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ARTICLE INFO ABSTRACT

Keywords:

Promoting physical activity is one of the main goals of interactive playgrounds. To validate whether this goal is

Play met, we need to measure the amount of physical player activity. Traditional methods of measuring activity, such

Interactive playgrounds
Automated behavior analysis
Physical activity

Exertion measurement
Depth cameras

as observations or annotations of game sessions, require time and personnel. Others, such as heart rate monitors
and accelerometers, need to be worn by the player. In this paper, we investigate whether physical activity can be
measured unobtrusively by tracking players using depth cameras and applying computer vision algorithms. In a
user study with 32 players, we measure the players’ speed while playing a game of tag, and demonstrate that our

measures correlate well with exertion measured using heart rate sensors. This makes the method an attractive
alternative to either manual coding or the use of worn devices. We also compare our approach to other exertion
measurement methods. Finally, we demonstrate and discuss its potential for automated, unobtrusive measure-
ments and real-time game adaptation.

1. Introduction

Technology has become embedded into many aspects of children’s
lives, including children’s play, and studies have suggested that it can
limit its users to screen-based solitary interactions (Radesky and
Christakis, 2016). A clear example of this is that children currently
spend a significant amount of time consuming online digital media, and
a considerable part is dedicated to digital gaming (Blumberg et al.,
2013). Most young people play video games at least occasionally and
many of them play daily (Desai et al., 2010; Ferguson and Olson, 2013).
In doing so, the opportunities available for children to engage in full-
body physical activity and in social interactions, both essential for their
development, can be drastically reduced (Aggio et al., 2012; Carson
et al., 2016; Plotner et al., 2015). Nonetheless, digital games can also be
used to encourage positive aspects of play (Calvert et al., 2013). Exer-
tion games or active video games (AVGs) provide the entertainment
value of digital games while encouraging players to engage in physical
activity (Miiller et al., 2016; Peng et al., 2013). Interactive playgrounds
are instrumented spaces where exertion games can be played, usually
with small groups of players (Poppe et al., 2014). These playgrounds
combine elements of traditional playgrounds with digital elements to
promote key aspects of play, including physical activity (Moreno et al.,
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2013). In general, these approaches are designed to put body movement
as a core part of the gameplay in order to motivate players to exert
themselves (e.g., Landry and Parés, 2014; Miiller et al., 2012a).

This does not necessarily mean that players engage in appropriate
levels of exertion (Peng et al., 2013). Players could move very little, or
players might move too much and burn out quickly. Knowing before-
hand how to stimulate players appropriately is difficult, and is likely to
differ between individuals. One promising alternative to control the
level of exertion is to adapt the stimulation of the players in real-time,
based on measurements of the players’ levels of physical activity
(Altimira et al., 2017).

Traditional methods of measuring physical activity in play include
the annotation of game sessions, interviews and self-reports (Hands and
Larkin, 2006; Loprinzi and Cardinal, 2011). These validated methods
provide varied information, but the outcome only becomes available
after, not during, the game session. Annotation requires observers to
categorize specific actions using annotation schemes, and it is typically
performed on recorded game sessions (Bakker et al., 2008; Moreno
et al., 2012). Questionnaires to evaluate physical activity are filled in
after the game sessions since they ask players about their experiences. A
different approach to measuring physical activity in games is to use
sensors such as accelerometers, pedometers or heart rate monitors.
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These sensors are worn or carried and provide continuous in-game
measurements so the data can be accessed directly. This presents an
attractive alternative to manual annotation and opens up the possibility
of in-game adaptation of gameplay based on sensor measurements.
While these methods are suitable for the study of play in a laboratory
setting, the requirement of fitting sensors and registering them to the
game session hinders their use in everyday play. In the current paper,
we present an approach that overcomes this limitation by measuring
exertion in real-time and unobtrusively, using overhead cameras.

Our contributions are two-fold. First, we present a method to obtain
in-game measurements of physical activity using a completely un-
obtrusive method. We track the players using cameras and computer
vision algorithms and determine their level of activity by measuring the
average movement speed. We compare this approach to a number of
alternative sensor-based approaches and questionnaires. Second, we
demonstrate that the level of physical activity can be influenced in real-
time by adapting a single gameplay element in an interactive play-
ground. To evaluate our approach, we conduct a user study with eight
groups of four players. Together, these contributions demonstrate the
potential of automatically and unobtrusively measuring and mod-
ulating physical activity in AVGs.

