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Abstract

Data literacy is gaining importance as a general skill that all citizens should
possess in an increasingly data-driven society. As such there is interest in
how it can be taught in schools. However, the majority of teaching focuses on
small, personally collected data which is easier for students to relate to. This
does not give the students the breadth of experience they need for dealing
with the larger, complex data that is collected at scale and used to drive the
intelligent systems that people engage with during work and leisure time.
Neither does it prepare them for future jobs, which increasingly require skills
for critically querying and deriving insights from data.

This paper addresses this gap by trialling a method for teaching from
complex data, collected through a smart city project. The main contribution
is to show that existing data principles from the literature can be adapted
to design data literacy activities that help pupils understand complex data
collected by others and form interesting questions and hypotheses about it.
It also demonstrates how smart city ideas and concepts can be brought to
life in the classroom.

The Urban Data School study was carried out over two years in three
primary and secondary schools in England, using smart city datasets. Three
teachers took part, providing access to different age groups, subject areas,
and class types. This resulted in four distinctive field studies, with 67 stu-
dents aged between 10-14 years, each lasting a few weeks within the two year
period. The studies provide evidence that when engaging with data that has
not been personally collected, activities designed to give the experience of
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collecting the data can help in critiquing it.
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1. Introduction1

Society is increasingly driven by data. One example of its use is to inform2

business decisions, a process that is often referred to as business intelligence.3

With an increase in data available to businesses, there is a growing gap4

in the number of employees with the skills to make good use of it. In a5

policy briefing, Nesta explores this skills gap in detail and proposes ways to6

address it [1]. Amongst these is a proposal that highlights the importance7

of initiatives to teach data skills in school and to embed them into other8

subjects, improving the data literacy of school-leavers and their readiness for9

the future job market.10

Business and employment needs are not the only drivers toward increas-11

ing data literacy. Presentation of online content is often decided based on12

analysis of what users having been clicking through or purchasing online,13

with the intention to influence the end-users’ actions and decision-making.14

Examples include the recommendations made on shopping sites or entertain-15

ment services. Mortier et al. [2] argue that it is important to explore the16

issue of transparency of how users’ data is collected and analysed and how to17

give increased agency to users who provide data so that they can themselves18

derive value from it. This is reliant on users having a level of data literacy19

that enables them to engage with their own data. Beyond this, a white pa-20

per of Bhargava et al. [3] highlights the importance of data literacy as an21

increasingly important skill for civic empowerment. Policy decisions and me-22

dia reporting are increasingly justified with data, and people therefore need23

skills to assess critically the accuracy of what is presented to them as fact [4].24

One final, yet important, reason for advocating data literacy is that citizens25

increasingly use data-driven smart technologies to make their lives more effi-26

cient, including smart meters, travel apps, or the currently popular ‘sharing27

economy’ apps through which people swap knowledge, goods and services.28

The increasing availability of open data is often mentioned as something that29

can support ‘bottom up’ citizen innovation, but this is predicated on citizens30

having appropriate skills to design around large, complex data sets. How-31

ever, evidence provided by Janssen et al. [5] shows that this potential is not32

being reached, and that one of the key barriers is lower levels of data literacy33
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amongst the general population.34

To understand why this is the case, we turn our attention to what stu-35

dents are learning in school. Most of the examples mentioned above typically36

use large and complex data sets and require that people engage with data37

that they did not personally collect. In contrast, data sets traditionally used38

for teaching in schools tend to be smaller and are often collected by the stu-39

dents themselves. Research has shown that when analysing larger and more40

complex pre-existing data sets students may find it difficult to understand41

how the data were collected, which in turn makes it harder to interpret [6].42

In general, skills learned on small data sets may not necessarily scale. This43

makes an argument for increasing the range of data used to teach data skills44

in school, which then raises the question how to achieve this in practice.45

At the same time, the work of Bowler and Acker [7] revealed that students’46

current understanding of data may be quite limited, for example they might47

understand the role of data in a scientific inquiry but not necessarily make48

the connections between their personal data and the different ways it may49

be used, or abused. Overall, this suggests that students may not be getting50

the broad data literacy learning that they need at an early age.51

Despite its importance, there is currently little research that focuses on52

how to deliver data literacy teaching in the classroom, and in particular53

teaching that is based on analyzing more complex externally sourced data.54

This paper addresses this research gap by developing a method that draws55

on the existing approaches for teaching data literacy for smaller, personally56

collected data sets, and extends it to larger, externally sourced data. The57

main contribution is in the synthesis and reframing of existing principles to58

support the design of data literacy activities so that they can be adapted to59

this teaching context.60

This paper reports on an exploratory two-year study in which these design61

principles were put to the test. Three teachers from three different UK62

schools took part in this initiative to integrate teaching data literacy skills63

into both primary and secondary school classrooms. The work described in64

this paper was conducted in the context of MK:Smart2, a large smart city65

project in Milton Keynes. This project provided an opportunity to develop66

lesson plans and materials around some less typical data sets that were being67

collected as part of the project and at the same time to bring smart city68

2http://www.mksmart.org
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concepts into the classroom. The lesson plans were used in local schools. The69

approach taken was a user-centred ‘research through design’ [8, 9] approach70

that fit with the need to be flexible within each school engagement and in71

which each classroom engagement generated new knowledge. We discuss how72

the findings contribute to the following research questions:73

• What factors influence students’ abilities to ask and answer questions74

from the presented data?75

• What is the role of data interaction in facilitating the inquiry process?76

• How does personally collecting a data set changes one’s perspective of77

it?78

2. Background79

There is no single agreed definition of data literacy and as a consequence,80

definitions can vary according to use. Wolff et al. [10] proposed the following81

