass the rule or not but do not have access to the logic be-
hind them. It is thus infeasible to use constraint solvers to gen-
erate attacks satisfying these rules. To address this, our key
observation is that the rule checking system makes decisions
mainly depending on the status of actuators, i.e. a minor per-
turbation on the sensor values will not influence the decisions
of the rules. Thus, we propose to design a genetic algorithm
(GA) [52] to search for the ideal combination of actuator status
to bypass the rule checking systems.

GAs [52] are a class of algorithms inspired by natural se-
lection. In this work, we apply a GA to identify the ideal com-
bination of actuator states which can bypass the rule checkers.
Our GA consists of four main steps: (1) Form an initial popula-
tion of the actuator state combinations; (2) Evaluate the fitness
score for each candidate; (3) Select candidates with highest fit-
ness score as the “parents”; (4) Apply mutation or cross-over
to generate “children”. The algorithm will repeat step 2-4 un-
til a candidate satisfies the termination condition or runs out of
search budget.

In our setting, a chromosome (a candidate solution) to form
the population is the data point to manipulate (S’[]). Since our
objective is to select the best combination of actuator values, the
sensor values need to be kept unchanged. However, the sensor
values are taken into consideration since they are necessary to
check if the rules are violated or not. As a result, both sensor
and actuator values will be used to calculate the fitness score
but only actuator values will be allowed for mutation or cross-
over. We define the fitness function considering two aspects:
(1) whether a candidate could pass the rules and (2) how large
is the modification. A candidate has a higher fitness score if
it passes the rules with minimum modification. Formally, we
define the fitness function as:

g = cl= (/IS [l = S

The number of violated rules won’t influence the results thus
ci here is a Boolean variable indicating whether the candidate
could pass the rule checker and ||S’[i] — S[i]|| represents the
modification level. Based on the fitness score, we assign each
candidate a probability for selection by normalisation, i.e. a
candidate with higher score will have a higher probability to
be chosen. In practice, we use roulette wheel selection [52].
After selection, we separate out the actuator values of the
selected candidate for mutation with probability p,, = 0.5. For
cross-over, we choose one-point cross-over to select only one
random cross-over point to align with our purpose of minimis-
ing the modification. Next, we calculate the fitness score for



all candidates and select n fittest candidates to form the new
population. This procedure continues until the fittest candidate
passes the rule checker or we run out of iterations.

4. Evaluation on Cyber-Physical Systems

In this section, we conduct experiments to assess the effec-
tiveness of our adversarial attacks on the anomaly detectors of
real critical infrastructure testbeds, especially in the presence of
rule checkers. We also investigate whether the anomaly detec-
tors can be adapted to mitigate the threat of adversarial attacks.

4.1. Preliminaries

Our study is based on the SWaT dataset [18] and WADI
dataset [35], which are publicly available [53]] and have been
used in multiple projects [[12} 120} 21,154,155, 156L57]. The SWaT
dataset records the system state of 26 sensor values and 25 ac-
tuators (in total 51 features) every second, and WADI records
70 sensors and 51 actuators (in total 121 features) every sec-
ond. The sensor values are integer or floating-point numbers
while the actuator values are discrete, e.g. 0 (opening/closing),
1 (closed), or 2 (open). The datasets consist of two types of
data:

e Normal data: The normal dataset S, of SWaT was col-
lected over seven days (a total of 496,800 records) when
the system was under normal operation, and the dataset
of WADI was collected for 14 days (a total of 172,800
records). The data is used to train the LSTM-RNN pre-
dictor.

e Attack data: The attack dataset S , of SWaT was collected
for four days (a total of 449,909 records) consisting of
36 attacks with labels (normal or attack), and the dataset
of WADI was collected for two days (a total of 172,801
records). The data is used as testing data for the anomaly
detector.

The neural network models are trained using the Keras [58]
platform. All the experiments are conducted on a laptop with
1 Intel(R) Core(TM) i7-8750H CPU at 2.20GHz, 16GB system
memory, and for the GPU, NVIDIA GeForce GTX 1050 Ti with
Max-Q Design. Generating adversarial attacks for SWaT—4
days of data with 51 features—took 4-6 hours varied for differ-
ent noise, while for WADI, it took 4-6 hours for 3 days of data
with 121 features. The code and all the experiment results are
available at [59]].

4.2. Experiments and Results

Our experiments are designed to answer the following three
research questions.