This paper is structured as follows. Section 2 presents an overview
of how physical activity is currently measured and evaluated in active
video games. In Sections 3 and 4 we describe the physical setup and the
design of our user studies respectively. We then present and discuss the
results of this study in Section 5, and conclude in Section 6 by dis-
cussing avenues for future work.

2. Measuring physical activity in active video games

AVGs are interactive games that stimulate users to be physically
active. They are usually played in interactive playgrounds, physical
installations that include actuators such as screens, projectors, or
speakers, and sensors such as cameras and accelerometers. These sen-
sors leverage body movements to drive system interactions. AVGs that
promote full-body movement generate higher levels of exertion
(Peng et al., 2013). Many of these systems are designed to promote
specific types of movement and social interactions (Miiller et al., 2017).
For instance, Tetteroo et al. designed an open-ended game to stimulate
physical activity for children (Tetteroo et al.,, 2011). In their play-
ground, children wear hats with infrared reflectors that are tracked in
the playing area. Shapes are projected on the floor and respond to
nearby children, stimulating running. Similarly, Avontuur et al. de-
signed a game where players chase and steal the “buzz” from players by
approaching them (Avontuur et al., 2014). Besides running, other forms
of movement can be promoted, as Mueller et al. show in “Hanging off a
bar” (Miiller et al., 2012a). In this game, a river is projected on the floor
and players have to hang off a bar until a small raft drifts by and the
player is allowed to jump onto it to rest. Once the raft drifts away, the
player has to jump and hang onto the bar again, requiring endurance
and arm strength for extended play. Another exergame designed to
promote arm and upper body movement is “Rapid Recovery” by
Shewaga et al. (2015). It is a kayaking simulation that requires players
to paddle their canoe through a virtual course displayed in front of
them, using an augmented baton.

Most AVG researchers use offline methods to measure physical ac-
tivity such as the manual annotation of game recordings, or asking
participants to assess their experience through questionnaires
(Staiano and Calvert, 2011). These validated methods provide im-
portant information about a player’s experiences, feelings, opinions or
behavioral characteristics but require additional time and personnel to
carry out the interviews or annotations. In-game measurements are an
attractive alternative because they provide a continuous stream of de-
tailed data in real-time from sensors; therefore they present researchers
with objective data. This comes at the cost of a more challenging in-
terpretation of the data. Traditionally, sensors have been mostly used as
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input for controlling games rather than as a measuring tool for physical
activity. Body-mounted trackers have been used to sense upper body
motion in games (Finkelstein et al., 2011), or gloves equipped with
sensors to interact with projections on walls (Toprak et al., 2012).

With the advent of affordable and accurate sensors, in-game mea-
surements in AVGs are becoming more common. The real-time data
obtained through them can be used to react on-the-fly and adapt ga-
meplay to steer behavior in positive directions (Ketcheson et al., 2015;
van Delden et al., 2014). Typically, this proceeds through actuators
such as screens and projectors. Considering that players’ in-game visual
representation has been shown to affect the amount of exercise that
players engage in Li et al. (2014), playing with these visual re-
presentations can be used to adapt the game play.

One goal of adaptation is to make the game more balanced for
players with different physical fitness levels, such as in the “Heart Burn”
racing game by Stach et al. (2009). Players have to speed virtual ve-
hicles by pedaling on a stationary bicycle, while their heart rates are
measured. Instead of using cycling speed, their measured heart rates
determine the vehicle speeds. Consequently, people with better phy-
sical condition have to exert themselves more to compete against less fit
players, effectively balancing the game. Similarly, Mueller et al. use
heart rate to allow people at different locations to jog while “feeling
together” in “Jogging over a distance” (Miiller et al., 2012b). Partici-
pants are equipped with heart rate sensors and headsets for commu-
nication. The volume level of the joggers is adjusted based on their
individual heart rates. When the heart rate of one participant is higher,
his voice sounds as if he was ahead because of the additional effort he is
putting in, encouraging the lagging participant to exert more.

