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Abstract

The consumer-level devices that track the user’s gestures eased the design and
the implementation of interactive applications relying on body movements as in-
put. Gesture recognition based on computer vision and machine-learning focus
mainly on accuracy and robustness. The resulting classifiers label precisely ges-
tures after their performance, but they do not provide intermediate information
during the execution. Human-Computer Interaction research focused instead
on providing an easy and e↵ective guidance for performing and discovering in-
teractive gestures. The compositional approaches developed for solving such
problem provide information on both the whole gesture and on its sub-parts,
but they exploit heuristic techniques that have a low recognition accuracy. In
this paper, we introduce DEICTIC, a compositional and declarative descrip-
tion for stroke gestures, which uses basic Hidden Markov Models (HMMs) to
recognise meaningful predefined primitives (gesture sub-parts) and it composes
them to recognise complex gestures. It provides information for supporting
gesture guidance and it reaches an accuracy comparable with state-of-the-art
approaches, evaluated on two datasets from the literature. Through a devel-
oper evaluation, we show that the implementation of a guidance system with
DEICTIC requires an e↵ort comparable to compositional approaches, while the
definition procedure and the perceived recognition accuracy is comparable to
machine learning.

Keywords: Gestures, Classification, Hidden Markov Models, Compositional
gesture modelling, Declarative gesture modelling,

1. Introduction

The availability of consumer-level devices for tracking the user’s movements
fostered the design and deployment of interactive systems relying on gestural
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input. Some examples are the Nintendo Wiimote, Microsoft Kinect (version 1
and 2) and, more recently, Leap Motion, Intel RealSense, and all the newest5

controllers shipped with virtual reality headsets (e.g., Oculus Rift and HTC
Vive). Such hardware supports the adoption of gestural interaction in di↵erent
scenarios e.g., exhibitions, museums and public spaces and, above all, in the
entertainment field.

Similarly to other interaction modalities, the e↵ectiveness of gestural inter-10

action relies on how it supports the communication between the user and the
application. On the one hand, the machine requires interpreting correctly the
user’s input, recognizing accurately her movements. On the other hand, the
user must be aware of which movements are available for communicating with
the system.15

The research in computer vision and machine learning focused mainly on
the first problem, that is finding gesture tracking and recognition algorithms
that are robust to noise in the input signal. The recognition of dynamic ges-
tures (as opposed to static ones, that do not include a temporal dimension) has
been addressed using machine learning techniques that explicitly consider the20

temporal dimension, like Hidden Markov Models (HMM), Dynamic Time Warp-
ing (DTW), Time-Delay Neural Networks (TDNN) and Finite-State Machines
(FTM) [1, 2, 3], as well as traditional supervised classification algorithms like
support vector machines (although they are more suited to static gestures [1]).
All these approaches reached a very high accuracy in recognizing di↵erent ges-25

tures, and typically require the user to complete the entire gesture for recogniz-
ing it.

Such assumption does not match with the requirements set by the research on
the second problem, that is making the user aware of which gestures are available
for communicating with the application. It concluded that the interface should30

provide two pieces of information to the user during the gestural interaction:
the feedback and the feedforward [4], which may be designed taking into account
di↵erent options [5]. The former (feedback) informs the user about the e↵ects
of the actions she has already performed. The latter (feedforward) provides
information prior to any action, i.e. showing or anticipating the possible future35

actions. Figure 1 shows a sample visualization for such information considering
a stroke gesture on a touch panel. The visualization both informs the user on
her previous actions and guides her in concluding the interaction correctly.

In order to design and implement such guidance, the developer needs to
establish which portion of a gesture has been completed, together with informa-40

tion on the expected conclusions of the movement, which may be more than one.
The solutions for having a precise recognition and a usable interface diverge ex-
actly at this point. On the one hand, the classification approaches require that
the user completes the gesture for recognizing it, providing a very good accu-
racy. Since a gesture spans over a perceivable amount of time for the user, the45

interface (UI) often requires to provide guidance during such time, and this is
not supported by classification algorithms. On the other hand, di↵erent engi-
neering approaches in the literature model gestures through composition and/or
declaration [6, 7, 8, 9, 10], and they allow receiving events for the recognition
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Figure 1: A simple guidance system for stroke gestures for a touch interface. It shows the pre-
vious touch positions with a black line (feedback) and the possible completions (feedforward).
In this example, the system understands either an N stroke (in red) or M (in green).

of a whole gesture and its sub-parts. These approaches support e↵ectively the50

development of guidance systems in a UI. However, the sub-part identification is
currently achieved through geometric heuristics that reach a much lower recog-
nition accuracy if compared with the classification techniques in the state of the
art. This may represent a treat for the UI overall usability when the gesture
types and/or the context of use require a precise recognition.55

In this paper, we fill the gap between these two fields of research. We define
a declarative and compositional model for describing stroke gestures according
to primitives (ground terms) and a set of compositional operators (iterative,
sequence, parallel and choice) that leveraged on existing definition in the lit-
erature [6, 7], and it reaches an accuracy comparable with the state-of-the-art60

approaches in gesture recognition while supporting the sub-gesture identifica-
tion.

For achieving such results, we created a set of algorithms taking as input the
model of a complex gesture and returns a composite classifier, which connects
basic HMMs recognizing the gesture primitives. The resulting composite HMM65

supports the recognition of the whole gesture and its sub-parts: the composition
associates a specific sub-part to each HMM state, so the Viterbi algorithm [30]
provides both the most likely state and sub-part sequence. In addition, we
exploit the same property for predicting the most likely completion for a partial
gesture through the forward algorithm [28]. This constitutes a novel approach to70

the problem, combining the advantages of classifiers providing an accurate and
robust recognition together with the inspectability property of the declarative
approaches.

The method, called DEICTIC (DEclaratIve and ComposiTional Input Clas-
sifier), maps the composite HMM states to the underlying primitives which75

constitute it. For each sample of the gesture sequence it identifies the most
likely list of primitives that the user already performed (useful for providing

3



feedback in Figure 1) and the most likely primitive that the user will perform in
the future (useful for providing feedforward in Figure 1).

We validate the proposed methodology showing its accuracy on two datasets80

from the literature (the 1$ [11] and the N$ [12]), which is comparable with
state-of-the-art approaches. In addition, we prove the advantages in developing
a guidance system for a gestural UI through a developer evaluation.

The paper is organised as follows1: in Section 2 we summarise the existing
approaches in the literature for recognising gestures and using them in the UI de-85

velopment; in Section 3 we introduce the gesture modelling syntax; in Section 4
we describe the algorithm for composing HMMs; in Section 5 we summarise the
advantages and limitations of the approach for the UI development; in Section 6
we evaluate DEICTIC against the heuristic and machine learning classification
approaches with developers; in Section 7 we measure the accuracy on two stroke90

gesture datasets; in Section 8 we discuss the conclusions and future work.

2. Background and Related work

In this section, we discuss a set of approaches for recognising gestures able
to identify their sub-parts. The definition of gesture sub-part varies in di↵er-
ent research fields. We will first introduce the classification approaches most95

relevant to our work, then we detail the main approaches based on declarative
models.

2.1. Classification approaches using primitives

Classification methods that identify a set of sub-parts (or primitives) com-
mon to di↵erent gestures have already been proposed, either for increasing the100

recognition rate or to reduce the training set size in learning-based approaches.
Primitives can be broadly defined as a set of distinguishable patterns from which
either a whole movement or a part of it can be reconstructed. Di↵erent, specific
definitions of “primitive” have been considered in the literature: they may rep-
resent basic movements (e.g., raising a leg, moving an arm to the left), static105

poses, or characteristic patterns of low-level signals like the Fast Fourier Trans-
form. In the following, we give representative examples for each interpretation
of the primitive concept.

In [14] primitives are identified using a bottom-up clustering approach aimed
at reducing the training set size and at improving the organisation of unlabeled110

datasets for speeding up its processing. Gestures are then labelled with se-
quences of primitives, which is close to a representation useful also for building

1The paper is an extended version of the work submitted in [13], which presents only the
overall idea and it does not discuss i) the definition of the stroke gesture modelling language;
ii) the composition algorithms for building composite HMMs; iii) the generation of a composite
HMM from a gesture expression; iv) the accuracy evaluation against state of the art techniques
with well-known datasets; v) how the gesture modelling and recognition technique may be
applied for supporting feedback and feedforward in gesture interfaces and vi) the developer
evaluation.
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UIs. However, since primitives are identified automatically, they are di�cult
to understand for designers while creating feedback and feedforward systems.
In [15] primitives are defined in a context-grammar established in advance us-115

ing a top-down approach, which is more suitable for UI designers since they can
select meaningful primitives. However, they may have problems in identifying
those easily distinguishable from each other, since usually they do not have a
clear understanding of the underlying classification algorithms.

In [16] primitives are used together with a three-level HMM classifier archi-120

tecture for recognising i) the primitives, ii) their composition and iii) the pose
or gesture. However, in this case, unsupervised learning was used for defining
both primitives and their composition, which is not suitable for building UIs.

A set of primitives that suits better the designer’s understanding includes
3D properties of the movement trajectory. For instance, in [17] primitives iden-125

tified in a 2D video are used for classifying 3D movements. Here the primitives
are functions on the 2D features that represent the user’s state. Holte et al. [18]
propose a representation more linked to geometric features in the 3D space for
identifying primitives; however, both approaches require the understanding of
the underlying mathematical representation, which is not feasible for UI design-130

ers that usually do not have such skill.
To our knowledge, Kim et al. [19] proposed the most similar approach to the

work discussed in this paper. It decomposes gestures into application-specific
“primitive strokes”, and uses a distinct HMM for modelling each stroke; each
gesture is then modelled by a composite HMM obtained by concatenating the135

corresponding stroke models. This technique is valid for describing stroke se-
quences, which corresponds to the sequence operator in our modelling language.
Our approach is able to define more complex composite gestures, including it-
erations (iterative operator), alternative paths (choice operator) and parallel
stroke recognition (parallel operator). In addition, the method in [19] requires a140

re-training step with samples of the complete gesture for avoiding degradation
in the recognition performance. Our approach does not need this step, as we
show in section 7.