definition to reflect the role of data for innovation:82

“Data literacy is the ability to ask and answer real-world questions from83

large and small data sets through an inquiry process, with consideration of84

ethical use of data. It is based on core practical and creative skills, with85

the ability to extend knowledge of specialist data handling skills according to86

goals. These include the abilities to select, clean, analyse, visualise, critique87

and interpret data, as well as to communicate stories from data and to use88

data as part of a design process.” (p. 23)89

Deahl [11] proposed that data literacy is: “The ability to understand,90

find, collect, interpret, visualize, and support arguments using quantitative91

and qualitative data.”92

Hautea et al. [12] derived what they term critical data literacies using a93

bottom-up approach that observed young people’s interactions with data and94

how this helped them to articulate concerns about privacy and their scep-95

ticism around data accuracy, for example when they spotted inconsistencies96

in the data presented.97

Despite this diversity of focus, there is a growing convergence on the idea98

that data literacy is more than simply learning a set of technical skills, such99

as how to read bar graphs [13, 14], work with maps [15] or use data for100

prediction [16]. While these are essential skills and worthy of study, other101
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initiatives have taken a broader view of what is data literacy and how to102

develop it, especially within formal school education.103

Among these approaches, several have focused on supporting data-driven104

inquiry. These include the work of Lee, Drak and Thayne [17] who used105

quantified self data to engage students with familiar personal data and then106

prompted them to drive their own inquiries from the data. The Local Ground107

project [18, 19] developed a geo-spatial data collection tool that students108

could use in geo-spatial data-driven inquiries. Dasgupta and Hill [20] sup-109

ported children to drive their own inquiries from data and to create their own110

visualisations, using the Scratch programming environment, which many chil-111

dren are already using in school for programming. However, certain aspects112

of the inquiry process are found to be problematic, in particular how to link113

questions and data [21, 22].114

Complementary to this, other approaches put the focus on the ability to115

use data for civic empowerment. These include the City Digits project [23]116

that aimed to teach data literacy skills to school children by encouraging117

them to investigate social issues in a local, urban context. Also, the Data118

Murals project [24] brought together a community to build an artwork that119

reflected their data explorations with data from and about their neighbour-120

hood. Anslow, Brosz and Maurer [25] explore the potential of datathons for121

building data literacy, which bring together students and members of the122

community to solve problems.123

Also gaining traction is a STEAM based approach. For example, D’Ignazio124

[26] focuses on approaches that support non-experts to learn important skills125

for framing problems around complex data through creative, rather than126

technical, activities.127

Underpinning these, a number of principles to support data literacy learn-128

ing have been proposed. These include the principles of data informed learn-129

ing by Maybee and Zilinski [27] which propose that:130

1. New ways of using data must build on students’ prior experience.131

2. Learning to use data should occur at the same time as learning about132

a disciplinary subject.133

3. Learning should result in students becoming aware of new ways of using134

data as well as developing new understandings of the subject being135

studied.136

Srikant and Aggarwal [16] proposed and tested these principles:137

1. Use a full data cycle.138
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2. Make the data set relatable (e.g. about themselves).139

3. Avoid pre-built data sets, but get students to do the task of data col-140

lection and entry themselves.141

4. Reduce problem complexity (for example, if teaching predictive models,142

use only 2 categories).143

Taking a slightly different approach, Bhargava and D’Ignazio [28] propose144

a set of design principles to use while developing tools to support data literacy145

learners, suggesting tools should be:146

1. Focused, to do one thing well.147

2. Guided, to help get the learner started.148

3. Inviting, to appeal to the learner, maybe using data on a relevant or149

meaningful topic to the learner.150

4. Expandable, offering paths to deeper learning.151

The data literacy initiatives described have one thing in common, in that152

they focus on the use of data that is collected by the students themselves. As153

discussed, while clearly an essential skill, this does not necessarily translate154

to skills for dealing with externally sourced data [6]. Similarly, none of the155

data literacy design principles address this need, in fact the principles of156

[16] actively steer away from this, suggesting the students only engage with157

personal data. We instead propose to harness these same principles to help158

students engage with large, external data sets, through a small adaptation to159

a principle related to personal data collection. These principles are described160

in the following section. At the same time, there is little discussion in the161

literature of how such principles can be applied in practice, or how tools have162

been designed using principles for tool development described by [28]. We163

therefore show how these principles have been used to guide the co-creation164

of a set of lesson plans and the design of new tools that complement them,165

and then we explore how they are used in real classroom settings.166

3. Data Literacy Activity Design Principles167

We propose the following set of principles to support the design of activi-168

ties for teaching data literacy, which synthesises the existing principles found169

in the literature. The main contribution is in the adaptation of a personal170

data collection principle (P6) to show how personal data collection can be171

used to complement interpretation of existing data, rather than to be used172

instead of it:173
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P1 Inquiry Principle: Follow an inquiry process to scaffold the data174

analysis. Lead the students first in a guided inquiry, from which follows an175

open inquiry when students are more familiar with the data and the approach.176

[16, 28].177

P2 Expansion Principle: Start from a representative snapshot of a178

small part of the data set and expand out, rather than starting with the full,179

large data set and focusing in. This aims to help students’ more easily relate180

questions to data [22] and to be expandable and offer paths to deeper learning181