Researchers have started to address the analysis and evaluation of a
player’s movement and activity levels without the need of wearable
sensors, making the measurement completely unobtrusive. Van Delden
et al. measure player movement using Kinect depth cameras in “Hang in
There” (van Delden et al., 2014). In the game, players hang from a
climbing harness and move laterally to collect coins projected on a
screen in front of them. Landry and Pares not only analyze movement,
but use this to measure the physical activity of groups of children in the
“Interactive Slide” installation (Landry and Parés, 2014). They project a
game on a slide so that children have to climb up and slide down to
interact with the game elements. Computer vision algorithms based on
the difference between subsequent frames are used to measure the total
amount of movement. This approach is fairly straightforward, and
provides a collective measure of exertion. Despite the reported perfor-
mance, the use of pixel difference is prone to issues of reliability due to
the influence of clothing, body size, camera viewpoint and lighting
conditions on the measurements.

We propose a pervasive approach for unobtrusive, in-game mea-
surement of player activity during group play. By tracking the in-
dividual players, we overcome typical robustness issues when directly
measuring exertion from sequences of video frames. Furthermore, we
demonstrate how the level of activity can be influenced by adapting a
gameplay element, effectively demonstrating the potential of real-time
measurement of player exertion.

3. Measuring physical activity in an interactive playground

In this section, we detail the interactive playground in which we
conduct our user study (Section 4). We then describe how we measure
player exertion using depth cameras and computer vision algorithms.

3.1. Interactive tag playground

The Interactive Tag Playground (ITP) is an installation where
players can play an enhanced version of the game of tag (Moreno et al.,
2016). It provides a 6 m X 5 m space with floor projections. The
location of each player is measured using four Kinects V1, located in the
ceiling of the playground. Two projectors that are also mounted in the
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Fig. 1. People playing tag in the ITP.

ceiling, project circles around the estimated position of each player. The
color of the circle represents the role of the player: orange for the tagger
and blue for runners (see Fig. 1). To tag another player, the tagger has
to make her/his circle touch that of a runner. Upon the tag, the roles of
the two players switch. The new runner cannot be tagged for two sec-
onds, to encourage the new tagger to look for another player.

The floor projections are based on the positions of the players, as
discussed in the next subsection. As such, there is a feedback loop
where the behavior of the players can be shaped by altering how the
floor projections take into account the players’ behaviors. In previous
work, it has been demonstrated that careful adaptation of the floor
projections could be used to increase proximity between players
(van Delden et al., 2014) and stimulate risk taking (van Delden et al.,
2017). In this paper, specifically, we experiment with different sizes of
the circle that is projected around each player. Larger circles reduce the
effort needed to tag another player. Consequently, we expect that the
size of the projected circle affects the amount of exertion.

3.2. Unobtrusive measurement of exertion

We propose to measure the amount of activity in a completely un-
obtrusive manner through computer vision. We track players during the
game and calculate their movement speeds. This allows us to estimate
their physical activity levels.

To track players, we use depth images from Kinect sensors located
above the play area and facing downwards. Since the depth images are
obtained using an infrared sensor, the light from the overhead projec-
tors is not an issue. Also, the sensor measurements are not sensitive to
indoor lighting conditions, which is an additional advantage. Basic
filtering operations are applied on the depth images to remove noise
and enhance the head-shoulder region of the players. Effectively, this
allows us to focus on those regions in the image that are closer to the
camera. In a playground without physical props, these areas correspond
to the players. We isolate these regions by looking for local peaks in the
depth image. We then use a Kalman filter for each peak to track the
corresponding player. Kalman filters predict the player’s future location
based on a motion model and live observations. The model is updated
continuously based on the assigned detection’s position.

Given proper calibration of the depth cameras, we can project pixel
distances in the image to distances on the ground plane, in meters. By
summing distances between subsequent measurements over one-second
time intervals, we can nicely approximate the players’ speed in meters
per second. The tracker has been evaluated in Moreno et al. (2016) and
performs well. Still, when players bump into each other, their tracks are
occasionally swapped. While this is a rare event, we cannot guarantee
that this never happens. From depth recordings, players cannot be ea-
sily differentiated or identified. While this is an advantage for player
privacy, it prevents us from recovering from the track swaps. As a
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consequence, we average the speeds of all players at a given moment.
Our measure of exertion based on the speed of tracked players is
therefore a group measure.