2.2. Gesture description models

In this section, we summarise di↵erent compositional approaches based on145

heuristic gesture recognition. We point out that none of them includes a formal
evaluation of the recognition accuracy.

Kammer et al. [20] introduced GeForMT, a multitouch gesture formalisation
language that tries to fill the gap between the high-level complex-gestures (such
as pinch to zoom) and the low-level device events, using an Extended Backus-150

Naur form grammar. Basic touches represent the basic movements (move, point,
hold, line, circle and semicircle), composed using di↵erent operators (parallel
and sequential). The model tracks the objects and the area manipulated in the
interface.

Scholliers et al. [21] defined Midas, an architecture for recognising gestures155

according to a set of rules, which are matched against a set of input facts by a
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logical rule inference engine. The rules work on di↵erent features, such as the
2D positions and speed, and the tracking state (appear, move and disappear).
Each rule consists of two components: a prerequisite part and an action part.
The first defines the input fact pattern to be recognised while the second the160

UI behaviour. Mudra [22], a follow-up research from the same group, extends
Midas for multimodal interfaces. It unifies the input stream coming from di↵er-
ent devices, exploiting di↵erent modalities. Designers define both the low-level
handling events and the high-levels rules, combining them into a single software
architecture.165

Khandkar et al. proposed GDL [23] (Gesture Description Language), a
domain-specific language designed to streamline the process of defining ges-
tures. GDL separates the gesture recognition code from the definition of the UI
behaviour. This work defines three components: the gesture name, the code for
the gesture validation and a return type. The last component represents the170

data notified with a callback to the application logic.
More structured and expressive declarative methods are Proton++ [8] and

GestIT [7, 6], which we consider as two of the most complete declarative and
compositional models for gestures. They clearly separate the concerns of UI
description and behaviour, and they define a set of operators that are both175

understandable and e↵ective for designers.
Proton++ is a multitouch framework allowing developers to declaratively de-

scribe custom gestures, separating the temporal sequencing of the events from
the code related to the UI behaviour. Multitouch gestures are defined as reg-
ular expressions, where literals are identified by a triple composed of: i) the180

event type (e.g., touch down, move and up), ii) the touch identifier (e.g., 1 for
the first finger, 2 for the second etc.), iii) the object hit by the touch (e.g.,
the background, a particular shape etc.). It allows developers to declaratively
describe custom gestures through regular expressions, using the concatenation,
alternation and Kleene’s star operators. An improved version of the framework185

(presented in [9]) supports tracking a set of computed attributes associated
with an expression literal. For instance, developers can define a heuristic for
validating the on-screen finger trajectory and bind it to touch move events.
The framework raises the associated events (i.e. it recognises the literal) only if
trajectory accepted by the heuristic e.g., it moves north, north-west, south etc.190

GestIT [7, 6] follows a similar approach, including operators for defining more
advanced gestures. As discussed in [6], they are a superset of those defined by
regular expressions. Gestures are modelled through expressions defining their
temporal evolution, combining two main elements: ground and composite terms.
A ground term is the smallest block for defining a gesture: it describes an atomic
event which cannot be further decomposed. In general, it is associated with
a value change of a feature, such as the pixel coordinates of a touch on the
screen or the position and rotation of a skeleton joint. Composite terms are
used for defining more complex gestures through a set of operators (iteration,
sequence, parallel, choice and disabling). We will use them for the rest of
this work since they are a superset of those included in Proton++ [6]. As a
simple example, we define here a grab gesture for selecting an object in the user
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interface closing a hand (equation 1). It begins with an iterative movement of
the right hand (mH⇤

r ), which models the pointing before the object selection,
which is interrupted (the first disabling operator) by a change of the hand state
to closed (sHr[closed]). After that (the sequence operator), the user can move
the closed hand for e.g., moving the selected object (mH⇤

r ) and the gesture
terminates (the second disabling operator) when the user reopens the hand
(sHr[open]).

(mH⇤
r [> sHr[closed]) � (mH⇤

r [> sHr[open]) (1)

(Grab gesture)

In this work, we start from the modelling experience we acquired in defining
GestIT and we try to fix its main drawback, which is shared with Proton++:
they both use heuristic recognition approaches for ground terms, which do not
guarantee a good recognition accuracy. We advance the state of the art in
this field showing that the modelling technique can be used for automatically195

creating highly-accurate HMM classifiers supporting the identification of gesture
sub-parts during the execution and the prediction of the most likely gesture
completion.

3. Gesture Description

In this section, we introduce a simple modelling language for stroke ges-200

tures that, following an approach similar to other declarative approaches (e.g.,
GestIT [7, 6]). It starts from the definition of a ground term set and it ob-
tains more complex gestures through composition. We have been inspired by
commonly-used UI widget toolkits, which allow developers to create their inter-
faces exploiting simple, general purpose objects that shape complex visualisa-205

tions through the composition. The language is both understandable for gesture
designers and supports the automatic classifier generation from gesture models.
We focus on stroke gestures, assuming that the user’s input is expressed drawing
two-dimensional paths on a screen or in mid-air.

In DEICTIC, simple and complex gestures are represented as expressions:210

literals represent the basic elements (ground terms) that can be combined for
obtaining more complex paths. The temporal evolution is defined by the com-
position operators semantics. They allow creating complex gestures defining
how a composite gesture evolves. In the following sections, we define both the
ground terms and the composition operators.215

3.1. Ground terms

The ground terms in DEICTIC are simple building blocks for defining strokes:
points, lines and arcs. On the one hand, they guarantee a good level of expres-
siveness, since they allow modelling both linear and curve paths. On the other
hand, they are a simplified representation of 2D paths that keep the language220

concise and understandable. We do not consider this as a limitation since the
user’s input has a coarser granularity.
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Figure 2: DEICTIC sample primitives. The first defines a stroke starting at (3, 3); the second
defines a line that, assuming that the current position is (1,2), moves 4 units in the x and
2 units on the y axis; the third defines an arc that, starting from the position (2,1) moves 3
unit on both axes, in a clockwise direction; the fourth defines an arc that, starting from the
position (4,1) moves 3 units on both axes, in a counter-clockwise direction.

Points. They define the starting position of the stroke (e.g., the user touches
the screen) simply specifying x and y coordinates in the plane. We represent a
point with the notation P (x, y). A stroke must always start with a point, and225

its coordinates define the current stroke position. Multi-stroke gestures have
multiple point terms in their definition.

Lines. They define a linear movement of a specified o↵set in the x and y axes,
starting from the current stroke position. We represent a line with the notation
L(�x,�y).230

Arcs. They are quarters of a circle, starting from the current stroke position
and finishing at the specified o↵set, following a clockwise or counter-clockwise
direction. We represent clockwise arcs with the notation A�(�x,�y), and
counter-clockwise arcs with A (�x,�y). If |�x| 6= |�y| the arc is resized
according to the o↵set ratio.235

Figure 2 shows a graphical representation of the four primitives. The current
position is represented by a filled circle, the stroke path with an arrow.

3.2. Composition operators

Starting from ground terms, we define complex expressions composing terms
through a set of temporal operators, namely iterative, sequence, parallel and240

choice.

Iterative Operator. E⇤ repeats an expression E an indefinite number of times.
In order to maintain the compositional properties of the resulting gesture classi-
fier, an iterated expression must either start with a Point ground term, or begin
and finish in the same position. We will discuss such requirement more in deep245

in Section 4.3.

Sequence Operator. The expression E1 + E2 + · · · + En defines a set of sub-
strokes that must be executed in sequence, from left to right. Each expression
considers as the current point the last position of the previous one.
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Choice Operator. The expression E1|E2| . . . |En defines a set of alternatives for250

performing a stroke. The entire expression is completed when one among the
sub-strokes is executed.

In order to maintain the compositional properties of the resulting gesture
classifier, the alternatives must either end their path at the same point or con-
clude the stroke. In the first case, the choice expression models a set of alterna-255

tive paths for reaching the same point. In the second case, it either concludes
the entire gesture or is followed in sequence by a point primitive. We will discuss
the technical motivation for this requirement in Section 4.5.

From an expressiveness point of view, if the alternatives must end at di↵erent
points, it is still possible to model the stroke with DEICTIC, but the gesture260

continuation must be distributed for each alternative. We show an example in
equation 2: the two lines in the choice end in di↵erent points. In order to satisfy
the requirement, it is su�cient to distribute the sequence with the arc on both
lines.

P (0, 0) + (L(1, 1)|L(�2,�2)) +A (3, 3) =
P (0, 0) + (L(1, 1) +A (3, 3)|L(�2,�2) +A (3, 3)) (2)

Parallel Operator. The expression E1⇥E2⇥ · · ·⇥En represents a set of strokes265

that can be performed at the same time. It is useful for modelling e.g., multi-
touch gestures, where the user controls more than one stroke on the same screen.
The operator does not fix any particular ordering between the two gestures but,
in order to complete the recognition of the entire expression, both gestures must
be performed.270

3.3. Modelling examples

We complete the discussion of the description language showing a set of
modelling examples. We refer to the stroke gestures of two well-known datasets,
namely the 1$ gesture dataset [11] and the N$ gesture dataset [12]. They contain
respectively di↵erent examples of single stroke and multiple stroke gestures. We275

used these datasets for evaluating the performance of our approach in Section 7.
The first example we discuss is depicted in Figure 3, a multi-stroke gesture

representing a pitchfork ( ). It consists of two di↵erent strokes, one describing
a vertical line, intersected by a counter clock-wise half circle. For modelling the
straight line, it is su�cient to specify the starting point and a line primitive280

going in the negative direction along the y-axis (s1). The half circle consists
of a sequence containing a starting point positioned on the left of the line, and
two arc primitives: one moving down-right and one going up right (s2). The
final gesture should not take into account the stroke order, so we define a choice
between s1 followed by s2 or s2 followed by s1. The selected points for modelling285

the gesture are arbitrary, the important part is the relative size of the primitives
since in the recognition process we centre and normalise the size of both models
and samples. Figure 3 shows graphically the resulting ideal definition and a set
of real executions of the considered gesture.
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Pitchfork :  =s1 + s2 | s2 + s1

s1 =P (0, 4) + L(0,�4)

s2 =P (�2, 4) +A (2,�2) +A (2, 2)

Figure 3: Modelling the pitchfork ( ) gesture from the N$-dataset [12] with a DEICTIC
expression. We show a graphical representation of the ideal model, together with 10 real
gesture samples.

