A new multisensor software architecture for movement detection:
Preliminary study with people with cerebral palsy
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ABSTRACT

A five-layered software architecture translating movements into mouse clicks has been developed and tested on an
Arduino platform with two different sensors: accelerometer and flex sensor. The archi-tecture comprises low-pass
and derivative filters, an unsupervised classifier that adapts continuously to the strength of the user's movements and
a finite state machine which sets up a timer to prevent in-voluntary movements from triggering false positives.

Four people without disabilities and four people with cerebral palsy (CP) took part in the experi-ments. People
without disabilities obtained an average of 100% and 99.3% in precision and true positive rate (TPR) respectively and
there were no statistically significant differences among type of sensors and placement. In the same experiment,
people with disabilities obtained 97.9% and 100% in precision and TPR respectively. However, these results worsened
when subjects used the system to access a commu-nication board, 89.6% and 94.8% respectively. With their usual
method of access-an adapted switch- they obtained a precision and TPR of 86.7% and 97.8% respectively. For 3-out-
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of-4 participants with disabilities our system detected the movement faster than the switch.

For subjects with CP, the accelerometer was the easiest to use because it is more sensitive to gross motor motion
than the flex sensor which requires more complex movements. A final survey showed that 3-out-of-4 participants
with disabilities would prefer to use this new technology instead of their tra-ditional method of access.

1. Introduction

Communication is vital for human beings. Great benefits could
be reaped from a system allowing people with severe disabilities
to access a computer or a communication system reliably, with
little effort and quickly. There are several devices on the market,
together with scientific papers which translate user intentionality
into events. The simplest and most commonly used is based on a
mechanical switch. There are several versions of this mechanical
switch which depend on the user's level of movement. Thus, there
are switches that can be operated by head movements (by
pressing the switch with the cheek, head, chin), or by moving the
arms, legs, hands, tongue, etc.

Most organizations that care for people with disabilities use
such devices on a massive scale so that they can use software
applications, particularly those based on scanning methods, by
simply connecting the switch to an adapted device which trans-
lates user movements into software selections (mouse clicks, enter
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keystroke, etc).

For people with severe disabilities, these simple devices are still
very difficult to use. For this reason, there is a need for devices
capable of translating weak intentional movements, without the
subject having to target the place where the switch is. We in-
vestigated two of these possible devices: accelerometer and flex
Sensors.

1.1. Accelerometer

Several devices can be employed to detect movements. One of
the best known and widely used is the accelerometer. Single- and
multi-axis accelerometer models are available to detect magni-
tude and direction of g-force as a vector quantity, and they can be
used to sense orientation, coordinate acceleration or tilt detec-
tion. Placing accelerometers on limbs allows us to assess loco-
motor skills Masci et al. (2013), Palmerini et al. (2013), Yoneyama
et al. (2013, 2014), track joint angle El-Gohary and McNames
(2012), Chirakanphaisarn (2014) or evaluate recovery after an
injury Hurd et al. (2013) or stroke Pas et al. (2011). Accel-
erometers have also been used to assess movements of people
with cerebral palsy who typically have abnormal muscle tone,
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muscle weakness, primitive reflexes or uncoordinated move-
ments. The assessment of physical activity in this population is
important for the design and implementation of health, therapy
and physical education programs. In Capio et al. (2010), the use of
inertial units appears to be a valid instrument for measuring raw
activity volume and it is suitable for use in studies attempting to
characterize the physical activity of this population. Wearable
inertial sensors have also been applied to allow people with
disabilities to access a computer. In Raya et al. (2010) an inertial
mouse driven by head movements is reported. The accuracy of
such a device is about 1° and experimental results with two in-
fants with CP (athetoid and dystonic cases) demonstrates that the
children are able to place the pointer near the target but they find
fine motor control difficult. In Ranjan et al. (2010) a universal
remote control based on an accelerometer is shown. It can be
placed on the hand or wrist and it detects four movements: hand
up, down, left and right in order to drive an infrared transmitter
to control a TV set. Although the movements are easy to execute
for a subject without disability, for some people with CP they are
very difficult. In fact, the authors do not report experiments with
such users. Accelerometers are important devices for detecting
intentional movement even in subjects with severe motor pro-
blems. The simplest way to use them with such people is putting
them on the limbs or head to convert weak movements into
switch strokes suggested in Mariano et al. (2014), but the authors
do not report any tests with people with disabilities.

1.2. Flex sensor

Another device used to measure or detect movements related
to joint bending is based on a flex sensor Saggio (2012, 2014). The
flex sensor changes its electrical resistance value depending on the
amount of bend it is subjected to. This sensor can be implemented
with different techniques. The one most commonly adopted is
based on a resistive film element which may consist of a polymer
printed on a plastic substrate Tongrod et al. (2010), a conductive
elastomer in an elastic fabric Tognetti et al. (2006) or more re-
cently linear potentiometers and flexible wires Park et al. (2014).
This technology has been used to measure joint angle Bakhshi
et al. (2011a), for example, knee flexion using a supportive cloth in
which the flex sensor is embedded. However, in another paper, the
same authors, show how inertial sensors units can be used for the
same proposal to measure bending angle Bakhshi and Mahoor
(2011a) with improved accuracy. Flex sensors can be placed in
gloves to detect finger flexion. These sensors can be combined
with other kinds of sensors such as contact sensors and/or an
accelerometer in the same glove to recognize hand gestures such
as Sign Language fingerspelling Tanyawiwat and Thiemjarus
(2012), Nelson et al. (2013), Ibarguren et al. (2010), Adnan et al.
(2012). Controlling fingers as in fingerspelling is an impossible task
for many people with disabilities. They require simpler gestures. In
Nelson (2013a) a wearable multi-sensor gesture recognition sys-
tem is proposed for people with disabilities. The system is based
on an electrooculography capture system to detect eye movements
by using a textile sensor in a headband and a glove with flex-
ometers and an accelerometer to detect hand gestures. Hand
gestures are made by pointing a single finger or a set of fingers
from their bend position. Although hand gestures are simpler than
in other reviewed articles, people with disabilities still find them
difficult to perform. Moreover, putting a glove on is not easy for
subjects with muscle stiffness, joint atrophy, etc. such as those
with CP. A much simpler system using bending detection on one
finger would be easier for such subjects to attach and use.

1.3. System goals

A system that translates weak movements into signals would
not generate very high peaks on the signal. Therefore, detecting
those peaks, even in situations when the subject is tiring and using
less force, is an important challenge for the system and enhances
user interface interaction Mezhoudi (2013). Another issue is that
intentional movements are sometimes accompanied by un-
coordinated movements, which therefore means the signal has
several peaks. Although such peaks would be detected as move-
ments, they should be considered as parts of the initial voluntary
movement. As soon as the signal has been stabilized, which means
that the movement has stopped, the detection of a new voluntary
movement will be enabled again.

1.4. Mutilayer architecture

To accomplish these goals, in this article we propose a layered
software architecture which can be implemented on external
hardware platforms working as if they were mechanical switches,
or on a computer.

We tested this architecture using both accelerometers and flex
sensors in people with and without disabilities. Each layer can be
adjusted by using parameters such as filter length, timeouts, etc,
and one of our goals is provide a set of parameters allowing users
to operate the system reliably.

Some related work about flexible and layered software archi-
tecture can be found in Beuvens and Vanderdonckt (2012a, 2012b)
where the authors present a structured method for facilitating the
integration of gestures in graphical user interfaces and in Molina
et al. (2011a), where the authors propose a system based on in-
frared light to translate eye movements, blinks, winks or head
movements into a set of events that may be configured to emulate
mouse actions. The versatility of such a system is constrained to
the usage of infrared light and even if it were possible to use such
a system with other sensors, to do so, each layer would have to be
reprogrammed. In Ibarguren et al. (2010) a layered architecture is
also proposed for hand gesture recognition. Two layers are em-
ployed, the first, a segmentation layer, splits signals into move-
ment and non-movement segments, and the second, a classifica-
tion layer, assigns a character to each movement segment.