[28]. It aims to provide students the opportunity to orient themselves within182

the data, before navigating across it, e.g., through time and/or space and/or183

some other dimension of the data.184

P3 Context Principle: Teach in a context the student understands,185

using data that is from their own environment, either local to them, or else186

relating to them in some other way [27, 16, 28].187

P4 Foundational competences principle: Focus on developing foun-188

dational competencies rather than practical skills, for example how to ask189

‘good’ scientific questions from data [21, 22].190

P5 STEAM principle: Take a STEAM approach by working collabo-191

ratively on creative activities alongside practical ones [26, 24].192

P6 Personal Data Collection Principle: Students should engage193

with data they have collected themselves. When students are analysing an194

external data set, they should be given additional activities that support195

them in understanding what it is like to collect that type of data. This is196

to support them in contextualising and interpreting the data external data,197

which according to [6] they may otherwise struggle with.198

The remainder of the paper describes how these principles have been199

used in practice to guide creation of lesson plans based around data collected200

within a smart city project. We focus particularly on evaluating the use of201

principle P6.202

4. Iterative Design of Lesson Plans203

The overall methodology can be categorised as research through design.204

This is a method in which design practice is applied to the creation of arte-205

facts as a way of exploring solutions to problems, especially ‘wicked problems’206

[8, 9]. In research through design, new knowledge is constructed by undertak-207

ing activities associated with design, such as iteratively creating and testing208

prototypes to understand and solve a problem and to act as a focal point for209
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discussion by making interactions observable. This approach is fairly similar210

to that taken by data literacy initiatives, such as City Digits [23] and Data211

Murals, [24], though they are not necessarily framed that way. In our case,212

the research through design process was focused around the interpretation213

and use of the activity design principles to create lesson plans to teach data214

literacy skills and support interaction with smart city data and what we could215

learn by putting these into practice and through the iterative improvements216

to lesson plans over time. The relation between the design decisions and the217

design principles are highlighted throughout the text describing the lesson218

plans.219

We adopted a user-centred iterative design approach with a small group220

of teachers. There were a number of stages: scoping; identifying potential221

data sets; drafting lesson outlines; creating an initial set of activities and222

lesson plans; introducing technologies. Each stage is described in turn.223

Scoping: This first stage, which aimed to set boundaries on the types224

of activities that could be proposed, occurred prior to any engagement with225

schools. In this stage the decision was made to a) build activities that could226

be deployed using standard classroom equipment, technologies or software227

(e.g., iPads, desktop computers, web browsers) and b) build lesson plans228

from existing data sets, rather than being dependent on capture of data by229

students, e.g., through sensor technologies. This was in order to keep the230

initial focus on how to design learning experiences with these external data231

sets.232

Identifying data sets: The second stage involved identifying a number233

of data sets that were available and could potentially be used for teaching.234

This resulted in a pack showing representative ‘snapshot’ visualisations of235

a small part of a number of data sets with some generalised lesson outlines236

that were broadly speaking agnostic of any particular teaching approach237

(e.g., inquiry-based, collaborative learning). These lesson outlines identified238

the types of questions that could be answered by the data, but did not239

propose any activities or constitute a lesson plan. They were intended to240

help teachers to understand the data, as it would be unfamiliar to them,241

and to act as a starting point for discussions. The chosen data sets were all242

related to the topic of renewable energy. They included smart meter data and243

data on solar energy potential for a number of houses in the city. They were244

at the time being used within smart city research into load shifting (trying245

to change typical patterns of energy use to times when overall demand for246

energy is lower) and in identifying new opportunities for solar installations247
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or community energy solutions.248

Lesson outlines: The third stage involved teachers from two schools,249

one primary mathematics teacher and one secondary science teacher, who250

had expressed an interest in using data from the smart city project in their251

classrooms. Each was invited to discuss the data sets and lesson outlines and252

how they could be formed into lesson plans. The possible use of an inquiry-253

based approach for teaching was also discussed. The teachers confirmed254

that these were not typical data sets used in teaching and were keen that255

students would get some experience in handling these different types of data.256

While the teachers came from different subject areas, the topic ‘data inquiry’257

was seen to fit quite well in either mathematics or science, and ultimately258

the subject area did not play a big part in shaping the lesson plans. The259

secondary school science teacher was very familiar with an inquiry approach,260

as used in science, and was keen that this would be the approach used with261

the data.262

Teaching activities and lesson plans: Through these discussions,263

the initial set of teaching activities and lesson plans was created, based on264

the principles P1-P6 described earlier. Tasks were adapted for each specific265

school context, based on the recommendations of the class teacher, so that266

the experience would align with what the students had been learning and be267

suited to their overall abilities. This allowed us to gain a better understanding268

of what the overall differences might be between schools and age groups, but269

ruled out a controlled approach to evaluation, across different school settings.270

These lesson plans are described in the next section.271

Introducing technologies: The first trials were conducted using pa-272

per materials. Later trials introduced technologies to support interaction273

with the data, being focused on only simple functionality [28] to support274

key aspects of the task (as identified through first trials) and following the275

expansion principle (P2).276

5. Lesson Plans277

For each lesson plan, we describe: a) the overall aims of the lesson and the278

data set on which it was based, whether it was an existing data set or collected279

by the students for the purpose of contextualising one of the data sets; b) the280

activities undertaken with the data and how they were related to the design281

principles; c) the intended outcomes. The activities were used in various282

configurations across four separate field trials. The configuration was decided283

9



based on several meetings with the teacher. It should be noted that while284

there was never any need to adapt materials based on the classroom subject,285

the introduction that was given to the class prior to starting activities was286

different in each case, based on students’ prior knowledge. These general287

introductions are not discussed further in this paper. Some other lesson plan288

variations were necessary due to the age of the students and also based on289

developments that happened in technology during the period of the project.290

These variations and their reason are indicated.291

5.1. Lesson Plan 1 (LP1): Smart Meter Energy Data292

The aim of this lesson was to show, through data, how energy consump-293

tion and generation from solar panels did not always match if people were294

not typically at home during the day when solar energy was being produced.295

This lesson used smart meter data from approximately 70 houses. For each296

property, students had access to data about: a) whole house consumption;297

b) individual appliance consumption; c) generation of solar energy. The ex-298

ample (figure 1) shows whole house consumption for one day in March. This299

data was anonymised, but it came from the same city that the students in-300

habited and this was conveyed to students to help them to contextualise the301

data (P3).302

Figure 1: Smart meter data showing whole house consumption in one day
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5.1.1. LP1 Activities303