We apply the iterative operator for closed paths, for repeating a gesture290

an indefinite number of times, or when the stroke begins with a point. As an
example, we consider the circle gesture in Figure 4 (�), consisting of a single
stroke containing four consecutive arcs. The repetition of the entire circle an
indefinite number of times requires the user to lift the finger or the stylus from
the screen and put it down again for repeating the circle, since it contains a295

point term (P (0, 0)) at the beginning of the sequence. Instead, if we repeat
only the arcs, we can model a repeated counter-clockwise movement on a closed
circular path, that may be used e.g., as a rewind command (defined as ¥ in
Figure 4) in a video player, mimicking the interaction with a real handle. It is
possible to iterate the sequence of arcs in ¥, since it starts and it ends at the300

same point (the origin).
Finally, we may allow our user to perform the circle gesture with one hand

and the pitchfork with the other one, simply putting them in parallel ( k �).
In this case, the temporal ordering is completely up to the user: she may start
drawing the circle and then the pitchfork or vice-versa.305

4. Building HMMs from the gesture definitions

In defining DEICTIC, our objective was to combine the declarative descrip-
tion advantages for UI developers together with the recognition accuracy and
the robustness to input fluctuations of the state-of-the-art classification tech-
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Circle: � =P (0, 0) +A (�3,�3) +A (3,�3) +A (3, 3) +A (�3, 3)

Rewind: ¥ =P (0, 0) + (A (�3,�3) +A (3,�3) +A (3, 3) +A (�3, 3))⇤

Figure 4: Modelling a circle gesture from the 1$-dataset [11] with a DEICTIC expression. We
show a graphical representation of the ideal model, together with 10 real gesture samples.

niques. For deriving a classifier from a declarative gesture model, we use Hidden310

Markov Models (HMMs), provided their ability to describe stochastic temporal
processes and their internal graph representation of states.

Di↵erently from the other work in the literature, we do not use HMMs for
recognizing the whole gesture when the user completes the stroke, but we use
them for recognizing also the gesture sub-parts, defined through a declarative315

approach by the UI designer. This marks a di↵erence from the other research on
classification based on gesture primitives, which are usually segmented through
an unsupervised learning step and hard to understand and use for UI designers.

In this section, we first summarise the definition of a Hidden Markov Model,
in order to point out the main properties we exploit in our work, and explaining320

the notation we use in this paper (for a complete description, please refer to [24]).
Then, we discuss how we obtain an HMM for recognising the ground terms
(lines and arcs) introduced in the description language. After that, we describe
an algorithm for creating an HMM associated with a composite term, starting
from the ones that are associated with each operand. Finally, we discuss the325

algorithm that, starting from the definition of a gesture and a training set of
lines and arcs, creates an HMM able to recognise complex gestures.

4.1. Hidden Markov Models

A Hidden Markov Model (HMM) is a probabilistic model that maps a se-
quence of observations into a corresponding sequence of labels. They are special330

cases of weighted automata, defined through a finite set of states and a set of
transitions with the associated weights. In the case of HMMs, such weights
correspond to the probability of firing a transition. Therefore, considering a
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single state, the sum of the weights on all its transitions to any other state is 1.
HMMs satisfy the Markov assumption, stating that the probability of being in335

a particular state at the time t depends only on the probability of being in its
incoming states at t� 1.

HMMs model events that are “hidden”, i.e. not directly observable in the
world, but influencing a set of observable events, which instead can be measured
through sensors. In the gestural interaction domain, we do not observe directly340

the gesture performed by the user. Instead, we register a set of features tracked
by an input device (e.g., a touchscreen or a Microsoft Kinect). The relationship
between an observable event value and a given internal state is modelled either
by probability distribution or a probability density function, respectively in the
discrete and continuous case.345

Formally, an HMM �(S, V,A,B) can be defined by:

• A set of states S.
• A vocabulary of values for the observable events V
• A transition probability matrix A. Given two states si, sj 2 S, Ai,j is the
probability of firing the transition from si to sj . Among these states, we350

denote the initial state as s0 and the final state as sf .
• A sequence of observation likelihoods B. Given a value v 2 V , bi(vj) is
the probability of observing the value vj 2 V being generated from the
state si 2 S. If the observable events have continuous values, bi(x) is the
probability density function for generating a value from a state si 2 S.355

The probability of observing any value in s0 and sf is zero.

According to this definition, we can summarise the following properties:

fX

j=0

Aij = 1 8i (3)

(Outgoing probabilities)

P (si|s1, s2, . . . , si�1) = P (si|si�1) (4)

(Markov Assumption)

P (vi|s1, . . . , si, . . . , si+k, v1, . . . , vi, . . . , vi+k) = P (vi|si) (5)

(Obvervation independence)

The equation 3 ensures that, in an HMM, the state transitions have well-
defined probabilities; the equation 4 assumes that a state transition depends
only on the current state; equation 5 expresses that an observed event value
depends only on the current state.360
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4.2. Ground terms

For defining a ground term in DEICTIC, we need to train an HMM able
to recognise a particular segment (e.g., a straight line or an arc). This requires
establishing the set of features that better describe the path and the set of values
they can take. The selected features, according to their definition domains, fix365

the possible observations of the resulting HMM.
Besides the observation features, for training the HMM we need to define its

number of states and the transition topology. Temporal processes like gestures
and speech recognition are well suited for the left-to-right (or Bakis) topol-
ogy [19, 25], which includes arcs between two states si and sj only if j � i or,370

equivalently, if the transition probability matrix A is upper triangular. In this
paper, we use a Bakis topology for the ground terms, but the composition works
also if di↵erent topologies are used (e.g., ergodic) [24].

Once the topology and the observation domain are established, the last step
is the HMM training for learning the parameters in A (the transition probability375

matrix) and B (the vector of the observation distributions). The learning phase
is supported by a well-known algorithm such as Viterbi learning [26] or Baum-
Welch [27] (we use the latter in this work). The resulting HMM can be used for
the recognition of a specific segment in di↵erent gesture definitions.

4.3. Iterative operator380

The iterative operator allows recognising the same gesture an indefinite num-
ber of times. Starting from an HMM that defines a gesture g, the HMM for the
gesture g⇤ can be defined adding a transition from all states connected with the
ending state sf to all states that are connected with the start state s0, in order
to create a loop in the HMM topology. The observation distribution vector385

remains the same.
Figure 5 depicts the HMM construction. The states filled in green (F0 . . . Fn)

belong to the forward star of s0, which is the starting state of the HMM as-
sociated with the gesture g. Similarly, the backward star of the final state is
represented by the states filled in red (B0 . . . Bm). The HMM corresponding390

to the g⇤ gesture is obtained connecting each red state with each green state,
allowing recognition loops. The original transition probability from a red state
to the final state is distributed uniformly among all the transition to the green
states and the final state.

Algorithm 1 defines more in detail how to obtain an HMM for recognising395

the iteration of a gesture g⇤, given the HMM for recognising g. In the algorithm
definition, we distinguish the states and the transitions of an HMM using a
superscript notation (e.g., sg0 is the initial state of the g HMM, while sif is the
final state of the i HMM).
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Figure 5: The topology of an HMM for the iterative operator. The s0 is the starting state
with its forward star F0 . . . Fn; sf is the final state with its backward star B0 . . . Bm; the
blue rectangle represents all the other states. The iterative operator is defined by the red arcs
connecting each Bi with all Fj .

ALGORITHM 1: Iterative Gesture HMM

Input: A HMM g(Sg, V g, Ag, Bg
) recognising the g gesture

Output: A HMM i(Si, V i, Ai, Bi
) recognising the g⇤ gesture

i Clone(g) ;
↵ count((sg0, u) 2 Ag

) ;

for (u, sgf ) 2 Ag, (sg0, v) 2 Ag do Ai
u,v  

Ai
u,f

↵+1 ;

for (u, sgf ) 2 Ag do Ai
u,f  

Ai
u,f

↵+1 ;

return i

400

4.4. Sequence operator

The sequence operator allows recognising two gestures in the specified order.
If we have an HMM for recognising the gesture g and one for recognising the
gesture h, we define an HMM for g + h simply connecting the end state of g
with the start state of h from the topology point of view. However, since the405

starting and the final state in an HMM must be unique, those of the original
models cannot be connected directly. Therefore, the idea is to bypass the final
state of g and the starting state of h, adding a transition from the backward
star of the former to the forward star of the latter. We delete the arcs in the
backward star of sgf and in the forward star of sh0 . Such operation is depicted410

in Figure 6: the red states represent the backward star of sgf (Bg
0 . . . B

g
m), while

the green states represent the forward star of sh0 (F0 . . . Fn). The sequence g+h
is defined connecting each red state with each green state.

In the general case, two ground terms may use two di↵erent feature sets.
For instance, it is possible that a term considers the 2D position of the finger on415

a screen, while another one considers the direction angle. If the features used
by g are di↵erent from those used by h, we support the composition creating a
generic observation value for the composite HMM, which is a vector consisting
of the union of all features considered by both g and h. Each state in the
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composed model must specify an emission probability for all features used in420

both g and h. Since a state of the composed HMM g + h derives either from g
or h, the observation distribution vector entry corresponding to each state must
be “completed” with the features that were not considered in the original HMM.
This can be achieved adding a uniform distribution across all the possible values
of the features that are not considered in that state.425

In the previous example, if g considers the 2D position of the finger on a
screen, while the h considers the direction angle, we must complete the observa-
tion distribution vector in g+h adding the emission probability distributions for
the direction angle in correspondence of the states that originally were defined
in g, and for the 2D position in correspondence of the states that belonged to430

h. In both cases, the HMM should “ignore” the new features, therefore we add
a uniform distribution across all the possible values for the angles of g and all
the positions in h.