4. Experiment design

We conducted a user study in the ITP with two goals. Firstly, to
demonstrate that players’ speed can be used as a reliable measurement
of physical activity in interactive playgrounds, we compare our esti-
mates with a number of reported activity measurements including self-
report and heart rate. Our second goal is to modulate physical activity
in the ITP by changing players’ circle sizes to manipulate the amount of
effort it takes to tag other players. The experiment described here was
approved by our university’s ethical committee.

4.1. Participants

The participants were BSc, MSc and PhD students from the
University of Twente. While these participants are not the intended
target audience of interactive playgrounds, they are an easily accessible
participant group. Moreover, for the aim of the present study, we focus
on the automated measurement of exertion. Aspects such as specific
interactions and enjoyment, which are arguably more age-dependent,
are not the focus. Students were approached at the university and asked
if they wanted to voluntarily participate in a 30min study in which they
were going to play tag. If they agreed, they were taken to the playing
area. In eight sessions with four players each, we had a total of 32
participants: 23 male, 9 female (age 19-28, mean 21.9, standard de-
viation 2.36).

4.2. Design

We ran a series of 8 playground tag sessions, each involving a group
of four players. In each session, participants played three tag game sub-
sessions with breaks in between. In each sub-session, the group played
the tag game with different circle sizes (see Fig. 2). The first sub-session
used the standard circle size and served to familiarise players with the
game play. In the other two sub-sessions, which had a duration of 4
minutes each, players played 2 different versions of the game that were
designed to test whether the size of the circles affected players’ activity
levels. In the High Exertion Condition (HEC), the circle size was smaller
than the standard size while the circle was bigger than the standard size
in the Low Exertion Condition (LEC). Specifically, the diameter of the
circles was 102 cm in the standard condition, 66 cm in the HEC, and
149 cm in the LEC. The size of the circles in the HEC was set to resemble
the average shoulder width of young adults, whereas the size in the LEC
was set to approximate an arm’s reach. Within each condition, the size
of the circles did not change. To allow evaluation of possible order
effects, we counterbalanced the conditions such that groups in the odd-
numbered sessions played tag in the HEC before the LEC, and groups in
the even-numbered sessions did the reverse. The study thus has a
within-participants design with exertion condition (or circle size) as the
independent variable.

4.3. Measurements

We used four exertion measures, including our novel, unobtrusive
measure:

o Speed of tracked players is our newly proposed exertion measure.
It is calculated from the player’s tracked position, at 15 frames per
second (see Section 3.2). The speed information is obtained by
calculating the average track displacement per second, over all
players. To eliminate the noise inherent to data collection, we ap-
plied a median filter with a window size of one third of a second on
the position data, and we interpolated position values when tracks
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Small circles

Fig. 2. Difference between circle sizes in the HEC(t) and LEC(b).

went missing.

Heart rate monitors are widely used to determine exercise in-
tensity (Achten and Jeukendrup, 2003), and provide ground truth
measurements in this study. The unit used for the heart rate (HR)
measurements is beats per minute (bpm). We used Scosche Rhythm
Plus heart rate monitors, which were strapped to each player’s right
forearm. The sensor is claimed to be accurate within 1 bpm. We
measured HR every second for the entire duration (four minutes) of
the condition sub-sessions.

Accelerometers measure the amount of acceleration to which the
sensor is subjected, a measurement related to the amount of
movement of the user. Accelerometers have been shown to measure
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exertion reliably in previous studies (Loprinzi and Cardinal, 2011;
Sirard and Pate, 2001). We used YEI 3-Space wireless accel-
erometers for this study, which were placed in the right pockets of
the players. We collect acceleration data 15 times per second. We
applied a median filter with a window size of one third of a second
to remove noise and interpolate missing values. The unit used for
the acceleration values is g, the gravitational constant.

Pixel difference is a computer vision method by which the differ-
ence between consecutive images is calculated. In the case of a video
feed of people moving, the difference between consecutive frames
yields an approximate measurement of how much movement is
present in the sequence. Because we use floor projections and those
can cause differences between frames even when the players do not
move, we use the depth images from the Kinect instead of the tra-
ditional RGB images. To obtain the pixel difference value, we sub-
tract consecutive depth images obtained from the Kinects 15 times
per second. We applied basic morphological operations (dilation,
erosion) and a median filter (window size of one third of a second)
on the actual pixel difference values to remove noise.