Students followed an inquiry process, based on posing questions from the304

data set (P1). The guided inquiry stage started with a snapshot of data (P2),305

as in figure 1, and some questions to answer from it. These asked when was306

most or least energy used and also prompted students to tell a story about307

the people living in that property, based on how they were using energy.308

Students worked in groups on all activities.309

After familiarisation with the data, the next stage prompted students310

to explore the wider data set (P2), for example, answering questions about311

whether all houses showed the same pattern, or if the patterns varied at312

different times of year. There were variations in how this stage was delivered,313

which were tailored based on the age of the students and the development of314

technologies over the course of the project. The variations were as follows.315

Guided: Students were guided using existing questions. This was used with316

younger students.317

Guided, then Open: After the guided inquiry, students asked and an-318

swered their own questions. This had two stages, a brainstorming stage319

where students posed question and discussed them as a class, then a320

refinement stage, where they chose just one or two questions to follow321

up from the data (P4). This was used with older students.322

No technology: Students worked from paper. Data was curated, either323

into further snapshots (guided activities) or based on the refinement324

stage, raw data was curated for students to explore one week later325

(open activities).326

With technology: Students could ask and answer questions rapidly through327

the data browser (open activities). The data browser supported the se-328

lection of different houses. It followed approximately the design shown329

in the Balsamiq mockup in figure 2, with the exception that to config-330

ure the interface to view different houses required to first submit the331

house numbers and then select the rest of the attributes (time period,332

data).333

5.1.2. LP1 Outcomes334

The intended outcomes were that students would be able to use the data335

to identify common patterns in energy consumption and to see how these336

differ by day (e.g., weekday/weekend), household or time of year.337
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Figure 2: The mockup from which the Interactive Smart Meter Data Browser was created

5.2. Lesson Plan 2 (LP2): Potential for solar energy production338

The aim of this lesson was to demonstrate, through data, that houses339

differ in their potential for producing solar energy, based on the direction340

they face and the size and pitch of their roof. This lesson used data that341

was derived from aerial photography, using LiDAR technology. This data342

set showed the potential energy production by installing solar panels on each343

building within the city. The data came from the local area and students344

were able to look at their school and their own houses (P3).345

5.2.1. LP2 Activities346

Students followed an inquiry process (P1) where they answered questions347

from the data. As in the smart meter example, the guided inquiry stage348

started with a representative snapshot of data (P2) from which they could349

see roughly the size of roofs and where a solar panel might go, colour coded350

according to whether it was predicted to give a low or high solar yield (figure351
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3). Students worked in groups on all activities. Students were prompted to352

answer the following questions:353

• Which house is best for fitting solar panels to? Which is the worst?354

• Look at the houses on the map, why do you think these are good/bad?355

Figure 3: Solar potential data set

There were variations in how this stage was delivered. For LP2 there was356

no planned open inquiry stage as this was delivered only to younger students.357

Instead, the variations of the guided inquiry were:358

No technology: Students were given a printout of the map and the snap-359

shot area was an estate close to their school that they were all familiar360

with. The associated data could be found from a table from which they361

could look up each property by the ID and find data about the solar362

potential, orientation, size and pitch of roof as well as the estimated363

cost of the panel.364

With technology: students used an interactive map that allowed them to365

zoom, pan, search by postcode, select the satellite or streetmap layer,366

and click on an area of the map to view data. This is shown in figure 4.367
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Through this, they could navigate across the city and ask and answer368

their own questions from the data, thus following the expansion princi-369

ple (P2). In the guided inquiry stage, these students entered their own370

postcode to select a region of houses from their own area from which371

to answer the above questions.372

Figure 4: Urban Data School Solar Potential lesson plan showing the Interactive Solar
Data Set

5.2.2. LP2 Outcomes373

The intended outcomes were that students would: a) understand how374

roof size, pitch and direction affect solar yield; b) understand the difference375

between interpreting data from the map and from a table (e.g., ability to376

see things blocking solar panels compared to ability to do statistics); c) find377

errors in the data and understand that data can be flawed.378

5.3. Lesson Plan 3 (LP3): Be a LiDAR device379

The aim of this lesson was to provide students with the experience of380

capturing data by aerial survey. This activity is based on the personal data381

collection principle (P6).382
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5.3.1. LP3 Activities383

Students were shown the principles of using light to measure distance,384

with the help of a portable laser measuring tool. Students then worked in385

groups and started by building their own house from plasticine onto which386

they marked a grid of 1cm by 1cm (figure 5). This follows the STEAM387

principle (P5). They then used home made rulers to measure the height388

of each square, transferring their data onto a sheet of paper. Groups then389

swapped their sheets, to see if they could understand the shape of the house390

from the data alone.391

Figure 5: Steps for creating the plasticine house with grid

5.3.2. LP3 Outcomes392

The intended outcomes were that students would understand how LiDAR393

data builds a picture of a landscape. They should also understand about data394

resolution and how this affects accuracy and the trade off between processing395

large data sets and having accurate measurements. A further aim was to396

improve their general understanding of how the data for the solar yield of397

roofs was created.398
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5.4. Other activities399