Algorithm 2 shows how to define g+h given an HMM recognising g and one
recognising h.435

Figure 6: The topology of an HMM for the sequence operator. sgf is the final state of the

HMM associated with g, while Bg
0 . . . Bg

m is its backward star; sh0 is the starting state of the
HMM associated with h, while Fh

0 . . . Fh
n is its forward star; the blue rectangles represent all

the other states of both HMMs. The sequence operator is defined by the red arcs connecting
each Bi with all Fj .
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ALGORITHM 2: Sequence Gesture HMM

Input: g(Sg, V g, Ag, Bg
) and h(Sh, V h, Ah, Bh

) recognising respectively the g
and h gesture

Output: s(Ss, V s, As, Bs
) recognising the g + h gesture

n |Sg|� 1; m |Sh|� 1; ;

s EmptyHMM(n+m) ;

Ss  (Sg \ sgf ) [ (Sh \ sh0 ); V s  V g [ V h
; As  0n+m,n+m ;

Bs  CompleteDistributions (Bg
, Bh

, V s
, V g

, V h
, n+m);

/* copy the transitions from g */
for (u, v) 2 Ag, v 6= sgf do As

u,v  Ag
u,v ;

/* copy the transitions from h */

for (u, v) 2 Ah, v 6= sh0 do As
u+n,v+n  Ah

u,v ;

/* connecting the ending states in g with the starting states in h */

↵ count((sh0 , u) 2 Ah
) ;

for (u, v) s.t. Ag
u,f 6= 0, Ah

0,v 6= 0 do Ad
u,v+n  

Ag
u,f

↵ ;

return Ss

function CompleteDistributions (Bg, Bh, V s, V g, V h,n)
B  EmptyDistributionVector(V s

, n) ;
for u 2 Ag, v 2 V s do

if v 2 V g then Bu[v] Bg
u[v] ;

else Bu[v] unif(v) ;

end

for u 2 Ah, v 2 V s do
if v 2 V h then Bu+n[v] Bh

u [v] ;
else Bu+n[v] unif(v) ;

end
return B

4.5. Choice operator

The composition of two gestures g and h in choice allows the recognition of
either g or h. In order to build the composite HMM for g|h, we put the original
models in two separate recognition lines: there is no transition between the440

states originally belonging to g and the ones belonging to h. The only contact
points are the starting states, which scatter the recognition lines, and the final
state that collects them.

The schema is depicted in Figure 7: we connect the starting state with the
forward state of both sg0 and sh0 . We set the transition likelihood to one-half of445

the value one in the original HMM, in order to have the two gestures in choice
equally likely. The elements in the backward star of sgf and shf are connected
with the final state, with one-half of the original transition probability. We
remove the arcs in the forward star of sg0 and sh0 together with those in the
backward star of sgf and shf .450

As happens for the sequence operator, the observation distribution vector for
both recognition lines must be completed with respect to the features exploited
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by the other operand with a uniform distribution over all possible feature values.
In this way, both recognition lines belonging to g and h ignore the values that
were not originally in their own feature set.455

It is worth pointing out that composing gestures in choice decreases the
probability assigned by the original HMMs to both g and h instances since it
splits the recognition line for modelling the selection uncertainty. If di↵erent
levels of choices are nested, this may degrade the recognition sensibly.

We can apply a simple optimisation in the composition when the choice460

is specified at the first level of the expression tree. In this case, an explicit
composition of the choice operands is not needed: we simply select the operand
that assigned the maximum probability to the considered sequence and we use
it for both state labelling and likelihood computation. Since the complexity of
the forward algorithm is quadratic on the number of hidden states, working on465

smaller HMMs decreases the recognition time. Such optimisation is frequent in
real-world gestural applications since many of them support the selection of a
gestural command from a given set. In addition, this would allow also to include
garbage models (arbitrary gestures that the application should ignore) without
requiring an explicit modelling in an interactive recognition scenario.470

Figure 7: The topology of an HMM for a choice operator. The two original HMM are put in
two separate recognition lines.
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ALGORITHM 3: Choice Gesture HMM

Input: g(Sg, V g, Ag, Bg
) and h(Sh, V h, Ah, Bh

) recognising respectively the g
and h gesture

Output: c(Sc, V c, Ac, Bc
) recognising the g + h gesture

n |Sg|� 2; m |Sh|� 2; ;

c EmptyHMM(n+m+ 2) ;

Sc  (sc0 [ Sg [ Sh [ scf ) \ {sg0, s
g
f , s

h
0 , s

h
f}; ;

V c  V g [ V h
; Ac  0n+m+2,n+m+2 ;

Bs  CompleteDistributions (Bg
, Bh

, V s
, V g

, V h
, n+m);

/* create the recognition line for g */
for (u, v) 2 Sg \ {sg0, s

g
f} do Ac

u,v  Ag
u,v ;

/* create the recognition line for h */

for (u, v) 2 Sh \ {sh0 , shf} do Ac
u+n,v+n  Ah

u,v ;

/* connect the starting state with the g and h recognition lines */
for (sg0, v) s.t. Ag

0,v 6= 0 do Ac
0,v  1

2 ·Ag
0,v ;

for (sh0 , v) s.t. Ag
0,v 6= 0 do Ac

0,v+n  1
2 ·Ah

0,v ;

/* connect the g and h recognition lines with the ending state */
for (v, sgf ) s.t. Ag

v,f 6= 0 do Ac
v,f  1

2 ·Ag
v,f ;

for (v, shf ) s.t. Ah
v,f 6= 0 do Ac

v+n,f  1
2 ·Ah

v,f ;

return Sc

4.6. Parallel operator

The parallel operator supports the simultaneous recognition of two gestures,
performed independently. If we consider two gestures g and h, such indepen-
dence requires that either g and h have a disjoint set of features or those in475

the intersection come from di↵erent data sources. For instance, the definition
of two hand trajectories have clearly an intersection in their feature sets since
at least the hand position is considered in both gestures definition. However, it
is possible to compose them in parallel if we assign the first-hand trajectory to
the right hand and the second to the left, or vice-versa.480

Considering the creation of a composite HMM for g ⇥ h, the independence
leads to two important assumptions:

1. A transition event in g is independent from all transitions in h and vice-
versa.

2. The observation of a value in V g is independent from the observation of485

a value in V h.

The composite HMM must represent all the possible combinations of states
existing in g and h. Therefore, it contains a state for each pair (sg, sh). We
include a transition between two states in g ⇥ h if it is valid in both g and h.
Considering two states (sgi , s

h
j ) and (sgx, s

h
y), we add a transition between them490

only if Ag
i,x 6= 0 and Ah

j,y 6= 0. The transition probability is Ag
i,x · Ah

j,y, since
the two events are independent. Finally, the observable values of g ⇥ h are the
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concatenation of those observable from g and h and they are independent from
each other.

Algorithm 4 summarizes the procedure for building the HMM. Figure 8495

shows the topology for the composition of two left-to-right HMMs, both con-
sisting of 3 states. The state names in the parallel HMM correspond to the pair
of states in the original HMM.

We can avoid using a quadratic number of states when the parallel compo-
sition occurs at the first level of the expression tree. In this case, we maintain500

separate the two HMMs, providing as state labels the pair (gi, hi) where gi and
hi are respectively the state label assigned by g and by h to observations in the
sequence. The sequence probability, since the two gestures are independent, is
the product of the probability assigned by g and h.

Figure 8: The topology of an HMM for a parallel operator, considering two Bakis terms
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ALGORITHM 4: Parallel Gesture HMM

Input: g(Sg, V g, Ag, Bg
) and h(Sh, V h, Ah, Bh

) recognising respectively the g
and h gesture

Output: p(Sp, V p, Ap, Bp
) recognising the g k h gesture

n |Sg|� 2; m |Sh|� 2; ;

c EmptyHMM(n⇥m+ 2) ;

Sp  (Sg \ {sg0, s
g
f}) \ (Sh \ {sh0 , shf}) ;

for u 2 (Sg \ {sg0, s
g
f}), v 2 (Sh \ {sg0, s

g
f}) do Bp

(u,v)  indep(Bg
u, B

h
v ) ;

/* setting transitions from the starting state */

for (sg0, v) 2 Ag, (sh0 , u) 2 Ah do Ap
0,(u,v)  Ag

0,u ·Ah
0,v ;

/* setting transitions to the final state */

for (v, sgf ) 2 Ag, (u, shf ) 2 Ah do Ap
(u,v),f  Ag

u,f ·Ah
v,f ;

/* parallel transitions in g and h */

for (u, v) 2 Ag, (x, y) 2 Ah do Ap
(u,x),(v,y)  Ag

u,v ·Ah
x,y ;

return Sp

505

4.7. Creating an HMM from a gesture description
Having defined the algorithms for composing HMMs according to the gesture

description language, we summarise here how we obtain an HMM from a gesture
expression. We consider as classification features the x and y position of a stroke
over time.510

The first step is obtaining the normalised version of the expression: starting
from the description, we calculate a bounding box for the gesture definition, we
centre it on the origin and we normalise the bounding box height and width in
order to obtain a square enclosing the gesture definition.

The second step is training the HMMs for the ground terms. We assume515

having a training dataset for the left to right lines, one for clockwise arcs (start-
ing from 0 to ⇡

2 ) and one for counterclockwise arcs (starting from ⇡
2 to 0). All

samples are normalised in the same way we described for gesture descriptions.
For each line or arc term in the gesture expression, we apply to the cor-

responding training dataset a scaling, rotation and translation transform, in520

order to match the considered ground term in the normalised gesture defini-
tion. In addition, the raw training data is uniformly resampled in space (using
the same approach described in [11]), which means that for each sample we
use n equidistant samples. In this way, we are able to train a forward (Bakis)
HMM for recognising each ground term in a complex gesture using the Baum-525

Welch [27] algorithm. We exploit the same (transformed) training dataset for
each primitive. We establish the number of states for each HMM considering
the relative length of the ground term in the whole gesture. The generation pro-
cedure defines a parameter representing the number of states per length unit s.
Therefore, if l is the normalised length of the line or arc, the number of states530

of the generated HMM is l · s.
After this step, we have an HMM trained for all ground terms included in the

gesture description. In order to obtain the final HMM, we apply the composition
algorithms described in the previous sections.
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In the recognition phase, we first apply to each gesture a preprocessing step,535

consisting of the same transformations we applied to the gesture model definition
(centring, scaling, translation, rotation and resampling). Then, the recognition
probability is computed through the forward algorithm [28].