RQI (Are our adversarial attacks effective on anomaly detec-
tors of real-world CPSs?). The results for different SWaT and
WADI parameters are given in Table [ We observe that the
precision, f1, and accuracy have all been reduced after the ad-
versarial attack. Intuitively, accuracy appears to decrease as
more noise is added, both in terms of percentage and range of
data it is applied to. However, it is possible that with the larger
amounts of noise, the noisy data has exceeded the threshold de-
fined as an attack by the model T. Thus the precision, recall
and f1 for 10% noise are all similar or higher than 1% noise.
Comparing to the original performance of the anomaly detec-
tor, the reduced accuracy has shown that the anomaly detector
is vulnerable and sensitive to the adversarial attacks.

The final row of the table, where noise is applied to both
sensor and actuator values at the same time, has lower accuracy
than the sensor-only parameters; this is because involving ac-
tuators results in a stronger impact on the RNN predictor, fed
through to the CUSUM calculation. The results of precision
and recall imply that many false alarms have been generated by
the anomaly detector, indicating that changing actuators is easy
to be caught by an anomaly detector as an attack. However,
the recall of 0.84 in the SWaT table is high: this is because of
fewer actuators were changed when we calculated the gradients
(i.e. most actuators have gradient 0).

We remark that for WADI, ground truth was determined in
a slightly different way to SWaT: instead of using control points
(which are not provided for WADI), we calculate the operation
range under normal conditions with a small tolerance to set the
ground truth model T. As it has more features (121) than SWaT
(51), the complexity is more apparent and behaviour is more un-
predictable. Therefore the anomaly detector has a lower accu-
racy on WADI compared to SWaT. However, the overall results
still show the gradient-based noise could reduce the accuracy of
the anomaly detector, and more noise has a better effect.

The results before and after adding the noise suggest our
adversarial attack can reduce the accuracy of RNN-CUSUM
anomaly detectors significantly. For the weakest attack of 1%
noise on sensors only, the accuracy and f1 (model performance)
has been substantially reduced, and the more noise we add, the
less accurate the anomaly detector is. However, applying noise
to actuators sometimes can reduce the accuracy notably (10% in
SWaT), and sometimes insignificantly (1% in SWaT). This ob-
servation indicates that successful adversarial attacks on CPSs
need to consider the complex interaction between sensor and
actuator values.

Our adversarial attacks are effective on RNN-based
anomaly detectors of real-world CPSs, e.g. reducing
accuracy from 89.40% to 28.84% in SWaT.

RQ2 (How should the attacker compromise the original data
to deceive both the rule checkers and the anomaly detector?).
Rule checking systems are commonly used in industrial CPSs
as a basic defence mechanism. As WADI has not yet estab-
lished a rule checking system, our second experiment is only
applied to the SWaT testbed, which monitors invariants related
to a total of 20 actuators and 11 sensors. To overcome this,



Table 6: Accuracy of the RNN-CUSUM anomaly detector for SWaT/WADI under different attack scenarios

SWaT WADI
Attack prec. [ recall | f1 [ accuracy | prec. | recall | fl1 | accuracy
none 0.96 0.86 091 89.40% 0.62 0.70 0.66 71.36%
sensor (1%) 0.62 0.53 057 52.38% 0.43 0.65 0.52 52.85%
sensor (10%) | 0.65 0.58 0.61 48.78% 0.42 0.67 0.52 49.88%
all (1%) 0.52 0.5 0.51 51.85% 0.34 0.96 0.5 33.28%
all (10%) 0.12 0.84 021 28.84% 0.33 095 049 32.23%

Table 7: Accuracy of the RNN-CUSUM anomaly detector for SWaT during

attacks that also deceive the rule checkers
Attack scenarios | precision | recall \ f1 \ accuracy
all (10%) 0.91 093 092 86.11%
all (10%) + GA 0.14 0.76 024  39.56%

our experiment applies noise to all data, then fine-tunes the ac-
tuator states by using a GA in order to pass the rule-checker.
We assume that the attacker does not have the access to the
content of the rule, but knows whether the data could pass the
rule checker or not. The rules include the relationship between
the sensor and actuator values, so we divided a data point x
into x, = [X41, Xz ...] and x; = [x41, X5 ... ], and use the GA
to generate possible x, and keep x; to combine back to calcu-
late the fitness score. As our goal is to generate adversarial
attacks rather than break down the system, we only use our GA
to replace attacks that are being detected by rule checker due to
noise.

During the experiments, we found that 88.12% of our adver-
sarial attacks were detected by rule checkers, with the accuracy
of anomaly detection for the attacks that evaded them increas-
ing to 86.11%, indicating rule checkers are very effective and
necessary for CPSs. Moreover, we found there are some rules
are more dominating than others, such as RULEIC,ﬂ Among
detected attacks, 71.28% break RULE19. We also found that
seven of the rules were never violated.