We have described three lesson plans that were constructed and used400

across the field trials. We omit some activities that do not contribute to the401

later discussion and where, on the whole, the findings are reported elsewhere402

[29, 30]. One activity that should be mentioned is ’be your own smart me-403

ter’, which encouraged students to collect their own energy data according404

to principle P6 and then to create novel visualisations from it. This was405

conducted each time in conjunction with LP1 to contextualise the smart me-406

ter data. The decision to exclude it was to reduce the amount of results to407

report - instead we have opted to discuss this principle in terms of LP2 and408

its complement LP3.409

6. Methodology410

We recruited three teachers to participate in four ethnographic field stud-411

ies using the developed lesson materials within their classes. One teacher par-412

ticipated in two separate field studies in two different years of the project.413

Each field study comprised two or three classroom sessions in which stu-414

dents undertook the activities, usually at one week intervals. There was a415

constraint in recruiting schools, in that they needed to be in the geographic416

location covered by the data sets. Teachers were recruited through personal417

contact.418

The constraints and method of recruitment meant that we ended up en-419

gaging with teachers of differing ages, subjects and abilities. Each field study420

was therefore adapted to align with the requirements of the teacher and their421

class. This process was led by the teachers, who were invited to select only422

activities that suited them and to adjust the design of these selected activi-423

ties then decide how the teaching sessions would be delivered and who would424

lead: either the teacher, the researcher or a co-led session between teacher425

and researcher. In the classroom, all activities were undertaken by students426

in groups of 2 or more.427

Evaluation at the end of each field study led to incremental improve-428

ments to the design and delivery of lesson plans, also taking into account429

the adaptations required by the teacher for the following field study. In ad-430

dition, the technologies to support teaching were developed and used in the431

final two studies. This need for flexibility lent itself to a long-term qualita-432

tive approach to evaluation, rather than controlled studies where it would be433

possible to collect quantitative data.434
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6.1. Data collection and analysis435

Data was collected for the purpose of refining the approach in a future436

iteration and also with a focus on assessing the students’ ability to link437

questions to data and to start to form their own inquiries. Data was collected438

from students in both primary and secondary schools. The total age range439

of students participating in activities was between 10 and 14.440

Each field study was observed by one or more Participant Observers441

(POs), who recorded videos or took photographs and made notes both during442

and after the sessions. Participant observation is useful for understanding443

how people relate, to each other and to task materials, and to identify future444

questions to be answered [31]. The observation procedures were discussed445

between observers beforehand. POs were tasked with noting when students446

needed help, in identifying parts of the lesson plans that caused problems447

and most importantly any evidence that students were thinking beyond the448

initial activities and posing their own questions from the data. POs were449

also tasked in noting down the number of students engaged in tasks and how450

they formed into groups. The level of participation of the observers varied451

from co-leading the session to supporting students in practical group work452

activities. As POs were busy during the sessions, the main data was captured453

in a summary that was written up as notes immediately after each session.454

Where practical, verbatim quotes of students were captured at the time, but455

this was not systematic.456

At the end of each field study, the photographs, verbatim quotes and457

PO summaries were combined to create a single narrative about what was458

happening in the session, focusing on what problems were encountered and459

what questions did students ask.460

In two field studies that were conducted with older, secondary school stu-461

dents, additional data was collected directly via worksheets and from class-462

room materials (such as post-it notes). This captured the questions that463

students asked from data at different points throughout the activities. A464

qualitative coding of this data to assess the questions for answerability from465

the data was undertaken by the first author, who had expertise with both the466

data and its use in research. It was verified by a second researcher, leading467

to some adjustments until a consensus was reached. This process aligns with468

the process undertaken by [21]. Both an inductive and deductive approach469

was taken to the coding. In this process, some initial categories were sug-470

gested and used to guide the first coding, then these were refined based on471

the analysis of each question.472
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Due to the longitudinal nature and slightly differing focus in each field473

study, the data collected was different in each case which made controlled474

experimentation difficult. However, each individual classroom session yielded475

rich data from observations and working materials.476

7. Results477

This section is structured according to the research questions listed in478

section 1. For clarity, results that do not contribute to this discussion will479

be reported on only minimally, or left out altogether.480

There were four field studies; a total of 67 students took part. These are481

shown in Table 1 in the order in which they were conducted, approximately482

6 months apart each time.483

Id Sessions Year(age) Pupils Subject Lead POs Activities
FS1 2 5 (10-11) 12 Maths co-led 1 LP2 no tech
FS2 3 9 (13-14) 17 Triple science teacher 2 LP1 no tech
FS3 2 7 (11-12) 25 Geography researcher 1 LP1 with tech
FS4 2 5 (10-11) 13 Maths co-led 2 LP2 with tech then LP3

Table 1: Field Study details

Figure 6 summarises the findings from across the four field studies and484

details how they are used to answer the research questions. These findings485

are expanded upon in the remainder of the results section.486

7.1. Answering RQ1: What factors influence students abilities to ask and487

answer questions from the presented data?488

Lesson plan 1 was designed to follow standard inquiry processes (P1),489

starting with a guided inquiry and then moving to a more open inquiry with490

older students. Following the foundational competence principle (P4) and491

knowing that students may struggle in particular to relate questions and492

data - which is an important part of the inquiry process, especially an open493

inquiry - the following results explore the extent to which this was supported494

through the activities. The focus is on on a comparison between the FS2 and495

FS3 brainstorming activities of Lesson Plan 1 (see figure 7). This is the start496

of the open inquiry stage and it took place after all students had completed497

the guided inquiry from the snapshot of the data (first part of LP1). This498
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Figure 6: Summary of results