This paper is organized as follows: Section 2 presents the
software architecture and the set of layers it is made up of. Sec-
tion 3 describes the implementations chosen to test the archi-
tecture: Section 4 the methodology, including the system user
profiles and how the experiments were conducted. This is fol-
lowed by Sections 5, 6 and 7 with the results, discussion and
conclusions, respectively.

2. Software architecture

The software as a whole receives data from the acquisition
system and delivers commands to a computer to emulate a mouse
click. To accomplish this main goal the software has been split into
5 different layers: the lowest is the hardware layer, which receives
data from the analog to digital converter; the top layer is the finite
state machine (FSM), from which events (mouse clicks) to the
computer are dispatched Fig. 1. The data flow upwards from the
hardware to the FSM layer, going through three other layers. Each
one acts as a system receiving input data, then processing, and
sending output data to the next layer in the data pipe. A queue
between each two adjacent layers holds output data coming from
layer number n before being accepted by layer n+1. A task man-
ager is in charge of executing the processes on each layer as the
queue connected at its input receives new data.
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Fig. 1. The set of layers in the proposed software architecture. Data flows from
movement detection sensors from layer 1 up to 5. The top layer emulates a mouse
click sent to a computer to control a Virtual Keyboard for instance.

2.1. Layer 1: The hardware layer

This contains the set of routines that reads digital data coming
from the sensor and sends it to the filter layer at a fixed rate.
Depending on the sensor, an interpolation sublayer may be acti-
vated if the input data does not come at a fixed rate. The sampling
frequency, F;, and type of interpolation must be selected according
to the type of sensor.

2.2. Layer 2: The filter layer

Most data coming from the hardware layer contains noise and
may be downsampled to reduce computational load in the fol-
lowing layers. Noise reduction is also better for estimating the
velocity of movement, because several algorithms, in particular
those based on derivatives, are very sensitive to noise. For these
reasons, this layer contains a set of routines enabling both noise
reduction and downsampling of input data by using a polyphase
low-pass filter Proakis and Manolakis (2007), which is efficient for
computing a new data output using a subset of input data at a
lower rate. The length, L, of the filter, and the decimation factor, D,
must be tailored to the type of data.

2.3. Layer 3: The derivative layer

A steady signal coming into this level, no matter what its value,
is associated with a user's non-movement state, whereas an un-
steady signal is associated with user movements. For this reason, a
good estimator of movement could be based on the signal deri-
vative, since it is zero when the user is at resting state and non-
zero otherwise. This layer contains a Lz-length queue which stores
the latest L, values of input data with which the output is calcu-
lated by applying a SavitzkyGolay filter (SGF) Schafer (2011), Press
et al. (2007). The coefficient of the SGF for estimating the first-
derivative depends on the length of the queue containing the data
to be convolved. For instance for L;=5 they are [1,—8, 0, 8,—1]/12.
The last step is to calculate the absolute value of the SGF output
and send it to the upper layer.

2.4. Layer 4: The classification layer

Data coming from the derivative layer is classified into two
main categories: movement (M) and non-movement (NM) sam-
ples. NM samples are associated to values closer to zero, whereas
M samples must be much greater than zero. Thresholding may be
a viable solution for classifying samples, but it requires the user to
move with a minimal intensity.

An adaptive K-means, storing the last 32 inputs, classifies each
input as NM or M according to the distance to the centroids of
three classes. In turn, these centroids are continuously adjusted as

new data come into the layer. Data closer to centroid number 3 are
labeled as M samples, otherwise they are classified as NM samples.
To filter out a certain amount of input noise centroids are only
updated if the distance between a new sample and the centroid is
greater than a preset value. Centroid number 1 is associated to
very low movements and centroid number 2 to slight ones. Data
classified as belonging to centroid 2 updates its value and also that
of centroid number 3. This takes centroid 3 closer to centroid 2,
thereby adapting to movement intensity as soon as possible.

The algorithm can be summarized as follows where v, is the
sample in time n, centroid; is the value of centroid number j, where
j=123 and L. an arbitrary weight. All samples classified as
M-samples belong to centroid j=3. The samples classified as NM-
samples belong to centroid j=1,2, but when centroid, is updated,
the centroids is as well.

Algorithm 1. The classification layer algorithm.

1: [dyj, pos] = min;(lv, — centroid;l) j =1..3
:if dy; > 2 then

(Lc —1) xcentroidpos +Vn

centroidpes = I

(Lc —1) xcentroid3 +vp

centroids = L
C
end if

2

3

4: if pos==2 then
5

6:

7: end if

2.5. Layer 5: The FSM layer

Labeled samples usually come into this layer grouped in pack-
ets. Each single M-sample packet may only send out one mouse
click (see Fig. 2). We propose a finite state algorithm with two
states to detect packets. State SO is called the resting state and S1
the movement state. As soon as the subject moves, the finite state
machine goes to S1. Transition from SO to S1 delivers a mouse
click. Each M sample starts a timer which sets the time-lapse, t;
the finite state machine has to wait for to go back to state SO.

Many people with cerebral palsy present uncontrolled move-
ments after initiating an intentional one and they take some time
to stop. To a certain extent, the timer guarantees the subject has
stopped making movements before returning to state SO, and thus,
false mouse clicks are prevented from being sent to the computer.
This time, {r must be empirically estimated according to the user's
profile.

3. Implementation
The software architecture has been implemented on a hard-

ware platform called Arduino Banzi and Shiloh (2014). Two shields
have been developed to adapt flex sensors and an accelerometer to

Timer exhausted Timer exhausted
time —p

samples  [NM[NMINM| M [ M | M| M Nminminvinv] w| e inmiwfnivg
State SO SO SO S1 S1 S1 Si8s1 S1 S0 S0 S1 Sils1 S1 S0

Start Timer
Send click

Start Timer
Send click

Fig. 2. Example of operation of FSM layer. A mouse click is sent whenever there is a
transition from SO state to S1 (reception of the first M-sample). When the move-
ment finishes, the FSM layer starts receiving NM samples. The first NM-sample
triggers a timer. When it exhausts the finite state machine returns to SO. The re-
ception of an M-sample when the timer is running re-triggers it.



Table 1

Parameters used for different layers in the implementation of the architecture. The
global delay or the system response time for movement detection is also shown for
accelerometer and flex sensors.

Layer Parameter (units) Flex Sensor Acceler.
Hardware N channels 1 3
F/ch(Hz) 250 250
Filter L 32 64
F-(Hz) 7.8 3.9
D 16 16
Derivative Ly 5 5
Classifier Lc 32 32
FSM tr(s) 25 2.5
Global delay ta(s) 0.19 0.26

the platform. Both include a switch-type connector which inter-
faces to a computer just like any other mechanical switch.

3.1. Flex sensor

We selected a 2.2" flex sensor model SEN-10264" connected to
a shield which also contains an amplifier with gain equal to 2 and
a low pass filter with a cutoff frequency equal to 70 Hz. A digital
output is also included in the shield to turn a led on and off to
indicate the state of the finite state machine and as a feedback
mechanism to show users when to start a movement. The hard-
ware layer only uses one channel of the analog to digital converter
sampled at F; = 250 Hz and the filter layer contains an FIR filter
with a Hamming window and cutoff frequency equal to 1/L, where
L, the length of the filter, is equal to 32. Table 1 summarizes the
parameters chosen for the implementation of the software archi-
tecture, including the global time delay (latency) t,.

