

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls / i jmi

The ALPHA Project: An architecture for leveraging
public health applications

Cameron Turner ∗, Hany Bishay, Bo Peng, Aaron Merifield
Information Technology Management Section, Public Health Agency of Canada, 130 Colonnade Road (A.L. 6501J),
Ottawa, Ont., Canada K1A 0K9

a r t i c l e i n f o

Article history:

Received 14 April 2005

Received in revised form

20 October 2005

Accepted 20 October 2005

Keywords:

Public health surveillance systems

Application architecture

Reusable components

Infectious diseases

a b s t r a c t

Objective: Public health surveillance applications are central to the collection, analysis and

dissemination of disease and health information. As these applications evolve and mature,

it is evident that many of these applications must address similar requirements, such as

policies, security and flexibility. It is important a software architecture is created to meet

these requirements.

Methods: We outline the requirements for a public health surveillance application, and define

a set of common components to address these requirements. These components are con-

figured to produce services used in the development of public health applications.

Results: A layered software architecture, the ALPHA architecture, has been developed to sup-

port the development of public health applications. The architecture has been used to build

eleven surveillance applications for the Public Health Agency of Canada in the areas of dis-

ease surveillance, survey, distributed data collection and inventory management.

Conclusions: We have found that a software architecture that addresses requirements on

policies, security and flexibility facilitates the development of configurable public health
applications. By creating this architecture, key success factors, such as reducing cost and

lications, adapting to changing surveillance targets and increasing

ieve

py

1

P
l
r
t
A
d

p
R
E
b
o

1
d

time-to-market of app

user efficiency are ach

Crown Co

. Introduction

ublic health surveillance is the ongoing, systematic col-
ection, analysis, interpretation and dissemination of data
egarding a health-related event for use in public health action
o reduce morbidity and mortality and to improve health [1].

public health surveillance application is a software system
esigned to assist in these activities.

The ability to accurately monitor and track emerging and
reviously identified infectious diseases, such as Severe Acute

espiratory Syndrome (SARS), Avian flu, Bovine Spongiform
ncephalopathy (BSE) and HIV/AIDS, is key to preventing out-
reaks and epidemics. In the shrinking global village, an
utbreak can quickly become a public health problem, so

∗ Corresponding author.
E-mail address: Cameron Turner@phac-aspc.gc.ca (C. Turner).

386-5056/$ – see front matter Crown Copyright © 2005 Published by El
oi:10.1016/j.ijmedinf.2005.10.006
d.

right © 2005 Published by Elsevier Ireland Ltd. All rights reserved.

an effective public health system is necessary to protect
the health of the population it serves [2]. Public health sys-
tems must be able to rely on modern surveillance applica-
tions to respond to an emerging epidemic by giving public
health officials the information they need to make accu-
rate decisions. The need for rapid comprehensive analysis
means that antiquated and outdated systems are unsatis-
factory for surveillance of modern diseases [2,3]. Technol-
ogy systems within the public health community have gen-
erally been applied to narrow, categorical applications not

easily integrated into functional applications that can mon-
itor the health of communities [4]. Furthermore, public health
surveillance applications unable to adapt to new surveil-
lance targets become outdated, as data is collected with little

sevier Ireland Ltd. All rights reserved.

i c a l
742 i n t e r n a t i o n a l j o u r n a l o f m e d

or no analysis and use of the corresponding information
[5].

There are many public health surveillance systems in oper-
ation. A review of current surveillance systems reveals that
there are over 66 detection systems in use in the U.S. and
elsewhere [6]. At the Public Health Agency of Canada (PHAC),
there are 35 different surveillance system applications in pro-
duction, ranging from surveillance databases, survey applica-
tions, inventory and laboratory systems. Many of these PHAC
applications are customized to be disease-specific, or are
developed for a particular surveillance function (e.g., subject
identification encryption). Furthermore, many of these PHAC
applications are developed using different technologies. Main-
taining these heterogeneous systems are fiscally and resource
expensive.

Rapidly changing environments require the delivery of
timely surveillance information [7,8]. In response, the ALPHA
Project is an initiative that started in late 2002. The purpose of
the ALPHA Project is to develop a software application archi-
tecture based on the philosophy of configuring and reusing
common components to produce services that would be used
to enable faster development of robust, maintainable public
health applications. Public health is practiced through com-
plex relationships of organizations (e.g., local, federal) and
functionally organized units (e.g., health departments, disease
programs) [9]. As such, the emphasis of the project is not on
creating one monolithic application to handle all public health
surveillance needs, but rather on creating customizable appli-
cations with the same underlying architectural or component
structure. The goal is to reduce the amount of new devel-
opment work required for each new application, in order to
reduce its time-to-market. Configuration plays an increasingly
larger role in the development cycle, and leads to more flexi-
ble applications responsive to new and emerging public health
needs. New components or services that have to be built are
designed in such a way that other applications can use them,
and contribute to the architecture. Consequently, software
becomes more maintainable, since applications share many
of the same components.