relates to the categorisation of questions that students made in this stage499

(see row RQ1 of figure 6).500

The question categories that were obtained through coding were as fol-501

lows. We include also their alignment to the question categories used by502

Shelley et al. [21]. We have included the ‘not answerable’ category here,503

as this was originally suggested prior to coding taking place. However, this504

category was not needed in the end.505

C1 Smart meter questions (completely answerable): students pose a506

question that can either be answered directly from a further analysis of the507

smart meter data, or where the further analysis could give enough informa-508

tion for them to form a reasonable hypothesis (that may then lead to further509

information being needed to verify).510
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Figure 7: Some students placing their brainstorming questions onto a whiteboard
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C2 Supplementary questions (conditionally answerable): students511

would require further data or information to answer the question, but this512

answer would help to interpret findings from the smart meter data.513

C3 Topic questions: questions students have that aid general under-514

standing of the topic, but are not directly related to the smart meter data.515

C4 Validity questions: students query the validity of the data.516

C5 Not answerable: the question is out of scope for both the topic and517

the data.518

It should be noted that, in categorising questions, the goal was to assess519

the ability of the students to frame questions around the smart meter data520

for which they could offer a line of reasoning by which their proposed analysis521

may provide an answer to their question, rather than to judge the quality522

of this reasoning. Hence, the first category combined questions that could523

be answered from the smart meter data and those for which the analysis524

could lead them to form a hypothesis that might then need verification from525

additional data. Therefore, in completing the categorisation, attention was526

paid to the explanations given by the students either in their workbooks or527

in discussion with the teacher or researcher (which were recorded as obser-528

vations). Where students could offer a plausible explanation of what they529

would be looking for from the data and how this would relate to the ques-530

tion, the question was placed into the first category. To give an example,531

one teacher queried how students would tell from data if there were a young532

family in the house. A student offered an explanation that the “mini-spike in533

the energy data could indicate a young family having to heat food, put music534

on”. With regard to the possibility of visitors being in the house between535

8:00 and 12:00, a student suggested they “could check whether this happens536

every day by looking for a spike on other days”.537

Next, we counted the questions that appeared in each category. We538

did this separately for FS2 and FS3, to enable comparisons between them.539

Figure 9 lists all of the questions in the FS2 session and how they were540

categorised. Additionally, we know whether these questions were selected for541

further analysis in the refinement stage and by how many students. This542

information is also presented in the table (it will be discussed in more detail543

in the next section). It should be noted that some students did not specify in544

their workbooks which questions they had selected for the further analysis,545

whereas some students decided to write down new questions that had not546

been presented by the whole class in the brainstorming stage.547

FS2 students posed a total of 18 questions across the two stages (brain-548
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Figure 8: Questions asked in FS2 related to energy consumption

storm and refinement). The majority of questions in the refinement stage549

were chosen from those where the answer was in the data (25) compared to550

from additional data (3) or general topic (none) indicating that their under-551

standing of how to select good questions was improving through the class552

discussions and use of technology to interact with the data.553

Figure 10 shows the questions asked by students in FS3. They did not554

formally write down questions for the refinement stage, so this information555

is missing from the table, but is discussed (based on the observations) in the556

next section 7.3. FS3 students asked a similar number of questions as FS2,557

despite a greater number of students (25 students compared to 17). In both558

field studies, the students worked in groups of two or three.559

As described in row RQ1 of figure 6, the notable result is that FS3 stu-560

dents asked fewer questions of the data and more about the data, indicating561

some difficulty in framing these types of questions. For example, FS3 stu-562
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Figure 9: Questions asked in FS3 related to energy consumption

dents noticed that less energy was being used in the middle of the day and563

asked why. On the other hand, FS2 students framed much more specific564

questions that could be answered by looking at more data from the smart565

meter data set, such as “Does the house have the same pattern every day?566

We would need another six more graphs to compare.” FS3 students also567

had many more questions that would aid their general understanding of the568

topic (C3). The differences between FS2 and FS3 were the age of students569

(FS3 students were approximately 2 years younger) and the lesson’s subject570

(science in FS2, geography in FS3).571

Overall, the students were able to:572

• frame new questions of the wider data set after initially focusing on573

just a very small part of it;574

• create plausible explanations of their findings - even if sometimes the575

explanations were not the only possible ones and even though they were576

often not verifiable without additional information.577

7.2. Answering RQ2: what is the role of data interaction in facilitating the578

inquiry process?579

This section compares the lesson plans, LP1 and LP2, undertaken firstly580

without technology and secondly with the use of an interactive data browser581
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- in each case, by a different set of students at a different point in time.582

7.2.1. Technology use in FS2 and FS3583

FS2, in which LP1 was conducted without the use of technology, is de-584

scribed in the previous section 7.1. This section focuses on the refinement585

stage in FS3, in which students were able to ask and answer questions rapidly586

using an interactive tool in which they could select the smart meter energy587

consumption data for a time period and a house in which they were in-588

terested (see figure 6, RQ2: comparing LP1 with and without technology).589

They could also view data at the appliance level. This data came from smart590

plugs, which could be configured by each individual household.591

The data in this stage is based on the observations of the participant592

observers (POs), as these students did not have time to write their findings593

in the book. Observations were based on what students were looking at and594

on summaries of the conversations that students in a group had with each595

other, or with the PO. Any interpretations presented in these results are596

based on the interpretations made and written by the POs at the time.597

The observers noted that students could quickly grasp the meaning of598

the graph without any help at all, and were starting to answer questions599

immediately about the times of highest/lowest energy use, as well as start-600

ing to propose theories for what caused them (see the findings for RQ2 in601

figure 6). Students could also easily identify the relationship between the602

graph and daily life activities of the occupants of the houses. This was evi-603

denced through the stories that students told about what they thought was604

happening in the house, based on the data. In this case, students tended to605

focus on questions that compared either a single property or appliance across606

different time periods. One explanation for this is that the interactive tool607

made selection of appliances and time periods easier than changing to view608

a different property. Although it is not clear from the mock-up in figure 2,609

there was one additional button to press to select the data set of a different610

house.611

The queries and explanations were analysed and categorised using the612

same process as for the questions (section 7.1). These questions (by nature of613

the task) all belonged in category C1, in that they were completely answerable614

from the data so the aim was to undertake a deeper analysis of the types615

of questions that fell within this category to show what students were most616

interested in. This analysis revealed that questions fell broadly into two617

categories. These are now discussed, with some representative examples of618
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explanations.619