3.2. Accelerometer

The selected sensor is an ADXL335,” a tri-axis accelerometer
with a range of measurement of + 3g. An amplifier of a gain equal
to 10 and a low pass filter with a cutoff frequency equal to 70 Hz
have also been included in the shield for each channel. Signals go
into the Arduino analog to digital converter which samples them
at a rate of F; =250 Hz/ch. The shield also contains the led as
described above in the Flex sensor section. Table 1 summarizes the
chosen parameters. As the accelerometer sends three signals, the
filter and derivative layers receive three data streams that are in-
dependently processed. This requires three instances of filter and
derivative layers and queues to hold data for them, but in the end,
the three first-derivative estimations must be combined into one
value (Eq. (1)).
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3.3. Sensor Setup

An accelerometer detects movement in any part of the human
body where the sensor is placed. Fig. 3 shows possible placements
of such a sensor. For head movement detection, the accelerometer
is attached to an adjustable harness similar to the ones used in
safety helmets. A small strap with tiny buckles wraps both sensor
and a portion of the harness and prevents the sensor from coming
loose. The head has three possible movements: roll (neck lateral
bending), yaw (neck rotation) and pitch (forward and backward

T https://www.sparkfun.com/products/10264
2 https://www.sparkfun.com/products/9269

Flex Sensor |
Accelerometer @

Fig. 3. Garments to host sensors: head harness, armband, glove, knee-brace. Flex
sensor is placed in rectangular receptacles attached to the garments. Accelerometer
is placed in squared receptacles.

bending). The further the position of the accelerometer from the
rotation axis of the head, the better the sensitivity to head
movement the sensor will have. Such a place could be the middle
point of the forehead. However, we preferred to place the accel-
erometer by the right temple, where it is more comfortable be-
cause the harness exerts less pressure and accelerometer wires do
not have to be routed along the harness.

For upper limb movement detection, the accelerometer can be
placed in an armband by the elbow or in a glove covering the
hand. A receptacle made of elastic fabric was sown in both arm-
band and glove to host the sensor and parts of the wires. Move-
ments in upper limbs are more complex than in the head due to
greater degrees of movement allowed by joints. Nevertheless it is
not easy to perform an upper limb movement without moving the
hand, so placing the accelerometer in a glove might be enough.

For lower limb movement detection a knee- or ankle-brace can
be used to sew the receptacle which will host the accelerometer.
For the same reasons stated above, the further away it is placed,
the greater the sensitivity it will have. However, to avoid having to
take shoes off, which may be uncomfortable for some people, the
knee was the preferred place. The knee-brace consists of a rec-
tangular elastic fabric ending in two complementary pieces of
velcro which make it easy to put on the subject's knee.

The flex sensor needs to be placed over a joint to measure
bending. Four positions were chosen to detect grasping, extension
or flexion of the finger, leg, or forearm by placing the flex sensor
on knuckles, finger, knee or elbow respectively. The same glove,
armband and knee-brace with receptacles for this sensor were
used.

3.4. Example of operation

To illustrate how the whole system works, Fig. 4 shows the
output from layer 2 of the proposed architecture when the input
signal is acquired by a flex sensor placed over the elbow.

Fig. 5 shows the outputs of layers 3-5. The derivative signal is
drawn in a thick blue line. M samples or samples classified as
movements are shown with a filled square. FSM layer output is
drawn in a thin green line and scaled to emphasize the fact it
covers the derivative signal. Note this output is activated as an M
sample goes into it. The evolution of three centroids has also been
drawn in dashed red lines. Centroid 3 values correspond to the
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Fig. 4. Typical filtered signal from the flex sensor detecting elbow bending.
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Fig. 5. Derivative, classification and FSM layer signal outputs shown in Fig. 4. The
derivative signal shows two peaks for each bending. Classification layer labeled
each sample as NM or M. Figure shows the values of the two higher centroids
(dashed lines). Each M-sample has been shown using a square. The FSM layer
output has been scaled to the size of the movement and how it covers the
movement.

upper line and centroid number 1 is hidden by the baseline. Fig. 6.

4. Methodology

To test the feasibility of this implementation we conducted
three experiments with 8 people. The first experiment, or Expl,
was performed by people without disabilities (group A) and peo-
ple with CP (group B). Group A performed the experiment first of
all as a mandatory step before the system could be used by the
other group. Basically, Exp1 tested whether the system could
properly identify subjects’ movements. We obtained three mea-
surements: tp or true positives (correctly identified movements);
fp or false positives (the system incorrectly indicated there was a
movement); and fn or false negatives (undetected movements).
Combining such parameters we estimated precision and TPR (Eq.
(2)). Precision is the proportion of positive outcomes that are

correct, whereas TPR measures the proportion of positives that are
correctly identified as such.

tp

Precision =
tp+fp

TPR = P
tp + fn @)

To obtain such measurements, the Arduino platform delivered
the output signals of each level of the architecture to a computer
in which they were stored. A computer web-cam recorded the
subject’'s movements during the experiments. Video and off-line
analysis of data allowed us to quantify true and false positives and
false negatives. Moreover, in the case of group A participants, they
also counted the number of false positives and false negatives
made by the system. At the end of the experiment the participants
reported such information to the researcher.

The second goal of Exp1 was to estimate the theoretical max-
imum speed of operation of the system without decreasing its
precision and TPR. This mainly required estimating the lowest (or
optimal) value for the parameter tyand the movement time ¢, The
former sets the time that a user must remain still before initiating
a new movement whereas the latter, t,,, is the time to execute a
movement. The total time for the system to detect a movement
properly is equal to t, + ;. Reducing this time can be done by just
reducing t; down to its optimal value t°"". Most people with dis-
abilities are accustomed to using different switch-operated com-
municating systems. In such systems, each item (or icon) is high-
lighted for a time tsq, or dwell time to show the focus. A user's
movement (or switch press) makes the selection of the focused
icon. The dwell time must be equal to or higher than the time
employed for the user to execute a movement, which in our pro-
posal would be tyqy > t + t;. In this relationship, tris a constant
factor whereas t,, is a random variable. To fix a value of tsqan
knowing the average time of t, the 0.65 rule was proposed
Simpson and Koester (1999), Simpson et al. (2007), Lesher et al.
(2000). With the 0.65 rule, the minimal dwell time is equal to the
response time divided by 0.65. This response time includes the
reaction time t, (the amount of time it takes to initiate a move-
ment from the onset of the stimuli) and the execution time ¢, (Eq.

(3))-

tooan > £O55TUle 4 popt _ tr+ tn 4 popt
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Exp1 allowed us to obtain all the parameters explained above.
The participants had feedback from the FSM layer, so they knew
when to start a movement and when to remain still. Group A
performed one session whereas the other group attended two
sessions. In each session the participant had to perform at least 15
movements.

Participants in group B performed two other experiments. In
the second experiment, Exp2, users accessed a communication
board through the proposed system. The main difference between
Exp1 and Exp2 lay in the fact that there was no feedback to let the
user know when the timer had exhausted and they could perform
a new action. In this experiment we obtained precision and TPR
following the procedure described above.

The last experiment, Exp3, was basically the same as Exp1 but,
in this case, subjects were asked to use their usual input devices
(based on a switch). This helped us gain a point of comparison
between the proposed method and the traditional one.

Finally, group B participants were asked whether they would
prefer to use this system instead of their usual input devices and
those who had tested the sensor in different parts of their bodies
were asked where they preferred it to be placed.

Table 2 summarizes the experiments performed by the two



Fig. 6. Pictures of B1 (on the left) and B4 (on the right) when they were performing the experiment. B1 wears a knee-brace that hosts the flex sensor whereas B4 wears a

harness containing the accelerometer placed close to the right temple.

Table 2
Experiments performed by each group.

Group Exp1 Exp2 Exp3 Survey

A X

B X X X X
groups.

4.1. Participants

Four people with disabilities (Group B) and four without dis-
abilities (Group A) took part in the experiments. The Ethics Com-
mittee of the University approved the experiment and their par-
ents were informed and agreed to allow them to take part in this
study.