This paper defines a software architecture that is used to
build public health surveillance applications. It focuses on
common components, which are configured to provide differ-
ent services that are integrated into each application.

This paper is outlined as follows. In Section 2, we summa-
rize the requirements identified for a public health surveil-
lance application. In Section 3, the ALPHA architecture is
described which meets these requirements. In Section 4, three
applications, which have been built using the ALPHA architec-
ture, are explained. Section 5 provides a description of how the
data collected within these applications is analyzed. Related
work is outlined in Section 6 while Sections 7 and 8 summarize
the paper.

2. Requirements of a public health
surveillance application
At the Public Health Agency of Canada, many different surveil-
lance system applications have been developed using different
technologies to collect data for specific diseases. By studying
i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

these applications, the following important, common require-
ments have been extracted:

• Flexibility: Tracking and monitoring diseases is a dynamic
activity. Emerging diseases, such as SARS can appear very
quickly, requiring public health officials and surveillance
applications to respond just as quickly [10]. When a dis-
ease outbreak occurs, it is essential that the technology
tools be in place to track cases and contact information.
Public health officials do not have the luxury of time to
develop systems in response to each disease outbreak. An
application must be flexible to handle new diseases [10]. In
addition, given the possible links between outbreak events,
epidemiologists analyzing data collected by a surveillance
system may need to gather different data as they discover
new information. A surveillance application must be able to
adapt to these changing data and analysis requirements.

• Maintainability: Applications are inherently expensive to
maintain. The cost of supporting a deployed software prod-
uct can be between 60 and 80% of its lifetime cost [11,12].
The greater the degree of heterogeneity that exists in the
application suite available for an organization, the more
expensive it is to maintain. For example, different appli-
cations tend to use different technologies and different
versions of third party software. Keeping track of all the
applications’ technology version matrices can be complex,
and the licensing costs can be expensive. Making viable the
sharing of common architectural components among appli-
cations reduces support complexity and licensing costs.

• Jurisdictional configurability: Each jurisdiction collecting pub-
lic health surveillance data has its own policies or busi-
ness rules governing the content and format of data to be
collected. For instance, larger jurisdictions may be able to
collect last names of their subjects, while smaller jurisdic-
tions may only be allowed to collect their initials. Similarly,
some jurisdictions may want to include the complete date
when collecting a birth date, while others can only record
the month and the year. An application distributed to differ-
ent jurisdictions must be able to handle these variations in
policy. Furthermore, since policies can change within juris-
dictions, established or already implemented applications
must be readily configurable.

• Alert notifications: A core requirement of a surveillance appli-
cation is to send alert notifications to designated people
indicating that a certain event has occurred. An event could
be the occurrence of two or more cases of a similar disease
being reported in potentially multiple jurisdictions within
a certain time frame (i.e., outbreak). Another event may
raise attention to data anomalies within a case that requires
attention. An event could even be a user accessing an appli-
cation after hours. Events such as these help users to man-
age their applications and understand the data being stored.
Alerts could take the form of an email notification, a mes-
sage sent to a Personal Digital Assistant (PDA)/cell phone,
or a posting to a web site.

• Security: Due to the sensitive nature of public health surveil-

lance data, security is of the utmost concern. One area of
concern within security is authorization. Particular individ-
ual users of applications may only see a subset of the data,
and only certain functions of the application depending

a l i n

•

•

•

3

T
p
h
p
t
m
t
w
A
f

3

3
T
v

i n t e r n a t i o n a l j o u r n a l o f m e d i c

upon their role. For instance, if an application collects data
from different jurisdictions, a public health official in one
jurisdiction should not be able to see data collected in
another jurisdiction. Furthermore, access to different parts
of the application should be restricted only to those who are
authorized. Auditing functions can also assist in monitor-
ing what applications and which data are being accessed by
a specific user.
Usability: Prior to the analysis and reporting of public health
information, data must exist in a repository. Currently, data
collection poses the single most resource intensive com-
ponent of surveillance cost, since data must be manually
entered into a repository. A disease case can require the col-
lection of, potentially, a few hundred data elements. Based
on our experiences, data entry clerks often complain of user
interfaces being crowded with irrelevant data fields since
not all data elements need to be collected for a case. To
reduce this overhead associated with data collection, the
presentation of a surveillance application interface must
optimize data entry and filter out irrelevant data.
Data sharing: Public health surveillance applications collect
data about different diseases from different demographics.
This data is usually stored in different databases. Valu-
able information could be discovered if field entries from
these databases were cross-referenced, and in line with
existing legislation and privacy controls stored in a cen-
tral database. The Pan-Canadian Electronic Health Record
project by Canada Health Infoway is a multi-year initia-
tive focussed on integrating Canadian surveillance systems
from a data perspective [13]. To support this important
objective, a surveillance application must have the capa-
bility of sharing data with other applications.
Statistical analysis and reporting tools: Once data has been col-
lected and entered into the system, epidemiologists and
other public health professionals must be able to analyze
the data and report on its contents. A number of commer-
cial off-the-shelf (COTS) statistical analysis and reporting
tools adequately support this requirement. Thus, PHAC has
elected to integrate COTS products into the surveillance
environment to support this need.