Comparing a single property at different times: One group found a620

reduction in energy consumption at Christmas hypothesising that the family621

may have spent Christmas elsewhere. Another group focused on anomalies,622

first discussing possible reasons for a zero value, including the possibility623

of a power cut. Another student in the group said a power cut would last624

longer, so perhaps a fuse had gone in the house and the person had woken625

up and gone and flicked the fuse box back very quickly. Another student626

thought that perhaps it was a key meter. This same group also noticed two627

spikes in the data, which they discussed with the researcher, leading to the628

explanation that perhaps the smart meter was in error.629

Comparing a single appliance at different times: One group was630

looking at TV consumption and found that the family had suddenly stopped631

using the TV. They speculated that the TV was broken, but could not think632

of any other reason, for example, they did not know that the smart plug633

might have been moved and used to monitor something else. When told634

this, they decided that this was a more likely explanation.635

7.2.2. Technology use in FS1 and FS4636

In FS1 students undertook activities related to LP2 (solar potential) using637

paper-based maps and associated data sets given in a printed table (see RQ2638

figure 6). The aim was that students would understand how direction, roof639

area and pitch contributed to solar yield. Students worked in groups. At the640

end they presented their findings. Their conclusions after engaging with the641

task were:642

• “If the house [roofs] are slanted then they have the most chance of643

getting the most electricity.”644

• A 4-sided roof would be “harder to put solar panels on, because some-645

times the sun doesn’t come from that side.”646

• “It’s best if the solar panels are facing south, because that’s the direc-647

tion of the sun in the day.”648

• “Even if you buy these really big expensive solar panels, it might not649

make much of a difference - it might be a waste of money.”650

Overall, these answers reveal that students had picked up important prin-651

ciples about solar panels through interpreting the dataset. These include that652

25



Figure 10: Interacting with the solar map

the roofs must face a certain direction and be slanted to get the most sun.653

They had also begun to understand some of the cost implications.654

In FS4, students followed the same set of activities, but they used an655

interactive version of a map showing solar potential of all roofs in the city (see656

RQ2 figure 6). Students, working in groups of two or three, first undertook657

the guided inquiry stage based on putting in their own postcodes (Figure 9).658

This normally revealed an area of about 20 houses.659

The following data is based on the observations made by the POs at the660

time. Students were observed to start asking further questions independently661

very quickly and navigating the map to try to find the answer (see findings for662

RQ2 in figure 6). For example, one group very quickly put in the postcode for663

their school. They discovered an anomaly in the data, where a non-building664

in the school was identified as having good potential for fitting a solar panel.665

Another group tried to find a building (a head office of a famous pizza chain)666

that they knew “has a very big roof” to see how much the panels would cost667

and how much energy it would produce. By querying the data more closely,668

students latched onto the idea of cost/benefit trade-off. This was despite669

such activities not being prompted: these students were meant to still be in670

a guided inquiry and there were no open inquiry activities planned for these671

26



Figure 11: Measuring the slope of the roof.

younger students.672

7.3. Answering RQ3: How does personally collecting data changes one’s per-673

spective of it?674

The following results focus on the LP3 activities of FS4, which took place675

directly after the LP2 activities described above, where students were explor-676

ing the LiDAR data through the technology. The data is based on analysing677

and constructing a narrative from the observations of the POs and video data678

from the session.679

There were three groups completing the task, with 2 or 3 children in each680

group. All groups completed the task of creating and measuring the house681

(figure 11).682

One observed group were able to complete their grid of height values683

taken by measuring the roof height for each square they had drawn onto the684

house and then begin to identify the slope of the roof from the data alone.685

With some support from the PO, they were working out how they would tell686

just from data which way the house was facing (figure 12).687

Two of three groups swapped their grids and were able to find the slope688

from the other group’s data, with one group correctly identifying that the689
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Figure 12: Recreating the house from data

other group had made a house with a ‘wiggly roof’ and then asking to see690

the house for themselves.691

At the end of this classroom session, there was a general discussion. The692

noted observations were as follows:693

• Students commented how “stupid” the data is, because it “doesn’t694

know it is looking at a house, or someone’s back garden”.695

• Students could easily think of things that might have slopes that the696

aerial survey might pick up but were not roofs, including bus shelters697

or hills.698

• Students thought that it was normally better for humans to process699

visual data, but when the data set is so large (as in this case), then it700

is good to give some intelligence to computers so they can help.701

• This last comment prompted a discussion about how to add more intel-702

ligence to the data processing algorithm. One suggestion was that bus703

shelters would not have such a steep pitch. Students started thinking704

about combining data sets, proposing that one way to tell a house from705
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other buildings through the data was to measure the heat of people in-706