For all measurements, we discarded the first two minutes of each
recording because during this period the HR is rising (see Fig. 3).
During the last two minutes, HR has stabilized and more accurately
represents activity levels. We calculate, for each measure, the average
value over the last two minutes. We furthermore average the mea-
surements per group of players to be able to directly compare all
measures, including our novel measure and pixel difference, which are
both group measures. This means we are averaging individual differ-
ences. Also, this effectively reduces the number of observations, which
makes statistical analyses conservative. Still, we believe that a group
measure is appropriate because the behavior of all players is correlated.

In addition to the exertion measures, we used a questionnaire. It
served two purposes. The first was to evaluate the perceived exertion of
the players after a condition session. The second goal was to keep
players occupied during the break so they would rest. Perceived exer-
tion was measured using Borg’s Rating of Perceived Exertion (RPE)
Scale (Borg, 1982). The Borg scale is a linear scale from 6 to 20. The
range of the scale was designed to broadly represent the HR of healthy
adults. A perceived exertion of 10 should coincide with a HR of
100 bpm. We also asked additional questions about players’ estimated
fitness level, physical characteristics (height, weight) and preference of
game elements. This information was not used for this study.

Below, we introduce, motivate and operationalize our hypotheses:

—HEC
— LEC

100 ‘
0 60

1 1 |
120 180 240

Time (s)

Fig. 3. Average HR measurements of all players in the LEC and HEC. Only the last two minutes of play are used for the data analysis.
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e Physical activity and circle size With larger circles, less effort is
required to tag others, potentially resulting in lower HR. Therefore,
it should be possible to influence the amount of physical activity of
players by varying circle sizes.

H1: The HR of players is higher in the HEC than in the LEC.
We compare, per group, the average HR of all players of the last two
minutes in the LEC and HEC sub-sessions, respectively.

e Average player speed and circle size With larger circles, players

should be able to run slower and still tag other players. Therefore,
players’ speed measurements through tracking should be lower in
the LEC than in the HEC.
H2: The speed of the players is higher in the HEC than in the LEC.
This hypothesis checks whether we can use player speed to measure
physical activity. We comapre the average speed of all players in a
group for the last two minutes of the LEC and HEC sub-sessions.

o Heart rate and player speed The relation between heart rate and

exertion has been well-studied (e.g., Boudet et al. (2004)). Exertion
measurements not only depend on the amount of physical activity a
player is undertaking, but also on his or her fitness level and body
properties. This introduces a bias for different players. Still, players’
speed should affect the amount of effort players are putting in when
playing. Therefore, the speed at which players move should be re-
lated to their HR.
H3: The speed and HR of the players are positively correlated. This
hypothesis checks whether we can replace HR measurements with
players’ speed measurements to measure physical activity. To test
this hypothesis, we use the average speed and HR of all players in a
group for the last two minutes of the LEC and HEC sub-sessions.

4.4. Procedure

Before each session, all players were asked to read a consent form
with a description of the game. After signing, players were taken to the
playing area, were given an explanation of how the game works and left
to play for one minute. Afterwards, they were asked to sit down for four
minutes. During this time, the HRMs and accelerometers were fitted.
The accelerometers were put in the players’ trouser pockets, and the
HRMs were secured to the upper part of the players’ forearms. Once the
break was over, players were asked to return to the playing area to play
the second sub-session for four minutes. Then they filled in a short
questionnaire while they rested. After the break, they were asked to
play the last sub-session. Afterwards, they sat down again, filled in the
last part of the questionnaire, and engaged in a short feedback session.
Finally, we collected the sensors.

5. Experiment results

Our analyses are based on data from the questionnaires, the HRMs,
the accelerometers and the depth cameras.

5.1. Measuring physical activity using tracking

First, we verify whether the LEC and HEC conditions elicited dif-
ferent amounts of physical activity. Therefore, we check whether the
HR measurements using the HRMs differed between conditions. In
Fig. 3, the difference between conditions is noticeable almost from the
beginning. To check whether the difference between conditions is sta-
tistically significant, we conducted a 2-tailed paired samples t-test. The
test shows on average statistically higher HR in the HEC compared to
the LEC (t(7) = 3.2, p < 0.05), with a difference of 9.6 bpm. This con-
firms hypothesis H1 that the HEC promotes more exertion than the LEC
and that circle size can be used to influence the amount of activity.