4.11. Group A

We called the four people who belonged to this group: Al to
A4. There were three males and one female aged 38.75 + 10.2.
They each tested both the flex sensor and accelerometer per-
forming seven experiments overall. For the flex sensor, they per-
formed four kinds of movement: grasp, extension and flexion of
middle finger, elbow and knee. The accelerometer was placed in
three positions: head, hand and knee, but, unlike the flex sensor,
the participants were just asked to move the sensor in any
direction.

4.12. Group B

We called the 4 subjects with cerebral palsy B1, B2 and so on.
They were all recruited from a special educational needs school
called Colegio de Educacion Especial Directora Mercedes Sanromd

Table 3
Description of group B participants according to GMFCS, CFCS and MACS.

Subject GMFCS CFCS MACS
B1 \% 1 v
B2 \% 11 \'4
B3 \ v v
B4 \% 11 v

which is dedicated to work with motor disability students in Se-
ville. All participants with CP had good intellectual, visual and
hearing capabilities but very poor motor skills, including inability
to speak. Table 3 summarizes their description according to Gross
Motor Function Classification System (GMFCS), the Communica-
tion Function Classification System (CFCS) and Manual Ability
Classification System (MACS).

The Gross Motor Function Classification System Palisano et al.
(1997) is a 5 level clinical classification system that describes the
gross motor function of people with cerebral palsy on the basis of
self-initiated movement abilities. Particular emphasis in creating
and maintaining this scale rests on evaluating sitting, walking, and
wheeled mobility. Distinctions between levels are based on func-
tional abilities; the need for walkers, crutches, wheelchairs, or
walking sticks.

The Communication Function Classification System Hidecker
et al. (2011) is a tool used to classify the everyday communication
of an individual with cerebral palsy into one of five levels ac-
cording to effectiveness of communication. For example, at level I,
a person independently and effectively alternates between being a
sender and receiver of information with most people in most en-
vironments. However at level V, a person is seldom able to com-
municate effectively even with familiar people.

The Manual Ability Classification System Ann-Christin et al.
(2014) describes how children with cerebral palsy use their hands
to handle objects in daily activities. This scale has five levels. For
example, at level I a person handles most objects but with some
reduced quality and/or speed, but at level V the child is not able to
do it or complete even simple actions with their hands.

Subject B1 is a 12-year-old girl with dystonia. She can execute
coarse movements with left-side body limbs and has bad control
of head position. It is very difficult for her to reach a target with
her left hand showing involuntary movements after the comple-
tion of a intentional one. She finds it easiest to control her left leg,
which also shows short-time involuntary movements. Her usual
computer interaction is by means of a leg-controlled switch.

Subject B2 is a 13-year-old girl who has muscle spasticity, no
postural head control and she has difficulty reaching a switch to
access a computer. Her upper limbs are quite stiff due to the
spasticity so she is unable to open or close her hands or flex her
arms. She rarely accesses a computer, but when she does she uses
a switch rod operated by her head or leg.



Table 4
Sensor positions for each participant.

Subject Flex sensor Accelerometer

Finger Knuckle Knee Elbow Head Hand Leg
Al-A4 X X X X X X X
B1 X X X X
B2 X X X
B3 X X
B4 X

Fig. 7. Screenshot of the rocket shown in Exp1. The color of the rocket indicates
whether the user may or not may perform a movement: green means yes. In this
case the user needs to be still. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Subject B3 is a 12-year-old girl who can coarsely control her
upper left arm. She executes movements very slowly and can flex
and extend her knee. She can also open and close her hand but she
was excluded from this part of the experiments because there
were no gloves of her size at the time of performing them.

Subject B4 is a 17-year-old girl; although she is able to coarsely
control her upper limbs she preferred to use just her head to ac-
cess the computer. She can say yes and no and accesses a com-
puter by means of a headwand.

Table 4 summarizes the type and position of sensors for
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participants in the experiments.

4.2. Experiments

4.2.1. Experiment Exp1

A software program trained users and collected information
about their interaction with the computer. This software shows a
rocket which is continuously blown from the right side of the
screen to the left by a cosmic wind Fig. 7. To stop the rocket from
disappearing off screen its engine must be started and the rocket
then moves back towards the right side of the screen. The color of
the rocket changes according to the FSM layer output. A green
rocket indicates the user is still and can perform a movement. The
rocket turns red when the user has accomplished a movement and
stays red for ;=2.5 s after the user has stopped executing it. One
of the main goals of this experiment was to find the optimal ¢°P".
To avoid an excessive number of experiments, particularly with
the users with disabilities, - was set high enough to guarantee a
correct use of the system for almost all participants. Subsequent
offline analysis will gauge how much this parameter can be low-
ered without altering the number of false positives and negatives
in movement detection.

The time the rocket is red is equal to the time the subject
performs a movement t,, plus the timeout set in the FSM layer, t5.
Therefore, t;, is then easily estimated by subtracting tf from the
time the rocket is red. Finally, as participants were asked to per-
form a movement as the rocket turned green, the reaction time t,
could also be calculated by subtracting the time the rocket re-
mained green before turning red again. These three parameters
could be used to estimate tsq, (Eq. (3)).

4.2.2. Experiment Exp2

Participants from group B were now invited to use a commu-
nication board (see Fig. 8) based on 12 pictures. Each of these
pictures or icons was highlighted for a preset dwell time (Eq. (3))
using cyclic scanning. The icons were highlighted one by one from
left to right starting with the icon on the left of the top row. If the
user performed a movement, the icon highlighted at that moment
was selected and an action, such as playing a recorded message,
was executed. The pictures marked for selection by the participant
were: water, sleep, cold and TV (blue square in Fig. 5) In two out of
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Fig. 8. Communication screen for experiment Exp2. Captions read from top, left to right: Hello, Goodbye, Water, Hungry, Toilet, Sleep, Happy, Ill, Cold, Hot, Call, Television.

The subject has to select the four framed icons: Water, Sleep, Cold, and TV.



three icons the subject had to remain still while they were high-
lighted, then, the scanning reached the preselected icon where
subjects were able to perform a movement. This process was re-
peated several times.

The communication board ran in a tablet which recorded the
target icons and any kind of subject activity during the experiment
so it could be reproduced later on. Apart from the fact this soft-
ware stored information for the experiment, it did not differ from
any other kind of software that people with disabilities are used to.
The important issue here was to find out how many errors the
participants would make using this software when the visual
feedback, showing subjects when to perform the movement, was
masked.

4.2.3. Experiment Exp3

This was basically the same as Exp1, but, in this case, the par-
ticipants from group B used a mechanical switch that was placed
at their usual positions (leg for B1 and B2, hand for B3 and head for
B4). We also placed an accelerometer to record the movements the
subject made during the experimental sessions. Both switch ac-
tivity and the information from layers 2-5 of the proposed archi-
tecture were stored for further analysis. A webcam recorded the
participants performing the sessions.

The main goal of this experiment was to compare between the
traditional and the proposal method of access. This was be done in
three dimensions: efficiency (precision and TPR), time to perform
a movement, t, and latency (as a measurement of the time
elapsed between the beginning of the movement and its
detection).

As explained above, precision and TPR had to count the number
of true positives, false positives and false negatives. Signals and
video were analyzed to obtained such parameters. Firstly, we
identified the number of movements the participant made during
the session by watching the video and studying the stored signals.
From those movements, we counted the ones which ended with

Table 5

pressing the switch (true positives) and the ones that did not (false
negatives). The rest of the detected switch pressings resulting from
uncontrolled movements were considered false positives.

To measure the difference in latency between the two systems
(Aty), firstly we calculated the latency of each system individually
from the time the rocket changed to green, which enabled parti-
cipants to perform a movement. Then, we subtracted both la-
tencies, so a positive (At;) value means that the proposed system is
faster than the mechanical switch.

Finally, to estimate t,; we followed the same procedure as ex-
plained above in Section 4.2.1.