The results of this experiment are given in Table[7} From the
table we can see that before we apply our GA, the rule checkers
could catch most of our adversarial attacks and increase back
the accuracy of detector to 86.11%. However, attacks using a
GA have successfully reduced the accuracy to 39.56% with-
out being detected by the rule checker. The accuracy is slightly
higher compared to before (28.84%), indicating that using a GA
for actuator value selection may sacrifice a drop of accuracy
which is reasonable, as GA generated values do not change fol-
lowing the sign of gradients. Besides this, overall performance
is almost the same as the same parameter that does not make
use of a GA, suggesting that this one allows us to pass the rule
checker without much reducing the anomaly detector perfor-
mance.

The attacker can use a GA to optimise actuator val-
ues of an adversarial sample to deceive both rule
checkers and the anomaly detector.

2If AIT402<240, P403=1 AND P404=1 after 2 seconds

10

RQ3 (Can we design a defence against such adversarial exam-
ples?). The adversarial examples have more noise compared
to original data, so we design a defence neural network (def-
NN) and a random forest (RF) classification model to distin-
guish if the data is from an adversarial example or data from
the system. If the noise is high enough, at least one of the clas-
sifiers should be able to detect the noisy data. The def-NN and
RF perform as two binary classifiers. We train models using
a dataset consisting of 50% original data and 50% adversarial
examples, reserving a portion (with the same ratio) as testing
data. The def-NN model is designed with three layers and 100
units for each layer, is trained for 6 minutes with 100 units, with
binary cross entropy as our loss function with a epoch of 20.
The random forest model is implemented using the scikit-learn
machine learning library [60], and is trained for 5 minutes with
10 estimators.

The results of SWaT and WADI can be found in Table
The training data and testing data has been split with a ratio of
7:3. The table shows the f1 score and accuracy of testing data
with different noise levels as predicted by models fed with dif-
ferent types of training data. As the noisy data and normal data
have equal weights, the accuracy for the overfitting problem is
0.50.

The def-NN and RF models have very similar results: (1)
the best score happens on testing and training data with the
same noise level, indicating that the defence models perform
well for similar noise to the training data; (2) both models per-
form best on data with ‘all (10%)’ and perform worst on data
with ‘sensor (1%)’, which is reasonable as the noisier data be-
comes, the easier it is to be detected. We can also see the result
that a model predicts better for data which is noisier than its
training data. As for the difference: RF models overall per-
form better than def-NN, especially for WADI data. In SWaT,
the model trained from ‘sensor (1%)’ could be generalised to
others, but other models cannot be generalised. In particular,
none of the models from def-NN can be generalised to all at-
tack scenarios. To some degree, it shows that generating de-
fences for our adversarial attacks without any information about
attack details is difficult. In WADI, both models perform bet-
ter than SWaT, while def-NN still has the overfitting problem
when training data is noisier. These results suggest that our ad-
versarial attacks (designed for RNN) may be able to deceive
additional neural network based defences.

Overall, the defence models give us the view that neural
network based defences are not as effective as statistics-based
defences with respect to our adversarial attacks. Furthermore,



Table 8: def-NN and RF for detecting adversarial attacks on SWaT and WADI

fl/accuracy def-NN Testing data RF Testing data
sensor(1%) [ sensor(10%) [ all(1%) [ all(10%) || sensor(1%) [ sensor(10%) | all1%) [ all(10%)
SWaT sensor(1%) 0.99/0.99 0.99/0.99 0.73/0.78  0.95/0.96 0.99/0.99 0.99/0.99 0.99/0.99  0.99/0.99
Training sensor(10%) 0.00/0.50 0.99/0.99 0.15/0.54  0.44/0.64 0.00/0.50 0.99/0.99 0.01/0.5 0.99/0.99
data all(1%) 0.00/0.50 0.00/0.50 1.00/1.00  0.99/0.99 0.07/0.52 0.20/0.56 1.00/1.00  0.99/0.99
all(10%) 0.00/0.50 0.00/0.50 1.00/1.00  1.00/1.00 0.01/0.50 0.94/0.94 0.98/0.98  1.00/1.00
WADI sensor(1%) 1.00/1.00 1.00/1.00 1.00/1.00  1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00  1.00/1.00
Training sensor(10%) 0.99/0.99 1.00/1.00 0.99/0.99 1.00/1.00 0.99/0.99 1.00/1.00 0.99/0.99 1.00/1.00
data all(1%) 0.00/0.50 0.00/0.50 1.00/1.00  1.00/1.00 0.99/0.99 0.99/0.99 1.00/1.00  1.00/1.00
all(10%) 0.00/0.50 0.00/0.50 1.00/1.00  1.00/1.00 0.99/0.99 0.99/0.99 1.00/1.00  1.00/1.00

the more information we have about the adversarial samples,
the better defence model we can train. Nevertheless, from the
attacker’s perspective, the less noise applied, the easier it is to
avoid detection.