With H1 supported, we investigate whether the speed also differs
between conditions. The speed of the players in both conditions can be
seen in Fig. 4. We ran a 2-tailed paired samples t-test to evaluate
whether speed differs significantly between conditions. The test shows

International Journal of Human-Computer Studies 129 (2019) 55-63

Speed (m/s)

Session

Fig. 4. Average group speed per condition, per group.

a statistically significantly higher average speed in the HEC compared
to the LEC (¢(7) = 2.5, p < 0.05). This supports our hypothesis H2 that
players move faster in the HEC than in the LEC. The difference of
0.06 m/s between the conditions is small overall. In general, taggers run
faster than runners in tag games (Moreno and Poppe, 2016), and we can
investigate how circle size affects the speed for each role individually.
We find that taggers are not affected much by the size of the circles
(Table 1). Runners, on the other hand, have a significantly higher
average speed in the HEC compared to the LEC (0.07 m/s difference,
t(7) = 3.1, p < 0.05). This difference hints at the possibility of balancing
physical activity between roles in the ITP. In Session 5, the measure-
ment is opposite to what we expected. This is discussed in more detail
in Section 5.3.

Finally, given that both HR and speed significantly differ between
conditions, we check whether the two variables are correlated. We used
a 2-tailed bi-variate Pearson correlation test and found a statistically
significant correlation (r = 0.72, p < 0.01). Pearson’s r measures the
degree of linear relationship between two variables, the strength of
their relationship. An r value of 0.72 is considered a strong relationship.
Next, we check whether speed can be used as a predictor for heart rate.
To this end, we use the Spearman rank correlator to estimate the
magnitude of association between speed and HR. We found p = 0.74,
which again indicates a strong relation between the two variables.
Fig. 5(a) shows the regression line, with 95% confidence interval. We
accept hypothesis H3. It is thus possible to use tracking and calculate
average speed to measure physical activity as an alternative to HRMs.

5.2. Comparison to other activity measurement methods

We compared our proposed approach to two other physical activity
measurement methods: pixel difference and accelerometers. We also
compare the actual exertion with the perceived exertion, obtained from
the questionnaires.

5.2.1. Pixel difference
Pixel difference has been used in interactive playgrounds to measure
the physical activity of groups of children (Landry and Parés, 2014). An

Table 1
Players’ average speed values per role and condition.

Speed (m/s)

Role Condition Mean SD

Runner LEC 0.52 0.10
HEC 0.59 0.06

Tagger LEC 0.66 0.07
HEC 0.68 0.07
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issue with this approach is that it can be affected by elements not re-
lated to movement. Factors unrelated to exertion such as body size,
clothing, viewpoint, occlusion can also affect the pixel count. Pixel
difference is inherently a global feature, which means it considers the
entire image for a single measurement. As a consequence, pixel dif-
ference can only be used as a group measure.

We found a statistically significantly higher pixel difference count of
0.97% in the HEC compared to the LEC (¢ (7) = 2.7, p < 0.05). Spearman
rank correlation resulted in p = 0.63, which indicates a slightly lower
association between pixel difference and HR than between speed and
HR (see also Fig. 5(b). As we can see in Fig. 6, Session 3 did not show a
higher number of changed pixels in the HEC. Sessions 1 and 5 also show
a limited increase.

5.2.2. Accelerometer

Compared to tracking people and counting pixel differences, using
accelerometers does not require having a computer vision system in
place. Rather, accelerometers need to be attached to the body or
clothing. This limits their practical value in autonomous public in-
stallations as additional personnel would be required to hand out and
collect the sensors. Since accelerometers measure changes in speed, the
measurements depend on where on the body they are attached
(Rosenberger et al., 2013). To mitigate this issue, all players put the
accelerometers in their right trousers pockets.

We found a statistically significantly higher average acceleration in
the HEC compared to the LEC (t(7) = 2.5, p < 0.05, difference of 0.07g).
Spearman rank correlation (p) between acceleration and HR was 0.49,
see also Fig. 5(c). From Fig. 7, it can be observed that acceleration also
exhibits unexpected measurements in Session 5.

5.2.3. Perceived exertion analysis
Perceived exertion informs us whether players were aware they
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Fig. 7. Average group acceleration per condition, per group.

were exerting differently in the two conditions. This could be valuable
in the design of future game interventions. Promoting high levels of
exertion without players being aware of it could lead to longer play
sessions. For this study, players rated their perceived exertion after each
condition, resulting in two ratings per player.