5. Results

Table 5 shows the results for group A participants: precision,
TPR, optimal ', t,;, and t, averages and the estimated dwell time
tscan (given by Eq. (3)) for each experiment. The participant who
obtained the lowest ty.,, and could potentially have obtained the
fastest speed in a communication board was A1 for the flex sensor
placed on her finger, the same position where, paradoxically, the
slowest speed was obtained by participant A2. By averaging pre-
cision and TPR for each participant and then for all of them we
obtained 100% and 99.3% for those parameters respectively.

Fig. 9 shows the results of ts., versus sensor position. The
lowest mean value (2.87 s) for four participants was obtained
when the accelerometer sensor was placed on the leg, and the
highest value (3.70 s) was when the same sensor was placed on
the head.

Table 6 shows the results for group B participants and Experi-
ment Exp1. The information format is the same as the one used for
group A participants. Following the same procedure as explained
above, the average precision and TPR for all participants were
97.9% and 100% respectively. Results of experiment Exp2 are
shown in Table 7 which also includes the percentage of targets

Data collected from group A participants in Exp1. Precision is the proportion of positive outcomes that are correct; TPR or true positive rate is the proportion of positives that
are correctly identified as such; t°" is set by off-line analysis and it establishes the minimum time the user must remain still before initiating a new movement; t,, is the

movement time; t, the reaction time and ty., is the dwell time calculated by Eq. (3).

Subject Parameter Flex sensor Accelerometer
Knuckles Finger Knee Elbow Head Hand Leg
Al Precision (%) 100 100 100 100 100 100 100
TPR (%) 100 100 100 100 100 100 100
tPP (s) 0.75 0.25 0.5 0.75 0.75 1 0.75
tm (S) 0.70 0.42 0.62 0.70 0.86 0.76 035
t (s) 0.92 0.73 0.86 0.90 112 133 0.98
tscan (S) 3.24 2.03 2.78 3.21 3.80 422 2.81
A2 Precision (%) 100 100 100 100 100 100 100
TPR (%) 100 100 100 100 100 100 93.75
toPt (s) 0.5 1.25 0.75 0.5 0.75 0.75 0.25
tm (S) 0.70 0.89 0.65 0.79 0.89 0.67 0.29
t (s) 138 1.21 134 114 113 0.92 144
tscan (S) 3.69 448 3.83 3.47 3.86 3.19 292
A3 Precision (%) 100 100 100 100 100 100 100
TPR (%) 100 100 100 100 100 100 100
PP (s) 0.25 0.5 0.5 0.25 0.75 0.5 0.75
tm (S) 0.85 0.39 0.60 0.62 0.85 0.51 0.35
t (s) 0.97 0.82 114 0.98 1.01 0.99 1.29
tscan (S) 234 2.68 3.05 2.72 3.86 3.21 3.27
A4 Precision (%) 100 100 100 100 100 100 100
TPR (%) 100 100 100 93.75 93.75 100 100
tPP (s) 0.75 0.75 0.75 1 0.75 0.5 0.25
tm (S) 0.76 0.78 0.61 0.89 0.27 0.35 045
t-(s) 1.24 0.80 135 0.95 1.52 0.89 1.00
tscan (S) 3.83 317 3.78 3.82 3.52 2.41 2.49




Table 7
Data collected from group B participants in experiment Exp2. It includes percen-
tage of targets correctly and incorrectly selected.

Subject Parameter Tablet
B1 Precision (%) 100
TPR (%) 100
Target (%) 100
Non Target(%) 0
B2 Precision (%) 78.2
TPR (%) 90
Target (%) 62.5
Non Target(%) 25
B3 Precision (%) 80
TPR (%) 89
Target (%) 87.5
Non Target(%) 12.5
B4 Precision (%) 100
TPR (%) 100
Target (%) 100
Non Target(%) 6.25
Table 8

Data collected from group B participants in experiment Exp3. At; is the time dif-

ference in detecting the movement between the switch-based system and our
proposal. A positive value shows the proposal was faster.
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Fig. 9. Boxplots of t.., versus sensor placement for group A subjects.
Table 6

Data collected from group B participants in Exp1.

Subject Parameter Tablet

B1 Precision (%) 88.6
TPR (%) 91.2
At) (s) 0.13
tm (s) 35

B2 Precision (%) 58.2
TPR (%) 100
At (s) 0.15
tm (s) 6.1

B3 Precision (%) 69.5
TPR (%) 100
At (s) 0.43
tm (S) 3.7

B4 Precision (%) 100
TPR (%) 100
Aty (s) -0.72
tm (S) 2.6

Subject Parameter Flex Sensor Accelerometer
Knee Elbow Head Hand Leg
B1 Precision (%) 100 - 100 100 100
TPR (%) 100 - 100 100 100
tPP (s) 2 - 0.75 1.00 0.75
tm (S) 132 - 0.51 3.96 0.48
t (s) 113 - 1.20 1 147
tscan (S) 5.78 - 3.38 8.65 3.74
B2 Precision (%) 100 - 86.7 - 100
TPR (%) 100 - 100 - 100
P (s) 175 - 2.5 - 25
tm (S) 227 - 6.17 - 3.69
t (s) 2.25 - 141 - 123
tscan (S) 8.7 - 14.17 - 10.07
B3 Precision (%) - 93.75 - 100 -
TPR (%) - 100 - 100 -
P (s) - 2 - 2.5 -
tm (S) - 2.07 - 3.76 -
t (s) - 6.25 - 5.65 -
tscan (S) - 14.8 - 17 -
B4 Precision (%) - - 100 -
TPR (%) - - 100 -
PP (s) - - 2.5 - -
tm (S) - - 6.5 - -
t (s) - - 131 - -
Escan (S) - - 14.5 - -

correctly selected and the percentage of non-targets that were
incorrectly selected. In this case average precision and TPR (89.6%
and 94.8% respectively) were worse than in Exp1.

Table 8 shows the results obtained in Exp3. The average pre-
cision and TPR considering all the participants were 86.7% and
97.8% respectively. Fig. 10 shows details of some signals captured
during the experiment. For each subject, the absolute value of
velocity is shown in blue, the centroids in red, the output of the
FSM layer in green, the switch state in black and the state (color)
of the rocket in cyan. A rising edge in the state of the rocket signal
sets the time the participants can perform a movement. The rising

edges of the switch signal and FSM output set the time the switch
and the proposed architecture detected such a movement. The
average time delay, At;, is also drawn for some subjects and shown
in Table 8. For three out of four participants the new architecture
was slightly better than the switch in detecting the movement,
whereas for the other subject, the switch was significantly better
than our system. The average of At for all participants was
—0.03 s Table 8 also shows the average of the movement duration
t, for each subject calculated as explained in Section 4.2.1.
Finally, Table 9 shows the results of the survey.

6. Discussion
6.1. The proposed architecture

6.1.1. Group A

The four participants in group A carried out overall 420 vo-
luntary movements of which 417 were correctly identified. This
makes 417 true positives, 3 false negatives and no false positives.
The number of errors was very low (<1%) and there were no false
positives which led to a precision score of 100%.
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Fig. 10. Signal samples collected in Exp3. The absolute value of the movement velocity is shown in blue, the centroids positions in red, the switch state in black, the output of
the FSM layer in green and the color of the rocket in cyan. A change from low to high in the rocket signal sets the time that the participant could start a movement. In some
pictures the delay between the keystroke and the movement detection for the proposed architecture is shown. The new architecture shows slightly better latency times for
B1-B2, it is faster for B3 and, in general reduces the number of false positives. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

The timeout & results varied depending on sensor, position and
subject. In general, for all participants, this time was around 1s
without losing performance in movement prediction. This para-
meter is very important because the lower the t; the greater the
communication ratio with this system. However, as tr drops, the
time to block involuntary movements following intentional ones is
shorter, and the probability of false positives increases.