5. Developing gesture interfaces with DEICTIC

In this section, we discuss a set of properties of the composition algorithms,540

which are important for the development of UI requiring feedback and feedfor-
ward, as discussed in the Introduction.

The gesture definition language, together with the HMM generation proce-
dures are suitable for building a generic gesture library, which enables interface
designers and developers to rapidly create classifiers simply writing an expres-545

sion. They do not need to provide any training example, since the primitive
dataset may be shipped together with the library support. We publicly shared
a Python reference implementation of the approach on GitHub [29] that allows
writing gesture expressions similar to the ones reported in this paper for build-
ing classifiers through the operator overload. As we better detail in Section 7,550

the resulting HMMs are robust enough for recognising with high accuracy stroke
gestures from di↵erent state-of-the-art datasets.

The composite HMMs support the identification of the ground terms states
inside them, for estimating the completion level of a gesture. This enables show-
ing which parts have been completed and the possible ways of completing it.555

Indeed, we can identify which ground term is currently handling the values com-
ing from the tracking devices from the most likely state in the HMM. It is easy
to prove by induction on the composition algorithms that either a state belongs
to a single ground term, or to an n-tuple of ground terms the user is allowed to
perform at the same time. The latter case is related to the composition through560

a parallel operator. Therefore, if we are able to find the most likely state se-
quence that may produce the tracked feature values, we are also able to identify
which ground terms have been performed or are currently progressing in the
recognition process. This is an instance of the well-known decoding problem in
the HMM theory, which can be solved using the Viterbi algorithm [30].565

From the mapping between states and ground terms derives another positive
e↵ect in developing gestural UIs. Given an HMM, we can predict the future
distribution of its internal states through the forward algorithm [28]. Therefore,
such mapping allows predicting the ground terms we will most likely encounter
in the future. Such information is what the designer needs for creating e↵ective570

feedforward systems.
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Triangle: 4 =P (0, 0) + L(�3,�4) + L(6, 0) + L(�3, 4)

Figure 9: Ground term decomposition of a triangle gesture sample from the 1$-dataset. Each
dot corresponds to a set of x, y coordinates of the sample point list. Points having a di↵erent
colour corresponding to di↵erent ground terms.

Figure 9 shows the ground term segmentation obtained applying the Viterbi
algorithm to a triangle gesture sample in the 1$-dataset, modelled with the
reported DEICTIC expression. For each point of the sequence, the algorithm
assigns the most likely state in the HMM. The point is green if such state belongs575

to the first line term, red if it belongs to the second line term, blue if it belongs
to the third one. Such segmentation is promising for supporting intermediate
feedback and feedforward in gestural UIs.

Our approach is currently limited in providing such information in the gen-
eral case since the features we use for classifying gestures need a preprocessing580

phase for supporting a position and scale independent recognition, which can-
not be executed without tracking the whole stroke. A solution may be using
a representation of the stream that works both with incremental updates and
with di↵erent sizes and positions of the same shape. We will investigate it in
future work. However, such preprocessing phase may be avoided in case the585

stroke position and the scale are known, as happens in the interface discussed
in section 6, where the user may execute gestures only inside the cells of a grid.

Our approach di↵ers from other composition techniques on HMMs [19] since
we neither retrain nor we fine-tune composite HMMs using samples of the whole
gesture. We train only ground terms using primitive samples, which may be590

shipped together with the recognition code, independently from the gesture set.
This means that designers who define their own composite stroke gestures start-
ing from predefined primitives are not required to collect a training dataset. The
evaluation in Section 7 shows that this is possible without a sensible degradation
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of the recognition accuracy with respect to other state-of-the-art approaches.595

The time spent for recognizing a gesture with a composite HMM depends
on the number of ground terms it contains. The model definition allows as-
sociating a probability to a sequence of feature values, through the forward
algorithm [28]. Its computation complexity is O(N2T ), with N the number of
hidden states and T the sequence length. While T does not depend on how we600

create an HMM, the composition has a clear impact on N . If we assume that
all ground terms have a comparable number of states, N grows linearly with
the composition operator count. A special case is represented by the parallel
operator, which squares the number of states. Overall, this is a limitation in our
approach: composing HMM requires increasing the number of states. Training605

HMM directly on complete gesture samples (which we call ad-hoc HMMs in this
paper) usually allows finding a good trade-o↵ between the recognition accuracy
and the number of states, which is connected with the likelihood computation
performance. However, it is worth pointing out that the ad-hoc solution requires
a training set for each composed gesture, while DEICTIC requires training only610

the ground terms, and this speeds up the training phase.

6. Developer evaluation

In this section, we detail the results of a user study for assessing how the
proposed method assists the UI developers in creating gestural interactions.
We compare the DEICTIC recognition support against heuristic and machine-615

learning approaches. The small number of participants in this study does not
allow us to provide conclusions on the robustness and accuracy of the approach,
which is assessed through publicly available dataset in Section 7.

6.1. Participants

We recruited a group of 17 developers, 14 males and 3 females. Their educa-620

tion level ranged from the High School Degree (5), Bachelor Degree (3), Master
Degree (5) and PhD (3). Most of them have a development experience between
1 and 5 years (9), 5 between 6 and 10 years and 3 more than 10 years. All
participants are fluent with Object-Oriented languages such as Java, C++ or
C#, about half of them know Javascript, PHP and PL/SQL, while they are less625

familiar with the other ones reported in Figure 10, left part. We asked them to
self-evaluate their experience with a group of development tasks relevant for the
evaluation. They have a mid-level experience in web and UI development, while
they have a low experience with gesture interface development and in using
machine learning techniques. Figure 10 shows the details on the participants’630

programming skills.
The recruited participants are a relevant sample considering the development

of a specific UI whose design was already established by another team during the
development process (e.g., by graphical or user experience experts). We simulate
the existence of di↵erent development libraries, which o↵er gesture recognition635

capabilities. They have to decide which one suits better the UI requirements.
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Figure 10: Participants’ experience with programming languages and development task.

6.2. Procedure

The evaluation consisted in the development of a simple gestural interface
for managing a 3⇥4 grid (see Figure 11, top part). In each cell, the user can
put a monster, a treasure cell, or she can leave it empty. Three simple stroke640

gestures support the control the content of each cell: a monster appears by
drawing a triangle, a treasure box by drawing a square, while an X stroke clears
the cell content. The participants were asked to create two variants of the
same application, which di↵er with respect to the guidance to be supported
as feedback while performing these gestures. This corresponds to having two645

hypothetical alternative versions requested by the UI design team.
In the first variant, the application uses a Line Feedback (see Figure 11),

which simply draws a red line as the user moves the finger on the screen. In
this configuration, the information required for drawing the line is simply the
sequence of the stroke positions over time. Since there is no need for interme-650

diate gesture recognition, the classification support is required only at the end
of the stroke. We inserted this task in the test for evaluating the di�culties in
modelling and recognising gestures through a given technique.

The alternative feedback design is OctoPocus [31], which shows a dynamic
guidance while the user performs the stroke. Figure 11, bottom part, shows the655

feedback for a triangle gesture. When the stroke starts, it displays the possible
gesture completions using di↵erent colours. While the user performs the stroke,
it updates the representation encoding in the colour opacity the predicted like-
lihood (the more opaque the colour, the more the system is confident that the
user is performing the correspondent gesture). In Figure 11 the triangle opacity660

increases since the user is following its shape. Finally, when the user lifts the
finger from the screen, the application executes the command associated to the
most likely gesture. OctoPocus requires information on partially executed ges-
tures, so the participant needs to invoke the recognition support while the user is
performing the stroke. This task evaluates the ability of the underlying support665

to provide information for building feedback and feedforward representations,
which motivated our work.
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Figure 11: Gestural UI developed for the user test (top part). Line feedback for a square
gesture (middle part) OctoPocus [31] feedback for a triangle gesture (bottom part).
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The participants implemented the two variants of the grid UI using three
di↵erent recognition libraries:

1. The first library uses Finite State Machines (FSMs) for recognizing670

polyline gestures, according to the movement orientation angle. A stroke
is represented as an FSM having a state for each segment, defined by the
direction in its ideal trajectory. A direction is represented as through an
angle range in the goniometric circle.2 When the user changes the stroke
direction, the machine fires a transition. It goes to the next state if its675

corresponding range contains the new direction angle, or to an error state
otherwise. The gesture is recognised when the stroke ends and the FSM is
in its final state. Such library represents a simplified declarative approach
which uses geometric heuristics for the recognition. It summarises this
category in the evaluation development task: gestures are easy to define680

(it is su�cient to declare the parts and their direction angle), it recognises
gestures without training, and it provides information on partial gesture
recognition (in our case, each FSM state corresponds to one of its sub-
parts), but they are not robust to the user’s input variability (the range
definition is critical for a correct recognition).685

2. The second library represents the Machine Learning approaches and it
recognizes gestures according to a given set of labelled examples, which
has to be provided by the developer. Such approaches are robust to the
input noise, but they are a black box for developers. They provide a
label for the whole stroke and they do not provide information on partial690

gesture recognition. In order to speed-up the evaluation procedure while
enabling the participants to grasp the importance of the training phase,
we used the library presented in [11], since it requires only a few samples
for each gesture, it provides a JavaScript implementation and the overall
development interface is a good representative for the machine learning695

approaches.

3. The third library is DEICTIC, the approach described in this paper,
which defines gestures through expressions. The recognition does not re-
quire gesture-specific training samples (the dataset for the ground terms
was included in the library) and provides information on partial gesture700

recognition as discussed in section 5.