To analyze the difference in perceived exertion, we conducted a 2-
tailed paired samples t-test on the RPE questionnaire answers. This
showed a statistically significantly higher perceived exertion in the HEC
compared to the LEC on the Borg scale (difference of 1.88 corre-
sponding to a 18.8 bpm) (¢(31) = 6.2, p < 0.01). This is roughly twice
the difference measured using HRM (9.6 bpm). Players’ higher exertion
in the HEC is also consistent with their reports on the Borg scale. From
the measured and perceived HR in Table 2, we observe that players
underestimated their amount of exertion in both conditions, but espe-
cially in the LEC. This conveys that players thought they were exerting
less than they actually were.

5.3. Discussion

The findings reported in this paper are important for a number of
reasons. First, we have shown that completely unobtrusive measure-
ments of physical activity are possible. Such measurements can alle-
viate the workload required to evaluate interactive playgrounds. In

Table 2
Perceived and measured exertion (HR) for both conditions.
HR (bpm)
Condition RPE Perceived Measured
LEC 12.75 127.50 157.53
HEC 14.63 146.30 167.08
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Table 3

Comparison of physical activity measurement methods by exertion measure.
Physical activity method HRM Tracking Pix. diff. Accel.
p-HRM 1 0.74 0.63 0.49
Tracking v
Contactless v v
Individual v Possible v

cases where the use of questionnaires or observational studies is not
possible, our method can provide an estimation of the amount of
physical activity. Second, these physical activity measurements can be
used in-game to adapt gameplay and steer behavior.

Specifically in the ITP, we have shown that changing the size of the
circles affects the speed at which players run. This could be useful in
practice to ensure that players exert themselves as intended. For ex-
ample, the circles could be enlarged or shrunk to modulate physical
activity. Given the larger effect of circle size on the runners’ speed, we
can also influence exertion levels through role assignment.

Table 3 shows a comparison of the investigated methods for phy-
sical activity measurements. Tracking players and measuring their
speed is unobtrusive, has a strong correlation to HR, and could poten-
tially be used to assess physical activity individually. Currently, esti-
mating physical activity individually is only possible by manually cor-
recting players’ tracks. However, our tracker can provide functionality
beyond the assessment of group physical activity, such as analyzing
movement patterns or estimating distances between players.

Pixel difference is also unobtrusive and has a moderate correlation
to HR measurements. It does not require tracking but is affected by
factors not related to physical effort such as the number of players, their
size or their clothing. Also, without tracking, it is impossible to focus on
individual players. Finally, accelerometers could measure physical ac-
tivity differences between conditions, but their correlation to HR is
limited. Also, even though accelerometers allow for measuring both
group and individual activity, they are not unobtrusive. For interactive
playgrounds, accelerometers are therefore not suitable to measure ex-
ertion.

We now turn to the different sessions. In Sessions 1, 3 and 5,
measurements are contrary to what we expected. Since all odd-num-
bered sessions started with the HEC, we looked at the speed of the
players based on whether they were played first or last, to see if there
were any order effects (Table 4). Surprisingly, the speed at which
players ran in the second condition was always higher. Due to ex-
haustion, we had predicted that it would be more likely for players to
run slower in conditions played last, but the opposite was true. This
might be because players were more willing to exert themselves in the
last sub-session, having already invested significant effort in the pre-
vious one. It could also be that they were “warmed up” and gained
confidence. This would explain why the expected difference between
conditions was small or sometimes reversed in Sessions 1, 3 and 5. On
average, the speed of the HEC when played first was only slightly
higher than the LEC when played last. This effect is not very visible
when the HEC was played last, probably because players are already

Table 4
Speed values of players per condition and playing order using different time-
windows.

Speed (m/s) Speed (m/s)

(2 min) (4 min)
Playing order Mean SD Mean SD
LEC First 0.52 0.09 0.56 0.10
Last 0.60 0.12 0.60 0.12
HEC First 0.61 0.12 0.64 0.12
Last 0.62 0.11 0.65 0.11
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running fast due to the intervention.