In Molina et al. (2011b) the authors proposed a model to esti-
mate the wpm (words per minute) ratio by using a virtual key-
board knowing only the ts,. According to that study and extra-
polating data from our group A participants, the highest ratio of

1.11 wpm would be obtained by participant A1 with the flex sensor
over the finger. The lowest one of 0.50 wpm would be obtained by
participant A2 with the same sensor on the middle finger. An
average around 3.26 s for t,., for all participants would have given
an average of 0.59 wpm.

Results in Fig. 9 show that there were differences among the
values of ts,, obtained depending on the type of sensor and its
position. Statistical analysis using a data set of 4 x 7 tsca, Samples
(Subject x Sensor placement), where ty., is the output variable
(normally distributed — Shapiro test p=0.85) and the sensor pla-
cement is the treatment (Bartlett test p=0.17 suggests



Table 9
Survey results.

Survey questions Subject Answer
Which part of the body? B1 Leg
B2 Leg
B3 Hand
B4 Leg
Do you prefer this system ? B1 Yes
B2 Yes
B3 No
B4 Yes

homocedasticity), allows us to apply ANOVA (F=0.66, p=0.68).
This shows that the position does not influence ts., significantly.
However, the low number of users in the study limits the validity
of the statistical analysis.

A comparison between types of sensor gave ty,, averages of
3.27 s and 3.25 s for the accelerometer and flex respectively, which
showed there was no difference between using either device. In
fact, users A2 and A4 obtained better performances with the ac-
celerometer, whereas the flex sensor was used better by the other
participants.

6.1.2. Group B

To begin with, we shall discuss the results of group B case by
case. We will look at its global results at the end of this section.

Participant B1 performed quite well and she had no false ne-
gatives or positives in experiments Exp1 and Exp2. Her reaction
time t. was around 1.2 s on average which was similar to the ones
obtained by participants in group A. Her movement time, t,
showed some variability depending on the position and type of
sensor used. The best results, similar to the ones for people
without disabilities, were obtained when the accelerometer was
placed on her leg (0.48 s) or head (0.51 s). The worst results were
obtained when the flex sensor was placed on her knee (1.32 s) or
the accelerometer on her hand (3.96 s). When it was on her knee,
she did not flex or extend the joint, she just moved her leg up and
down. This movement was enough for the flex to detect the user
action but the amplitude of the signal was very low compared to
the signal coming from flexion and extension. This implies that the
signal peaks associated to intentional movements were quite close
to the baseline noise which made the classifier increase the
number of movement samples (M samples) and, in turn, extend
the range of motion detection. This also explains the high value of
t= When the accelerometer was placed on her hand, the highest ¢,
value was obtained because that was the part of her body which
showed most uncontrolled movements. Although this girl devel-
oped her own strategy to stop her hand movement against her
belly it was not enough to reduce this time to similar values ob-
tained with other parts of her body. Participant B1's best results
for ts.qn Were obtained with the accelerometer on her head, even
though she can not control the position of her head properly, and
this made it difficult for her to keep the computer screen in her
visual field. However, she preferred to use this system with the
accelerometer on her leg which gave similar results.

Participant B2 performed Expl perfectly with the accel-
erometer or flex sensor on her knee (preferred position) but pre-
cision decreased with the accelerometer placed on her head. She
has bad control of the vertical position of her head having lots of
uncontrolled and swinging movements. This explains the high t,,
values that were obtained. Results of ¢ showed difficulty to stop
moving and is an indicator suggesting this subject will be prone to
committing false positives with this system unless ¢ is increased.
Reaction time, t,, was also high because, after starting a move-
ment, the whole body moved and the computer screen went out of

her visual field. This partly explains why the percentage of target
pictograms on the tablet was low in experiment Exp2 while at the
same time the percentage of non-target ones was high. Moreover,
the large number of involuntary movements (see Fig. 10) led to
false positives and selecting non-target pictograms as well.

Subject B3 has good control of her right arm but performs
movements slowly, sometimes swinging her arm; this explains the
high t,;, and ¢t values. Different reasons made the reaction time be
high. On one hand the participant either got distracted several
times and/or she did not understand the dynamic of the experi-
ment very well, which, in turn, may explain why she rejected this
access method preferring her traditional one. On the other hand,
she performed movements very slowly so it took longer for the
system to recognize a intentional movement from the moment she
started it. Even with the flex sensor, the reaction time was slightly
higher than with the accelerometer because she tried to perform
movements with her arm straight and rigid, delaying the detection
of the movement. This may also be the reason this person pre-
ferred the accelerometer sensor placed on her hand. The penalty
in precision was due to slow movements with swinging and this
was why she obtained false positives and negatives in Exp2, se-
lecting non-target pictures on the tablet and failing to select the
target ones.

Participant B4 has good control of her head, and in the ex-
periment she performed short and fast movements, which were
correctly classified by the system, usually followed by slow
swinging. The acquired signal shows small peaks over a very noisy
baseline. As in the cases explained above, this swinging made the
tm and tr high. She performed Exp2 almost perfectly. Precision and
TPR were at the maximum, all the targets were correctly selected
with very few non-targets being chosen. This girl preferred to use
this system even though she is to typewriting with a handwand.

As for the type of sensor, it seems that people with CP find it
easiest to use the accelerometer to access a computer with this
system. This is because the accelerometer is more sensitive to
gross motion than the flex sensor which needs more complex
movements that are difficult to be performed by people with CP
who took part in the experiments.

A final comment concerns the clothing used to carry the sen-
sors. It is not easy to put gloves on people with CP who usually
have atrophied joints and very stiff muscles. In Simone et al.
(2004) a sensor sleeve holding the flexometer is attached to the
back of each finger with toupee tape to locate the sensor directly
over the joints and leave the joints free of adhesive that would
otherwise restrict movement. One important finding in that study
is that when the fingertips are uncovered it is much easier for
subjects to forget that the sensors are there because sensory
function is not masked. An additional advantage is that this tape
could also be used to extend movement detection to other un-
covered parts of the body, such as for example the shoulder, neck
Al-Rahayfeh and Faezipour (2014), etc.

6.1.3. Group A vs. Group B

For group B participants, the time t,;, was on average greater
(~ 3 s) than the average obtained by group A (less than 1 s for all
participants). The difficulty these participants had moving and
their involuntary movements explain these results. Reaction times
t, were also greater for this group because participants found it
difficult to keeping the screen in the visual field or paying atten-
tion when doing the experiment. Their swing movements could
pose a problem for the classifier by getting too close to the second
one and increasing the number of non-movement samples (NM
samples) and, consequently, the number of false positives.



6.2. Mechanical switch vs. proposed system

It would seem plausible to think that the accelerometer will
always detect the approaching of the limb towards the switch
before it can be pressed. Therefore, the latency of the proposed
system will be always lower than the switch. However, experi-
mental results did not confirm that assertion. We found that the
latency in detecting the movement was better for 3-out-of-4
participants with disabilities using the proposed architecture. To
explain this we have to take into account several factors. On one
hand, there is a delay in processing data throughout the layers (we
can see this delay in the time elapsing between the switch
pressing and the movement velocity in Fig. 10). The main source of
delay lies in the filter layer which introduces a delay proportional
to the length of the low pass filter (Table 1 summarizes the global
delay according to the chosen parameters). On the other hand, the
latency also depends on how the user performs the movement and
how far away the switch is placed from the limb or head. For ex-
ample, subject B2 performs slow movements and she has to move
her hand at a relatively long distance compared to her peers. This
is why the proposed system is clearly better for her (on average
0.43 s faster than the switch). In contrast, participant B4 only had
to move very slightly her head to reach the switch. For her the
mechanical switch was much faster than our proposal. For the
other participants, B1 and B2, the mechanical switch delay was
slightly higher on average.