Besides the gesture recognition support, we provided the participants with
other three libraries for facilitating the interface development:

• Grid, which draws and manages the grid user interface, including functions
for setting or resetting the cell content.705

2For instance, considering the four segments of the square stroke in Figure 11, we need four
directions: down (270o), right (0o), up (90o) and left (180o). Obviously, the user’s movements
are not perfectly aligned to the ideal direction, so the developer specifies an interval around
the ideal angle (e.g., 270o ± 20o) for the down direction.
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• Feedback, which provides the implementation of the drawing procedures
for the Line and the OctoPocus feedback.

• Input, which masks the di↵erences between mouse and touch events in the
browser for easing the development tasks.

We documented the API of all pieces of software and we provided a tutorial710

on each component, including both explanations and sample code as usual in
open-source libraries. We asked the participants to read the tutorials before
starting the implementation tasks. The documentation material was available
for them throughout the test, and they were free to read it whenever they wanted
to. The test description and the documentation material for the evaluation are715

available in the DEICTIC source code distribution [29] 3.
All participants developed the grid interface using all recognition supports.

The six possible orders for executing the development tasks with all supports
were randomly assigned to each participant for counter-balancing the carry-
over e↵ect. The first task is the most critical for each participant since s/he has720

to learn both the gesture recognition support and the interface management
components (grid, feedback and input). In the other two conditions, s/he can
leverage on the grid, feedback and input components knowledge acquired in the
previous tasks.

6.3. Evaluation metrics and success criteria725

For each task, we collected the time spent for each task and the completion
rate. After finishing a task, the participants filled a questionnaire, including a
NASA-TLX [32], questions for evaluating a set of relevant criteria from those
proposed for the evaluation of UI toolkits by Olsen [33], and an open-ended
question for collecting their opinions and suggestions on the evaluated support.730

At the end of the test, we asked the participants to rank the approaches on
their overall e↵ectiveness, satisfaction and willingness to reuse, together with the
criteria proposed by Olsen [33] for finding possible di↵erences in the assessment
after testing all approaches.

The questions for the selected UI toolkit criteria are the following (1 to 7735

Likert scale):

• E↵ectiveness. Please rate how e↵ective the gesture recognition support is
in your opinion.

• Perceived accuracy : Please rate how accurate the gesture recognition sup-
port is in your opinion.740

• Flexibility. How easily do you think that the current configuration sup-
ports rapid changes for e.g., evaluating them with the end-users?

3https://github.com/davidespano/deictic/blob/master/user-test/gesturemap/
basic/static/basic/js/lib/out/index.html
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• Expressive Match. How close the means for expressing the gesture design
are to the problem being solved?

• Inductive Combination. How reusable is the solution you built with this745

gesture recognition support? How easily you can take out components
that may be combined for creating other interfaces?

• Overall satisfaction. Please rate your level of satisfaction with respect to
the gesture recognition support.

• Willingness to reuse the approach in the future. If you would need to750

implement gestural interfaces in the future, are you willing to reuse this
recognition support?

In our hypothesis, DEICTIC should be able to provide intermediate feedback
information with an e↵ort comparable to heuristic approaches, with a definition
procedure and perceived recognition accuracy comparable to machine learning755

approaches. Achieving such results constitutes the success criteria for this test.

6.4. Results

All tasks were successfully completed by all the users in all conditions but
the OctoPocus feedback with the Machine Learning approach. In that task, two
participants gave-up since not being able to retrieve the information on partially760

executed gestures. Other participants found di�culties in identifying a possible
solution (5) and the moderator suggested them that partially executed gestures
may be considered as gestures as well. With such advise, they added more labels
to the set, representing each phase of a stroke execution (e.g., specifying one
label for the first triangle side, another one for the first plus the second, and765

finally the complete triangle) and they were able to complete the task.
We use a one-way ANOVA for repeated measures for comparing the re-

sults across the three conditions: i) Finite State Machines (FSM), ii) Machine
Learning (ML) and iii) DEICTIC (D). The resulting dataset had homogeneous
variance and satisfy the sphericity assumption for all metrics, therefore no trans-770

formation nor correction was needed for running the one-way ANOVA analysis.
The post-task metrics collected for each task are summarised in Figure 12

(red boxes for the Line version and green boxes for the OctoPocus version).

Line Feedback task. We found a following significant e↵ect of the recognition
library on the following metrics4:775

• Time on task (F (2, 16) = 6.673, p < .004, ⌘2 = 0.29, in minutes, lower
is better). We registered a significant di↵erence between FSM and D
(p < .02, c.i. = [2.9, 31.6] min) and between FSM and ML (p < .05,
c.i. = [4.3, 34.7] min).

4We used a Bonferroni-corrected pairwise comparison for establishing the di↵erences be-
tween the gesture recognition library pairs.
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Figure 12: Post-task evaluation results. Red boxes correspond to the line feedback UI variant,
while green boxes correspond to the OctoPocus variant. In the first row it shows the time on
task and the task load (NASA TLX [32]), in the second row the selected UI toolkit criteria
for the line feedback, in the third the same criteria for the OctoPocus task. The order for the
criteria is the same as in section 6.3.
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• Task load (F (2, 16) = 3.998, p < .03, ⌘2 = 0.20, NASA TLX [32] in a 0 to780

150 scale, lower is better). We registered a significant di↵erence between
FSM and D (p < .004, c.i. = [0.7, 27.4]).

• E↵ectiveness (F (2, 16) = 22.75, p < 10�3, ⌘2 = 0.59, 1 to 7 Likert scale,
higher is better). We registered a significant di↵erence between ML and
FSM (p < .002, c.i. = [0.90, 3.58]) and between D and FSM (p = .003,785

c.i. = [1.14, 3.68]).

• Perceived accuracy (F (2, 16) = 40.74, p < 10�3, ⌘2 = 0.71, 1 to 7 Likert
scale, higher is better). We registered a significant di↵erence between
ML and FSM (p < 10�4, c.i. = [1.56, 4.00]) and between D and FSM
(p < 10�4, c.i. = [1.75, 4.02]).790

• Flexibility (F (2, 16) = 7.944, p < .001, ⌘2 = 0.33, 1 to 7 Likert scale,
higher is better). We registered a significant di↵erence between D and
FSM (p < .007, c.i. = [0.48, 3.16]).

• Expressive Match (F (2, 16) = 7.37, p < .002, ⌘2 = 0.31, 1 to 7 Likert
scale, higher is better). We registered a significant di↵erence between ML795

and FSM (p < .01, c.i. = [0.29, 2.65]) and between D and FSM (p < .02,
c.i. = [0.08, 2.62]).

• Inductive Combination (F (2, 16) = 7.29, p < .002, ⌘2 = 0.31, 1 to 7 Likert
scale, higher is better). We registered a practical significant di↵erence
between ML and FSM (p < .07, c.i. = [0.15, 2.67]), and a significant one800

between D and FSM (p < .01, c.i. = [0.28, 2.77]).

• Overall Satisfaction (F (2, 16) = 21.06, p < 10�6, ⌘2 = 0.57, 1 to 7 Likert
scale, higher is better). We registered a practical significant di↵erence
between ML and FSM (p < 10�3, c.i. = [0.99, 3.83]), and a significant one
between D and FSM (p < 10�4, c.i. = [0.99, 3.83]).805

• Willingness to reuse the approach in the future (F (2, 16) = 22.02, p <
10�5, ⌘2 = 0.58, 1 to 7 Likert scale, higher is better). We registered a
practical significant di↵erence between ML and FSM (p < 10�3, c.i. =
[0.85, 4.08]) and a significant one between D and FSM (p < 10�4, c.i. =
[1.37, 4.39]).810

In summary, the collected data confirm our hypothesis for this task: de-
velopers preferred and performed better in defining the gesture set using the
Machine Learning and DEICTIC, which achieved comparable results. They
had more di�culties using FSMs that, according to the comments we collected,
where tedious to tune-up for achieving an acceptable recognition performance.815

OctoPocus feedback task. We found a following significant e↵ect of the recogni-
tion library on the following metrics:
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• Time on task (F (2, 16) = 4.838, p < .02, ⌘2 = 0.23, in minutes, lower is
better). We registered a significant di↵erence between ML and D (p = .05,
c.i. = [1.4, 45.0] min).820

• Task load (F (2, 16) = 4.011, p < .03, ⌘2 = 0.20, NASA TLX [32] in a 0 to
150 scale, lower is better). We registered a practical significant di↵erence
between ML and D (p < .08, c.i. = [0.8, 25.8]) and between ML and FSM
(p < .07, c.i. = [0.6, 25.8])

• E↵ectiveness (F (2, 16) = 5.738, p < .008, ⌘2 = 0.26, 1 to 7 Likert scale,825

higher is better). We registered a significant di↵erence between D and ML
(p < .005, c.i. = [0.50, 2.55]) and a practical significant di↵erence between
D and FSM (p < .07, c.i. = [0.05, 2.18]).

• Perceived accuracy (F (2, 16) = 9.372, p < 10�3, ⌘2 = 0.37, 1 to 7 Likert
scale, higher is better). We registered a significant di↵erence between D830

and FSM (p < .003, c.i. = [0.72, 2.93])

• Flexibility (F (2, 16) = 12.07, p < .10�3, ⌘2 = 0.43, 1 to 7 Likert scale,
higher is better). We registered a significant di↵erence between D and
FSM (p < .05, c.i. = [0.37, 3.39]) and between D and ML (p < 10�3,
c.i. = [1.6, 4.18]).835

• Expressive Match (F (2, 16) = 4.781, p < .02, ⌘2 = 0.23, 1 to 7 Likert
scale, higher is better). We registered a significant di↵erence between D
and ML (p < .005, c.i. = [0.39, 2.66]).