side.707

Taking all of the above into consideration, it appears that the LiDAR task708

has prompted a good level of understanding of the potential and limitations709

of the data set (see main findings for RQ3 in figure 6), whilst the initial710

task with the interactive map prompted more free exploration and asking711

questions from the data itself.712

8. Discussion713

We begin this discussion by considering what has been found with regard714

to students’ abilities to ask and answer questions from externally sourced715

data.716

In the fourth field study (FS4), when students were able to directly inter-717

act with data through the data browser (figure 3), they became very keen to718

start driving their own inquiries, even though this was not an explicit part719

of the task (RQ2 in figure 6). For example, deciding to look at the cost of720

solar panels on a large roof and finding out whether their own houses should721

get solar panels or not. As pointed out by Konold and Higgins [22], data722

investigations start with questions about the real world - but such questions723

must be revised to ones that can be answered from data. The expansion724

principle (P2) was proposed as a way to support this, by engaging students725

first with a data snapshot and then allowing them to navigate across the726

wider data set.727

In this regard, the finding of note was that younger students (FS3) had728

more difficulty than older students (FS2) in framing inquiry questions directly729

from data, when engaging with only a single snapshot (RQ1 in figure 6).730

Older students were more likely to choose questions for which they could731

present a plausible explanation of what they would look for in the data to732

answer. Both sets of students had undertaken an identical task, so the main733

factor on which to understand the difference was their age. This supports734

findings of [32] that students of this age find it difficult to link questions, data735

and explanations coherently. If we take the perspective of Piaget [33], the736

younger student group are just at the start of their formal operational stage,737

where they gain the ability to reason in abstract forms. Prior to this stage,738

children have more reliance on concrete manipulation. If this is the case,739

then it could explain the observations that the younger students asked more740
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focused questions when they used the technology to engage with the data.741

However, data collected regarding the role of technology was too sparse to be742

able to draw firm conclusions and future work would need to investigate more743

thoroughly the extent to which the technology supported this adaptation of744

question strategy and played a role in supporting the expansion principle.745

Turning attention to the personal data collection principle (P6), it was746

notable that students in the smart meter task (LP1) consistently proposed747

a supply failure as the reason for a zero reading, whereas a more plausible748

explanation given the very brief time of the zero reading was that the meter749

itself had failed. While the results reported have been quite focused, it is fair750

to mention here that these tasks were conducted across a two year period751

in a number of settings. It was observed across a number of engagements752

with smart meter data and also the solar panel data set that students were753

reluctant to attribute errors to the measuring instrument.754

In previous work by Hautea et al. [12] it was discovered that young people755

became sceptical about data through their interactions with it. In this set-756

up, the students (of a similar age range to the ones in these studies) were757

interacting with data in an environment in which they were also contributing758

to the data, so in effect the personal data collection principles was in place to759

help the students to understand better the possible source of errors. Similarly,760

in our studies when students started to collect data and became a LiDAR761

measuring instrument, they were more critical of the data (RQ3 in figure762

6). These same students had interacted with the LiDAR-obtained solar data763

in the previous week and had been observed to focus on driving their own764

inquiries from the data to find if houses were more or less suitable for solar765

panels. However, in the following week when they were learning how the data766

was collected, they began questioning whether every ‘roof’ picked up in the767

dataset was a viable building for fitting solar panels and even started to think768

of ways to refine the processing of data to reduce such errors. This seems769

to support the personal data collection principle (P6), that students770

should collect data themselves to help them to interpret data and that this771

process of interacting with familiar data may be important in fostering data772

scepticism. In this regard, it would have been better to have these activities773

occur in the alternate order, so that students would first understand how the774

data was collected and then explore the data set.775

The personal data collection principle should be investigated in a more776

controlled manner, to really understand the relationship between familiarity777

with data and ability to critique. It has wide-ranging implications for people’s778
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ability to use externally sourced data, whether it is for business needs, for779

empowerment or for innovation from data.780

Finally, this work has demonstrated the many different ways that these781

types of less typical classroom data and smart city concepts can be integrated782

in a school curriculum and how activities can be designed around them in783

a way to support development of critical data literacies. Overall, the lesson784

plans can be shown to achieve their intended outcomes. In the first lesson785

plan, students showed evidence of finding and explaining common patterns786

in energy data. In the second lesson plan, students demonstrated a good787

understanding of the different factors that effect solar yield. In the third788

lesson plan, students came to understand how to recreate the 3D world from789

2D data and the possible sources of error that came from the measuring790

technique. However, this was not the end of the story. Students showed791

evidence of learning a lot more, for example about the domain of energy, the792

importance of being energy efficient and the pros and cons of solar energy as793

a renewable source.794

9. Conclusions795

This paper presents findings from an initiative to take complex data from796

a smart city project into schools and to use it as a teaching resource. It797

explores the use of data literacy activity design principles to support the798

co-creation, with teachers, of the teaching resources and the development of799

technology to support interaction with data. The project followed a research800

through design approach which created an initial set of teaching materials801

that were refined each time they were taken to a new classroom and also802

adapted by the teacher to fit the new context. The technologies to support803

data interaction were designed to have limited functionality and to support804

just a small part of the classroom delivery, which also included workbook805

activities, and practical tasks.806

The main findings were that:807

• younger students require support in framing inquiry questions that can808

be answered from externally sourced data;809

• when engaging with externally sourced data it can be useful to act in810

the role of a data collector to understand better where errors can creep811

into the data and to develop better data scepticism.812
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Overall, the learning of data skills lends itself very well to cross-curricular813

learning and can begin with students as young as ten years old, as evidenced814

through the variety of school contexts in which we worked. Data literacy815

activity design principles provide a way to structure learning from external816

data sets. This may support teachers to develop new activities from open817

data. The teaching of data in context is important and local, open data can818

be a good resource for teaching, if supported in the right way.819
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