Since players ran faster in the sub-sessions that were played last, we
looked at the speed of the players over time within each sub-session. In
Fig. 8, we can see that player speed diminished over time within a
session, probably due to exhaustion. The decrease in speed is not linear,
but follows a sinusoidal-like pattern, with consecutive peaks and valleys
of speed. This conveys that players had outbursts of high speed, fol-
lowed by short recovery periods, and that all players adapted to this
pattern.

This also provides some insight as to why player speeds in the LEC
and HEC were very similar when the LEC was played last. Since we only
used measurements obtained during the last two minutes of each sub-
session, we only looked at the segments of play where exhaustion was
kicking in. Since the HEC requires a higher level of effort, the onset of
exhaustion should have been faster and more pronounced than in the
LEC. Indeed, Table 4 shows that when calculating the speed of each
condition based on the playing order, and taking into account the whole
session, the difference between both conditions is more evident. When
we calculate the average group speeds in both conditions using the
whole session (Fig. 9), the speed in the HEC is higher in all sessions.

5.3.1. Limitations

These results show that the proposed approach has many merits. In
its current state, there are also shortcomings. First, because the scope of
our work is interactive playgrounds, our approach is designed to work
in playing spaces of limited size. Increasing the playing area would
require additional equipment.

A second limitation stems from the use of cameras to sense beha-
vior. While we can measure player positions unobtrusively, there is
information that cannot be easily measured visually, such as the age or
the fitness level of the players. While this ensures privacy of the players,
the lack of personal information might be an issue when studying
properties of play. In such cases, questionnaires or interviews are ne-
cessary. Similarly, not all behavioral cues can be robustly measured
visually. In these cases, observational approaches such as manually
annotating behavior are needed.

Third, we have performed our user study with, mostly male, uni-
versity students. Playgrounds, traditional and interactive, have pre-
dominantly younger audiences. While the play behavior between uni-
versity students and primary school children is likely to be very
different, the relation between exertion and movement on the play-
ground might be more similar. More research is needed to understand
how our findings relate to a younger audience.

Finally, we only showed that group speed measurements can be
used to measure differences in group physical activity. When averaging
speed and HR values for all players, we may be discarding relevant
information that could lead to better insights on player behavior. Our
work can considered an important step towards individual-based
measures. Future work should address the robustness of the tracking in
terms of maintaining identity information for the tracks.

6. Conclusions and future work

We have investigated whether group physical activity can be mea-
sured unobtrusively by tracking players. To this end, we have con-
ducted a user study in which we successfully manipulated the exertion
levels of the players by varying one parameter of the Interactive Tag
Playground. We showed that by tracking the players and measuring
their speed, we could assess differences in group physical activity le-
vels. Finally, we showed that speed measurements are strongly corre-
lated to heart rate, which validates the usefulness of player tracking as a
tool to measure physical activity.

We compared our approach to alternative physical activity mea-
surement methods: using heart rate monitors, counting pixel differences
and using accelerometers. Pixel difference also makes use of computer
vision and is a suitable tool to assess physical activity, but only at a
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group level. Accelerometers showed a lower correlation compared to
HR, and neither accelerometers and heart rate monitors are un-
obtrusive. Given that interactive playgrounds should run autono-
mously, with players being able to go in and out without hassle, we
believe tracking players is an appropriate method. Moreover, such
unobtrusive in-game measurments enable the system to respond to
events on-the-fly.

Future work will be aimed at improving the tracker. If the tracker
could reliably keep track of every player, we could measure physical
activity of every player individually, which would provide better in-
sight into their behavior. Additionally, we would like to measure how a
player moves, instead of just how much. The quality of the movement
can be further analyzed to understand play (Castaner et al., 2017).
Another direction of research is to apply these findings in-game by
setting specific exertion goals and automatically adapting the game to
meet these. If we recognize that a particular player is not moving much,
the system could assign her/him to the tagger role to encourage more
movement. Changing circle size on an individual basis could also be an
option. Even though adjusting circles sizes is inherently tied to the ITP,
the automated measurement of physical activity using tracking can be
easily used to trigger other interventions in different playgrounds.

Interactive playgrounds have value as entertainment tools, and we
have shown that this is not their only use. They can be used to study
play behavior, and to steer behavior to meet desired goals. Tracking is a
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promising method that enhances this potential. We believe that game
interventions based on tracked players open up exciting opportunities
for game design and evaluation.
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