Bad limb control leads to repeated and unintentional hitting
the switch. We can see these extra switchings in participants B2
and B3 in Fig. 10 and how the proposed system deals with them as
part of the same movement. As Table 8 shows, the precision of the
mechanical switch is slightly lower (86.7%) on average than the
one obtained in Exp2 (89.6%) and in Exp1 (100%). As for TPR, the
switch obtained a value of 97.8% in average, slightly better than in
Exp2 (94.8%) and slightly worse than the one obtained in Exp1
(99.3%) with our proposal.

For participant B1, the proposed system was highly beneficial.
The precision and TPR was higher (100%) and the time to perform
a movement lesser (t,,=0.48 s versus 3.5 s with the switch). Par-
ticipant B2, who showed rather uncontrolled movements, ob-
tained better results with the accelerometer placed on her leg than
with the switch (precision=86.7% in Exp2 and TPR=100% versus
58.2% and TPR=100% in Exp3). Trying to press a switch seemed to
produce more uncontrolled movements than with just the accel-
erometer. This explains why the time t,, with the switch was
somewhat higher (t, =6.1s vs. 3.69s). Subject B3 got slightly
better results with the accelerometer, because the precision was
better (100% in Exp1 and 80% in Exp2 versus 69.5% in Exp3), al-
though the TPR was similar (100% in Exp1, 89% in Exp2 versus
100% in Exp3) and the time to perform a movement very similar
(tm=3.76 s versus 3.7 s with the switch). Only the proposed ar-
chitecture's latency of movement detection alone (0.43 s faster
than the switch) could have shifted the performance towards our
proposal. However, this subject preferred to go on using the tra-
ditional method of access. The subject who obtained best perfor-
mances with both systems was participant B4 (100% in precision
and TPR). For her the switch was faster in detecting the movement
and the duration of the movement. t;, = 2.6 s, was also shorter
than in our proposal (6.5 s). To explain such a big difference in ¢t
we had to watch the video recorded to realize that Exp1 or Exp2
were performed in slightly different conditions to Exp3. In Exp3,
the wheelchair had a headrest which reduced the head swinging
after a movement, thereby reducing the interval of time associated
to a movement, and avoiding a noisy baseline in the signal cap-
tured (Fig. 10).

Finally, we would like to highlight the comments of partici-
pants’ caregivers about this new system which has been used for

several months. They see it as being faster than the mechanical
switch, allowing people with disabilities to make fewer errors
without needing to make a big effort to performing move-
ments, while at the same time letting them use a computer longer.
Moreover, when people have lots of uncontrolled movements, not
having to strike a mechanical switch prevents her/him from
hurting themselves the limbs, neck, face, etc.

7. Conclusions and future work

In this work we developed a software architecture to translate
movements into switch events. For experiments this architecture
was implemented on an Arduino platform and two specific hard-
ware shields were designed to amplify flex sensor and accel-
erometer signals. This five-layered architecture contained low-
pass and derivative filters, a classifier that was continuously
adapting to the intensity of user's movements and an finite state
machine that generated the event and contained a timer to pre-
vent involuntary movements from triggering false positives.

Most of the participants in this study obtained good results,
better than with the traditional switch, even though the number of
trials was low and they did not have much time to get used to the
new system. It is noteworthy that 3 out of 4 of the participants
with disabilities preferred this system to their traditional compu-
ter access device.

Further work must be carried out to make the system more
efficient for people who show swinging, lots of uncontrolled
movements or perform them slowly.

Finally, it seems that people with CP found it easier to use the
accelerometer to access a computer than the flex sensor.

Conflicts of interest

There is no conflict of interest.

Acknowledgments

The authors would like to thank the staff of Colegio de Edu-
caciéon Especial Directora Mercedes Sanromad, and, in particular
Setefilla (the psychologist) and Juan (the physician) for their
support in the realization of this work.

We would also like to thank the anonymous reviewers for their
comments and suggestions. Following the suggestions, we in-
cluded several improvements in this paper.

This research has been sponsored by University of Seville.

References

Adnan, N.H., Wan, K., Shahriman, A., Zaaba, S., Nisha Basah, S., Razlan, Z.M., Hazry,
D., Ayob, M.N,, Rudzuan, M., Aziz, A.A., 2012. Measurement of the flexible
bending force of the index and middle fingers for virtual interaction. Procedia
Engineering 41 (0), 388-394, international Symposium on Robotics and In-
telligent Sensors 2012 (IRIS 2012)..

Al-Rahayfeh, A., Faezipour, M., 2014. Enhanced combined eye gaze direction clas-
sification and head flexion detection system. In: Proceedings of the IEEE Sys-
tems, Applications and Technology Conference (LISAT), 2014 Long Island. May,
pp. 1-6.

Ann-Christin, E., et al., 2006. The manual ability classification system (macs) for
children with cerebral palsy: scale development and evidence of validity and
reliability. Developmental medicine and child neurology.

Bakhshi, S., Mahoor, M., 2011a. Development of a body joint angle measurement
system using imu sensors. In: Proceedings of the 33rd Annual International
Conference of the IEEE EMBS. September, pp. 35-40.

Bakhshi, S., Mahoor, M., 2011b. Development of a wearable sensor system for
measuring body joint flexion. In: Proceedings of the International Conference


http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref1
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref1
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref1
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref1
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref1
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref1

on Body Sensor Networks (BSN), 2011 May, pp. 35-40.

Banzi, M., Shiloh, M., 2014. Getting Started with Arduino: The Open Source Elec-
tronics Prototyping Platform. Maker Media, Inc.

Beuvens, F.,, Vanderdonckt, J., 2012a. Designing graphical user interfaces integrating
gestures. In: Proceedings of the 30th ACM International Conference on Design
of Communication. ACM, pp. 313-322.

Beuvens, F., Vanderdonckt, J., 2012b. Usigesture: An environment for integrating
pen-based interaction in user interface development. In: Proceedings of the
Sixth International Conference on Research Challenges in Information Science
(RCIS), 2012, May, pp. 1-12.

Capio, C.M,, Sit, C.H., Abernethy, B., 2010. Physical activity measurement using
{MTI} (actigraph) among children with cerebral palsy. Arch. Phys. Med. Rehab.
91 (8), 1283-1290.

Chirakanphaisarn, N., 2014. Measurement and analysis system of the knee joint
motion in gait evaluation for rehabilitation medicine. In: Proceedings of the
Fourth International Conference on Digital Information and Communication
Technology and it's Applications (DICTAP), May 2014 , pp. 315-320.

El-Gohary, M., McNames, J., 2012. Shoulder and elbow joint angle tracking with
inertial sensors. [EEE Trans. Biomed. Eng. 59 (September (9)), 2635-2641.

Hidecker, et al., 2011. Developing and validating the communication function
classification system (cfcs) for individuals with cerebral palsy. Dev. Med. Child
Neurol. 53, 704-710.

Hurd, W.J., Morrow, M.M., Kaufman, K.R., 2013. Tri-axial accelerometer analysis
techniques for evaluating functional use of the extremities. J. Electromyogr.
Kinesiol. 23 (4), 924-929.

Ibarguren, A., Maurtua, I., Sierra, B., 2010. Layered architecture for real time sign
recognition hand gesture and movement. Eng. Appl. Artif. Intell. 23 (7),
1216-1228.

Lesher, G.W., Moulton, D.J.H., B. J., 2000. Techniques for automatically updating
scanning delays. In: Proceedings of RESNA Annual Conference.

Mariano, D., Freitas, A., Luiz, L., Silva, A., Pierre, P., Naves, E., 2014. An accelerometer-
based human computer interface driving an alternative communication system.
In: Proceedings of the 5th ISSNIP-IEEE Biosignals and Biorobotics Conference on
Biosignals and Robotics for Better and Safer Living (BRC), May 2014, pp. 1-5.