• Inductive Combination (F (2, 16) = 7.755, p < .002, ⌘2 = 0.33, 1 to 7 Lik-
ert scale, higher is better). We registered a significant di↵erence between840

D and ML (p < .002, c.i. = [1.09, 3.50])

• Overall Satisfaction(F (2, 16) = 10.08, p = 10�3, ⌘2 = 0.38, 1 to 7 Likert
scale, higher is better). We registered a significant di↵erence between D
and ML (p < 10�3, c.i. = [1.05, 3.65]) and a practical significant di↵erence
between D and FSM (p < .08, c.i. = [0.09, 2.61]).845

• Willing to reuse the approach in the future (F (2, 16) = 10.93, p = 10�4,
⌘2 = 0.41, 1 to 7 Likert scale, higher is better). We registered a significant
di↵erence between D and ML (p = 10�3, c.i. = [1.49, 4.39]) and a practical
significant one between D and FSM (p < .09, c.i. = [0.13, 3.16]).

The results confirm the hypothesis for this task as well: the DEICTIC re-850

quired a significantly lower time and e↵ort for completing the task with respect
to the Machine Learning approach, and it was consistently preferred by devel-
opers for all the considered criteria. DEICTIC performed better than the FSM
approach considering the task load, showing that the modelling expressions fit
the stroke gestures description better, as confirmed by the results for the overall855

satisfaction and willingness to reuse. The perceived accuracy was higher with
respect to FSM as expected.
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Figure 13: Post test evaluation results.

Post-test results. The post-test results in Figure 13 shows an overall preference
for the DEICTIC approach in the development of stroke-based interactions.
DEICTIC was considered the best option for all evaluated criteria by a large860

majority of the participants (min 12, max 16) and the second one by the others.
In the expressiveness aspect, the Machine Learning was considered as the best
approach by 4 participants, that explained their choice saying that drawing
examples was easier than modelling the gestures. However, they acknowledged
that samples should be collected by more than one user for reaching a reliable865

recognition rate.
The second approach in the ranking was the Machine Learning. Participants

explained this saying that they preferred to work with a more di�cult approach
that reaches a higher accuracy with the user’s input. The FSM was ranked third,
even if participants acknowledged that it provided an easy way for accessing to870

the gesture sub-parts.
In summary, the DEICTIC approach was considered successful in bridging

the two approaches and preserving the strong points from both of them.

7. Recognition accuracy evaluation

In this section, we show that DEICTIC achieves a recognition accuracy com-875

parable with the other state-of-the-art approaches.
We implemented the algorithms described in Section 4 in Python, relying

on an existing HMM library called Pomegranate [10] for evaluating the pro-
posed compositional approach. We published the DEICTIC software package
for creating and composing gesture recognisers on GitHub [29].880

In order to recognise ground terms, we collected a set of 14 training example
using a Leap Motion for i) left-to-right lines, ii) clockwise arcs (from ⇡

2 to 0) and
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Figure 14: Gesture sets in the two evaluation datasets. The left part shows the single stroke
gestures (figure taken from [11]), while the right part shows the multiple stroke gestures (figure
taken from [12])

counter counter-clockwise arcs (from 0 to ⇡
2 ). The samples are shipped with the

library and we used them for training the ground terms HMMs as described in
Section 4.7.885

In order to evaluate the recognition rate of the HMM described with DE-
ICTIC, we conducted three experiments, starting from two datasets from the
literature:

1. Recognition of single-stroke gestures. We considered the 1$-dataset
introduced in [11]. It contains 330 repetitions of 16 single stroke gestures,890

shown in Figure 14, left part. We repeated the classification task using
both DEICTIC and HMMs trained with samples from the dataset.

2. Recognition of multiple-stroke gestures. We considered the N$-
dataset introduced in [12]. It contains 600 repetitions of 14 multi-stroke
gestures, shown in Figure 14, right part. We again repeated the recog-895

nition with both DEICTIC and HMMs trained with samples from the
dataset.

3. Recognition of synthetic sequences. In order to test the performance
of the composition operators, we created test sequences composing random
sequences from both datasets according to the operator semantics and we900

classified them with DEICTIC.

We modelled each gesture in both datasets using a DEICTIC expression and
we generated the corresponding composite HMM. For the sake of brevity, we
report in this section the test results, while we included the gesture models for
single and multiple stroke gestures respectively in Appendix A and B. Before905

starting the classification task, we preprocessed each gesture instance centring
it in the origin, normalising its size and resampling it to 20 samples per unit.
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1$ Dataset N$ Dataset

Table 1: Confusion matrix for the 1$-dollar [11] (left) and the the N$-dollar [12] (right)
gesture dataset. Rows represent the ground-truth class, while the columns represent the class
assigned by DEICTIC. Ground terms contained 6 states, working with gestures resampled to
20 samples per normalised unit. The 1$-dollar contains 330 samples for each one of the 16
gestures (5280 samples in total). The N$-dataset contains 600 samples for each one of the 14
multistroke gestures (8400 samples in total).
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For evaluating the recognition accuracy, we fed each preprocessed instance
to all composite HMMs. The HMM having the highest recognition probabil-
ity (computed using the forward algorithm) assigned the label to the current910

sample. Table 1 shows the results. It is worth pointing out that none of the
instances in both datasets was used for training a DEICTIC HMM. The recog-
nition rate for both datasets is comparable with state-of-the-art classification
algorithms applied to the same dataset in the literature. We refer to the rates
reported in [34] for user-independent recognition, shown in Figure 15.915

Considering the single-stroke gestures in the 1$-dataset, the 1$ algorithm [11]
has the best performance (97.1%), followed by the P$ [34] (96.6%). DEICTIC
(96.2%) is positioned immediately after, outperforming Protractor [35] (95.5%)
and N$ [12] (95.2%). Table 1 (left part) shows the DEICTIC confusion matrix
on the single-stroke dataset. The classification performance is robust in all920

considered gestures, ranging from the maximum recognition rate (100%) for X,
circle, delete and star, to the minimum (92%) for the rectangle and left brace.

Considering the multiple-stroke gestures in the N$-dataset, the best per-
formance is reached by the P$ algorithm [34] (98.0%), followed by the N$ [12]
(96.4%). DEICTIC (94.0%) outperforms Dynamic TimeWarping [11, 34] (93.4%)925

and approaches based on angular cosine [35] (91.3%) and Euclidean [36] (91.5%)
distances. Table 1, right part shows the confusion matrix for the multi-stroke
dataset, which shows again the robustness of the classification for each gesture,
with a recognition rate ranging from 99% for the X, to the 87% for the half-note.
Some instances of all two-stroke gestures were confused with X.930

Such consistency in the recognition rates shows that DEICTIC has a compa-
rable accuracy with respect to state-of-the-art approaches in gesture recognition
while maintaining the advantages of declarative and compositional modelling.

We added to the approaches from the literature in Figure 15 the recognition
results obtained by HMM classification, without applying our compositional935

approach for building them (ad-hoc HMMs). This allows evaluating the impact
on the recognition performance introduced by training only ground terms and
applying the composition algorithms, against training HMMs on whole gesture
samples (e.g., training with samples of each side of a triangle gesture against
providing the entire triangle stroke). More in detail, for each gesture we created940

a dedicated Bakis HMM, having the same number of states with respect to
its DEICTIC counterpart. We run a ten-fold cross-validation for ensuring the
relatability of the results.

Ad-hoc HMMs performed very well on single-stroke gestures, the recognition
rate was higher than 99% and having a significant di↵erence with DEICTIC945

(t(15) = 3.98, p = .001). Considering this dataset, the composition technique
lowered the recognition level about by 3%.

We did not register the same performance on the N$-dataset: the mean
recognition rate was about 87%. They had particular di�culties in distinguish-
ing D strokes from P and that many gestures are confused with the half-note950

and vice-versa. In contrast, DEICTIC had a lower recognition rate with respect
to the single-stroke dataset (about 94%), but such decrease was not significant
(t(22) = 1.76, p = .09). Our approach performed significantly better than ad-
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Figure 15: Accuracy of state-of-the-art approaches on the 1$-dataset [11] (top), and on the
N$-dataset [12] (bottom).

36



hoc HMMs (t(13) = 2.25, p = .04), increasing their recognition level about
by 7% The results of the experiments show again that the proposed composi-955

tion technique maintain a good performance if compared with ad-hoc HMMs
on single-stroke gestures, while it increases the recognition rate on multi-stroke
ones.

It is worth pointing out the advantages introduced by DEICTIC specifically
for the training phase. Ad-hoc HMMs requires complete gesture samples for960

learning the emission and transition distributions for all HMM states. In our
experiment, it means using the 90% of the dataset for learning how to recognize
the remaining 10% (297 samples for the 1$-dataset and 540 for the N$). If the
gesture set changes, e.g., adding a new gesture, we would need to collect other
samples. In contrast, DEICTIC uses only 14 samples for each one of the ground965

terms, and they are the same for both the 1$ and the N$ datasets. No samples
from these datasets were used in the training phase. This means that developer
would not need to collect additional data for supporting di↵erent gestures.

In addition, DEICTIC always trains a constant number of states (6 in our
experiments). Since the time complexity of the Baum-Welch [27] algorithm for970

training is O(D · T · N2) where D is the number of training samples, T the
sample size and N the number of states in the HMM, ad-hoc HMMs training
requires much more time. In our experiment, we passed from about 2 minutes
for training DEICTIC to one hour for a single fold for ad-hoc HMMs.
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Synthetic sequences, 1$ Dataset

Table 2: Recognition of synthetic sequences

Besides the recognition of gestures in the dataset, we measured the perfor-975

mance with a set of synthetic sequences, produced in order to test all composi-
tion operators. We randomly selected the gesture pairs (or single gesture for the
iteration) and, according to the operator semantics, we generated the composed
sequence starting from the original data as follows:

• Iterative. Starting from a single sample, we randomly repeated it from980

1 to 5 times.

• Sequence. We associated each sample of the first gesture to a randomly
selected sample of the second one, without repetitions. The synthetic
sequence is simply the concatenation of the two samples (in order).

• Choice. Starting from the gesture pair, for each synthetic sequence we985

randomly selected one sample either of the first or the second one, without
repetitions.