It is hard to design a defence model without any
information about adversarial samples. Even with
adversarial samples as training data, a neural net-
work defence model cannot be generalised for differ-
ent systems and attack scenarios.

4.3. Threats to Validity

There are some limitations of the evaluation and applica-
tion validity. First, though the two CPS systems are real and
operational, they are still testbeds and not at the scale of indus-
trial plants. Second, while our study shows that it is possible to
degrade an anomaly detector’s accuracy (while simultaneously
evading rule checkers), we did not investigate whether this can
be translated into an attack that breaks down the system—this
is left as future work. Third, the data was collected and labelled
in a manual effort, and thus there may be data points that are
not accurate, and could increase the bias of the results. Finally,
we only considered the recorded attacks of the datasets to train
and calculate ground truth, so the methods may not work well
for non-recorded attacks.

5. Related Work

In this section, we highlight some other work related to the
main themes of this paper: anomaly detectors for CPSs, and
adversarial attacks for CPS classifier evasion.

Anomaly detection for CPSs is a highly active research area
(e.g. [LIL15L116L127,1611162,1631641 165,166,167, 168, 69]), in which
sensor and actuator data is used to identify possible anoma-
lies in the system’s processes or operation. A number of these
anomaly detection schemes use knowledge of the processes’
physics to apply techniques from control theory [70, [71]], or use
that knowledge to derive logical invariants over sensor and actu-
ator states that can be monitored [[1}[4]]. Our paper, however, fo-
cuses on black box anomaly detection schemes that build mod-
els from the sensor and actuator data. These schemes can be
implemented using techniques such as machine learning [7} [11]]
and data mining [2]].

Black box anomaly detection models can also be obtained
through deep learning, i.e. machine learning methods based on
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neural networks. Examples for industrial control systems in-
clude the deep neural network detector of Inoue et al. [11]], the
convolutional neural network detector of Kravchik et al. [27]],
and the RNN of Goh et al. [12]]. Neural networks detectors have
been evaluated on smart grids [72]], gas oil plants [73] and a wa-
ter tank [74]. Examples in other types of CPSs include neural
networks for probabilistic estimation of brake pressure for elec-
trified vehicles [75], an RNN for detecting anomalies in aircraft
data [39]], and neural networks for detecting fault data injections
in vehicular CPSs with wireless communications [76]].

Adversarial machine learning is concerned with the prop-
erties of learnt models when targeted by attackers [[77]. The
limitations of deep learning models in adversarial settings are
well known [33} (78], [79]], and adversarial attacks have famously
been demonstrated in settings such as audio [29,|80]] and image
recognition [28| [81], e.g. by producing images that are com-
pletely unrecognisable by humans yet classified with 99.9%
confidence by neural networks.

Given the popularity of deep learning for anomaly detection
in industrial control systems, a number of adversarial attacks
have been proposed that attempt to evade these defences. Feng
et al. [31]] use generative adversarial networks to generate false
sensor measurements that evade LSTM detectors while deliv-
ering the attack objective. Erba and Tippenhauer [82] spoof
sensor values (e.g. using precomputed patterns) and are able to
evade three black box anomaly detectors published at top secu-
rity conferences. Erba et al. [32]] propose attacks that are able
to evade reconstruction-based anomaly detectors: first, a black
box approach based on autoencoders, and a white box approach
based on optimisation with a detection oracle. Zizzo et al. [83]]
evaluate the impact of adversarial white box attacks based on
the fast gradient sign method. Finally, Kravchik et al. [84]] fake
the signals of corrupted sensors when neural network detectors
are (re-)trained, poisoning the learning process so that certain
cyberattacks can go undetected. One of the main differences be-
tween these works and our own is that we assume that the neural
network detectors are complemented by built-in rule checkers
(i.e. invariant checkers) that must be evaded simultaneously.

6. Conclusion

In this work, we presented an adversarial attack that si-
multaneously evades both the RNN-based anomaly detectors
and invariant-based rule checkers of real-world CPSs. Using a
white-box gradient-descent approach, we craft noise to deceive



detectors into assigning the wrong classification (allowing con-
ventional attacks to be masked), then use a GA to optimise the
manipulations so as to avoid violating any rule checkers that are
present. We tested the defence mechanisms of two real-world
critical infrastructure testbeds against our attack, finding that
we were able to successfully reduce classification accuracy by
over 50%, suggesting that RNN-based anomaly detectors may
be vulnerable against adversarial attacks even in the presence
of other defence mechanisms such as rule checkers. Finally, we
explored the possibility of mitigating attacks by training on ad-
versarial samples, but found it was difficult to detect adversarial
attacks in general unless they involved large amounts of noise.
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