Masci, L., Vannozzi, G., Bergamini, E., Pesce, C., Getchell, N., Cappozzo, A., 2013.
Assessing locomotor skills development in childhood using wearable inertial
sensor devices the running paradigm. Gait Posture 37 (4), 570-574.

Mezhoudi, N., 2013. User interface adaptation based on user feedback and machine
learning. In: Proceedings of the Companion Publication of the 2013 Interna-
tional Conference on Intelligent User Interfaces Companion. IUI '13 Companion.
ACM, New York, NY, USA, pp. 25-28. URL http://dx.doi.org/10.1145/2451176.
2451184.

Molina, A., Gémez, L., Rivera, O., Merino, M., 2011a. A flexible, open, multimodal
system of computer control based on infrared light. Int. J. Latest Trends Comput.

Molina, A., Rivera, O., Gémez, 1., Merino, M., Ropero, J., 2011b. Comparison among
ambiguous virtual keyboards for people with severe motor disabilities. Int. J.
Mod. Eng. Res. (IJMER) 2, 288-305.

Nelson, A., Schmandyt, J., Wilkins, W., Parkerson, J., Banerjee, N., 2013b. System
support for micro-harvester powered mobile sensing. In: Proceedings of the
IEEE 34th Real-Time Systems Symposium (RTSS), 2013, Dec. pp. 258-267.

Nelson, A., Schmandt, J., Shyamkumar, P.,, Wilkins, W., Lachut, D., Banerjee, N.,
Rollins, S., Parkerson, J., Varadan, V., 2013a. Wearable multi-sensor gesture
recognition for paralysis patients. In: SENSORS, 2013 IEEE. Nov. pp. 1-4.

Palisano, R., Rosenbaum, P., Bartlett, D., Livingston, M., 1997. Development and
reliability of a system to classify gross motor function in children with cerebral
palsy. Dev. Med. Child. Neurol. 39, 214-223.

Palmerini, L., Mellone, S., Avanzolini, G., Valzania, F., Chiari, L., 2013. Quantification
of motor impairment in parkinson's disease using an instrumented timed up
and go test. IEEE Trans. Neural Syst. Rehabil. Eng. 21 (July (4)), 664-673.

Park, Y., Lee, J., Bae, ]., 2014. Development of a wearable sensing glove for measuring
the motion of fingers using linear potentiometers and flexible wires. Ind. In-
formatics, IEEE Trans. 99, 1.

Pas, S.C.V.D., Verbunt, J.A., Breukelaar, D.E., van Woerden, R., Seelen, H.A., 2011.
Assessment of arm activity using triaxial accelerometry in patients with a
stroke. Arch. Phys. Med. Rehabil. 92 (9), 1437-1442.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.,, 2007. Numerical Recipes
in C: The Art of Scientific Computing, 3d ed. Cambridge University Press, New
York, NY, USA.

Proakis, J.G., Manolakis, D.G., 2007. Digital Signal Processing: Principles, Algorithms,
and Applications, 4th ed. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Ranjan, J., Shah, H,, Joshi, S., Chokhra, B., Ranjan, P., 2010. Rf-cepal: a universal re-
mote control based on mems accelerometer. In: Proceedings of the Sixth In-
ternational Conference on Wireless Communication and Sensor Networks
(WCSN), pp. 1-6.

Raya, R, Roa, J., Rocon, E., Ceres, R., Pons, J., 2010. Wearable inertial mouse for
children with physical and cognitive impairments. Sens. Actuators A: Phys. 162
(2), 248-259, eurosensors XXIII, 2009.

Saggio, G., 2012. Mechanical model of flex sensors used to sense finger movements.
Sens. Actuators A: Phys. 185 (0), 53-58.

Saggio, G., 2014. A novel array of flex sensors for a goniometric glove. Sens. Ac-
tuators A: Phys. 205 (0), 119-125.

Schafer, R., 2011. What is a savitzky-golay filter? IEEE Signal Process. Mag. 28 (July
(4)), 111-117.

Simone, L., Elovic, E., Kalambur, U., Kamper, D., 2004. A low cost method to measure
finger flexion in individuals with reduced hand and finger range of motion. In:
Proceedings of the 26th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, IEMBS '04, Vol. 2, September 2004,
pp. 4791-4794.

Simpson, R.C., Koester, H.H., 1999. Adaptive one-switch row-column scanning. IEEE
Trans. Rehabil. Eng. 7 (4), 464-473.

Simpson, R., Koester, H., LoPresti, E., 2007. Selecting an appropriate scan rate the
0.65 rule. Assist. Technol. 19 (2), 51-60.

Tanyawiwat, N., Thiemjarus, S., 2012. Design of an assistive communication glove
using combined sensory channels. In: Proceedings of the Ninth International
Conference on Wearable and Implantable Body Sensor Networks (BSN). May
2012, pp. 34-39.

Tognetti, A., Carbonaro, N., Zupone, G., De Rossi, D., 2006. Characterization of a
novel data glove based on textile integrated sensors. In: Proceedings of the 28th
IEEE Annual International Conference of the Engineering in Medicine and
Biology Society, 2006. EMBS '06. Aug, pp. 2510-2513.

Tongrod, N., Kerdcharoen, T., Watthanawisuth, N., Tuantranont, A., 2010. A low-cost
data-glove for human computer interaction based on ink-jet printed sensors
and zigbee networks. In: ISWC. pp. 1-2.

Yoneyama, M., Kurihara, Y., Watanabe, K., Mitoma, H., 2013. Accelerometry-based
gait analysis and its application to parkinson's disease: a new measure for
quantifying walking behavior assessment part 2. IEEE Trans. Neural Syst. Re-
habil. Eng. 21 (November (6)), 999-1005.

Yoneyama, M., Kurihara, Y., Watanabe, K., Mitoma, H., 2014. Accelerometry-based
gait analysis and its application to parkinson's disease: detection of stride event
assessment part 1. IEEE Trans. Neural Syst. Rehabil. Eng. 22 (May (3)), 613-622.


http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref2
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref2
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref3
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref3
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref3
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref3
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref4
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref4
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref4
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref5
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref5
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref5
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref5
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref6
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref6
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref6
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref6
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref7
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref7
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref7
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref7
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref8
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref8
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref8
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref8
dx.doi.org/10.1145/2451176.2451184
dx.doi.org/10.1145/2451176.2451184
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref9
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref9
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref10
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref10
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref10
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref10
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref11
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref11
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref11
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref11
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref12
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref12
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref12
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref12
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref13
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref13
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref13
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref14
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref14
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref14
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref14
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref15
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref15
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref15
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref16
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref16
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref17
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref17
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref17
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref17
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref18
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref18
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref18
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref19
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref19
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref19
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref20
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref20
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref20
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref21
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref21
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref21
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref22
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref22
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref22
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref23
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref23
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref23
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref23
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref23
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref24
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref24
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref24
http://refhub.elsevier.com/S1071-5819(16)30089-1/sbref24

	A new multisensor software architecture for movement detection: Preliminary study with people with cerebral palsy
	Introduction
	Accelerometer
	Flex sensor
	System goals
	Mutilayer architecture

	Software architecture
	Layer 1: The hardware layer
	Layer 2: The filter layer
	Layer 3: The derivative layer
	Layer 4: The classification layer
	Layer 5: The FSM layer

	Implementation
	Flex sensor
	Accelerometer
	Sensor Setup
	Example of operation

	Methodology
	Participants
	Group A
	Group B

	Experiments
	Experiment Exp1
	Experiment Exp2
	Experiment Exp3


	Results
	Discussion
	The proposed architecture
	Group A
	Group B
	Group A vs. Group B

	Mechanical switch vs. proposed system

	Conclusions and future work
	Conflicts of interest
	Acknowledgments
	References