• Parallel. Starting from the gesture pair, we selected two samples as
described for the sequence. We juxtaposed them shifting randomly up or

38



down the rows of the second gesture and filling the blanks with random990

values. The latter operation guarantees that the gestures may start at
di↵erent times with respect to each other.

After the sequence generation, we created the DEICTIC expression and we
trained the corresponding HMMs. Table 2 shows the recognition performance
on single-stroke composite gestures, while Table 3 reports the results on multi-995

stroke sequences. In both cases, the recognition performance is good.
In conclusion, the experiment highlighted di↵erent results obtained by our

approach. First of all, DEICTIC has been able to recognise new gestures, sig-
nificantly di↵erent from the samples included in the training set of each ground
term. This is important for interface designers, which would be able to create1000

gesture recognisers exploiting components, as they already do with UI widgets.
Secondly, they would achieve a recognition rate comparable to other approaches
in the literature.

Finally, considering the properties discussed in Section 5, it is possible to
reconstruct the sequence of the most likely ground terms associated with a1005

particular gestural input. Such information is not trivial when gestures are
composed in choice or parallel since the designer would have the possibility
to associate di↵erent feedback and feed-forward reactions to di↵erent ground
terms. Such level of granularity is not supported by other methods used for
recognising gestures.1010
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Synthetic sequences, N$ Dataset

Table 3: Recognition of synthetic sequences

8. Conclusion and Future Work

In this paper, we filled the gap between the high accuracy o↵ered by classifi-
cation approaches and the inspection capabilities needed for providing feedback
and feed-forward in user interfaces introducing DEICTIC, a declarative and
compositional description for stroke gestures, based on the composition of a set1015

of basic movements (points for starting a stroke, arcs and lines for its contin-
uation) through a set of operators (iterative, sequence, choice, parallel). We
defined a syntax for describing strokes through simple expressions, allowing to
describe both single and multi-stroke gestures. We described a set of algorithms
that, according to the expression definition, create an HMM that recognises ges-1020

tures following the temporal composition semantics, without additional training.
On the one hand, the composed HMMs have a set of properties that make

them suitable for defining user interfaces, breaking the single-event notification
at the complete recognition of a gesture, without the need of a specific training
set for each composite gesture. It requires only a dataset for training the ex-1025

pression ground terms, reusable across di↵erent gesture sets. DEICTIC is able
to provide the most likely sequence of ground terms recognised, together with
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information on the most likely completion of the current sequence. The devel-
oper evaluation shows that such information provided by DEICTIC supports
the implementation of feedback and feedforward with an e↵ort comparable to1030

heuristic approaches, together with a definition procedure and perceived recog-
nition accuracy comparable to machine learning approaches.

On the other hand, the recognition accuracy of the HMM built through
the composition mechanism is comparable with respect to other approaches
in the literature. We discussed two di↵erent experiments where we show that1035

DEICTIC does not introduce sensible degradation of the recognition accuracy.
The approach has also set limitations. Even if our experiment showed an

overall good performance, more precise recognition algorithms exist. How-
ever, the accuracy we obtained in our experiments is comparable with such
approaches, which is an important improvement if compared with heuristic ap-1040

proaches. For that price, DEICTIC o↵ers the same support for gesture sub-parts
identification.

The second limitation is related to the number of states in the final HMM.
The composition approach forces the growth of the number of states linearly (for
sequence and choice) or quadratically (parallel). Instead, ad-hoc HMMs may1045

be optimised to balance the trade-o↵ between recognition rate and the number
of states.

In future work, we would like to extend the definition to 3D gestures and
validate the composition approach in such setting. In addition, we will experi-
ment di↵erent features for avoiding the preprocessing step in the general case,1050

which limits the DEICTIC scope to applications that know the position and the
scaling of the user’s strokes.
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Appendix A: 1$-dataset Gesture Modelling

Gesture Expression

4 Triangle P (0, 0) + L(�3,�4) + L(6, 0) + L(�3, 4)
X X P (0, 0) + L(3,�3) + L(0, 3) + L(�3,�3)
2 Rectangle P (0, 0) + L(0,�3) + L(4, 0) + L(0, 3) + L(�4, 0)
� Circle P (0, 0) +A�(�3,�3) +A�(3,�3) +A�(3, 3) +A�(�3, 3)
X Check P (0, 0) + L(2,�2) + L(4, 6)V

Caret P (0, 0) + L(2, 3) + L(2,�3)
? Question m. P (0, 0) +A (4, 4) +A (4,�4) +A (�4,�4) +A�(�2,�2) +A�(2,�2)
! Arrow P (0, 0) + L(6, 4) + L(�4, 0) + L(5, 1) + L(�1,�4)
[ L. bracket P (0, 0) + L(�4, 0) + L(0,�5) + L(4, 0)
] R. bracket P (0, 0) + L(4, 0) + L(0,�5) + L(�4, 0)
V V P (0, 0) + L(2,�3) + L(2, 3)

Delete P (0, 0) + L(2,�3) + L(�2, 0) + L(2, 3)
{ L. brace P (0, 0) +A (�5,�5) +A�(�3,�3) +A�(3,�3) +A (5,�5)
} R. brace P (0, 0) +A�(5,�5) +A (3,�3) +A (�3,�3) +A�(�5,�5)
? Star P (0, 0) + L(2, 5) + L(2,�5) + L(�5, 3) + L(6, 0) + L(�5,�3)
` Pigtail P (0, 0) +A (3, 3) +A (�1, 1) +A (�1,�1) +A (3,�3)

45



Appendix B: N$-dataset modelling

Gesture Expression

T T P (�2, 0) + L(4, 0) + P (0, 0) + L(0,�4) |
P (0, 0) + L(0,�4) + P (�2, 0) + L(4, 0)

N N P (0, 4) + L(0,�4) + P (0, 4) + L(4,�4) + P (4, 4) + L(0,�4)
D D P (0, 6) + L(0,�6) + P (0, 6) + L(2, 0) +A�(3,�3) +A�(�3,�3) + L(�2, 0)
P P P (0, 8) + L(0,�8) + P (0, 8) + L(2, 0) +A�(2,�2) +A�(�2,�2) + L(�2, 0)
X X P (0, 0) + L(4, 4) + P (0, 4) + L(4,�4) |

P (4, 4) + L(�4,�4) + P (0, 4) + L(4,�4) |
P (0, 4) + L(4,�4) + P (0, 0) + L(4, 4 |)
P (0, 4) + L(4,�4) + L(4, 4) + L(�4,�4)

H H P (0, 4) + L(0,�4) + P (0, 2) + L(4, 0) + P (4, 4) + L(0,�4) |
P (0, 4) + L(0,�4) + P (4, 4) + L(0,�4) + P (0, 2) + L(4, 0)

I I P (0, 4) + L(4, 0) + P (2, 4) + L(0,�4) + P (0, 0) + L(4, 0) |
P (2, 4) + L(0,�4) + P (0, 0) + L(4, 0) + P (0, 4) + L(4, 0) |
P (0, 4) + L(4, 0) + P (0, 0) + L(4, 0) + P (2, 0) + L(0, 4) |
P (2, 4) + L(0,�4) + P (0, 4) + L(4, 0) + P (0, 0) + L(4, 0)

! Exc. point P (0, 4) + L(0,�3) + P (0, 1) + L(0,�1)
? Null P (0, 0) +A (�3,�3) +A (3,�3) +A (3, 3) +A (�3, 3) + P (4, 1) + L(�8,�8) |

P (0, 0) +A (�3,�3) +A (3,�3) +A (3, 3) +A (�3, 3) + P (�4,�7) + L(8, 8)
! Arrow P (0, 0) + L(6, 0) + P (4, 2) + L(2,�2) + L(�2,�2) |

P (4, 2) + L(2,�2) + L(�2,�2) + P (0, 0) + L(6, 0)
 Pitchfork P (�2, 4) +A (2,�2) +A (2, 2) + P (0, 4) + L(0,�4)

P (0, 4) + L(0,�4) + P (�2, 4) +A (2,�2) +A (2, 2)
C Six point P (0, 0)+L(�2,�4)+L(4, 0)+L(�2, 4)+P (�2,�1)+L(4, 0)+L(�2,�4)+L(�2, 4) |

star P (�2,�1)+L(4, 0)+L(�2,�4)+L(�2, 4)+P (0, 0)+L(�2,�4)+L(4, 0)+L(�2, 4) |
P (�2,�2)+L(2, 4)+L(2,�4)+L(�4, 0)+P (�2, 1)+L(4, 0)+L(�2,�4)+L(�2, 4) |
P (�2, 1)+L(4, 0)+L(�2,�4)+L(�2, 4)+P (�2,�2)+L(2, 4)+L(2,�4)+L(�4, 0) |
P (�2,�2)+L(2, 4)+L(2,�4)+L(�4, 0)+P (�2, 1)+L(2,�4)+L(2, 4)+L(�4, 0) |
P (�2, 1)+L(2,�4)+L(2, 4)+L(�4, 0)+L(�2,�2)+L(2, 4)+L(2,�4)+L(�4, 0) |
P (0, 0)+L(�2,�4)+L(4, 0)+L(�2, 4)+P (�2,�1)+L(2,�4)+L(2, 4)+L(�4, 0) |
P (�2,�1) +L(2,�4) +L(2, 4) +L(�4, 0) +P (0, 0) +L(�2,�4) +L(4, 0) +L(�2, 4)

B Asterisk P (4, 4) + L(�4,�4)) + P (0, 4) + L(4,�4) + P (2, 4) + L(0,�4)
� Half note P (0, 0) +A (�3, 3) +A (�3,�3) +A (3,�3) +A (3, 3) + P (2, 16) + L(0,�20)

P (2, 16) + L(0,�20) + P (0, 0) +A (�3, 3) +A (�3,�3) +A (3,�3) +A (3, 3)
P (0, 0) +A (�3, 3) +A (�3,�3) +A (3,�3) +A (3, 3) + P (2,�4) + L(0, 20)
P (2,�4) + L(0, 20) + P (0, 0) +A (�3, 3) +A (�3,�3) +A (3,�3) +A (3, 3)
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