. ALPHA software architecture

his section describes the ALPHA software architecture pro-
osed to address the requirements previously identified. We
ave found that as different applications evolve and mature, a
attern of solutions has been discovered within the software
hat can be abstracted and reused to address these require-

ents. This bottom-up approach forms the core of the archi-
ecture’s components. These components can be instantiated
ith concrete data and other code to produce a usable service.
pplications then use these services to provide the necessary

unctionality. Fig. 1 shows the ALPHA architecture.

.1. Architectural layers
.1.1. Component Layer
he Component Layer contains the building blocks that pro-
ide the framework for producing application functionality,
f o r m a t i c s 7 5 (2 0 0 6) 741–754 743

but not the content. Therefore, a Component is not entirely
usable on its own—it must be given a specific implementation.

For instance, a Profiler Component provides an access control
framework. The Component, itself, is not concerned with the
specifics as to what it is controlling access. The same is true
with the Business Rules Component. This Component only pro-
vides the framework, language and inference engine to enable
rules-based logic. It does not provide any actual rules. It is
through the use of these common components that the main-
tainability requirement is addressed; these components form
the core of the underlying structure of each application.

3.1.2. Service Layer
The Service Layer provides a set of common services for use
in the Application and Configuration Layers. These Services
encapsulate a specific set of functions, which can be easily
integrated into an application. These services are also used
between themselves.

For instance, a Disease Access Service uses the Profiler Com-
ponent to provide the access control functionality specifically
for case information on different diseases. For this service, an
instantiation of the Profiler Component with the addition of
disease-specific data creates a Service.

3.1.3. Configuration Layer
The Configuration Layer provides a set of common tools that
can be combined with applications in the Application Layer to
deliver a fully functioning application suite. These tools han-
dle certain configurations of the system.

For instance, the Business Rules Manager facilitates the cre-
ation, modification and deletion of business rules and policies.
The Access Manager permits the configuration of the autho-
rization privileges for organizations, regions and users. Finally,
the Application Manager allows for viewing and configuring logs
and audits. These tools require very little modification to be
adapted to be used in different applications.

3.1.4. Application Layer
The Application Layer consists of the different applications
comprising the entire system. Applications, such as Infectious
Disease Surveillance System (IDSS), Anti-Microbial Resistance
Surveillance System (AMRSS) and Enhanced Surveillance of
Canadian Street Youth (ESCSY) exist at this layer. These three
examples are presented later.

3.2. Architectural components

This section outlines the building blocks of the Component
Layer, which provides the core of the architecture.

3.2.1. Profiler
Public health is practiced through complex relationships of
organizations (e.g., local, federal) and functionally organized
units (e.g., health departments, disease programs) [9]. As a
direct consequence, public health applications must be flex-
ible, secure and able to handle differences between juris-

dictions. The Profiler Component is designed to meet these
requirements.

The Profiler is a generic component customized to manage
the authorization of an entity across different organizations.

744 i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

HA a
Fig. 1 – ALP

An entity is defined as anything that should be restricted
at some level (e.g., a disease data element or an application
function). The configuration of accessibility to these entities
creates a profile. Profiles are handled through the Access Man-
ager in the Configuration Layer, and this tool is used to assign
multiple profiles to a user.

We model a profile using a hierarchical data model where

the entity structure is based on categories, properties and
attributes, and the organizations are based on groups and
units within the organization. In our model, a category
can have n properties. Each of these properties can have n

Fig. 2 – Data mode
rchitecture.

attributes. For instance, a disease (category) can have multiple
sections to its data entry forms (properties) that, in turn, can
have multiple data elements (attributes). Similarly, an organi-
zation can have n regions (groups). Each of these groups can
have n districts (units), and each district can contain many
users. Fig. 2 shows the data model for a profile.

As an example, this data model provides an authorization

service for diseases, and so it is possible to control access for
every data element for each user. This addresses the security
requirement as it prevents a user in one district from viewing
or modifying public health data in another district.

l of a profile.

a l i n

a
b
d
t
f

t
c
n
A
e
t

d
w
T
t
t
n

3
S
t
c
o
t
c
n
c
r

s
(

v
i
m
e

i n t e r n a t i o n a l j o u r n a l o f m e d i c

Furthermore, we can also use this data model to provide
n authorization service for application functions. Access can
e easily configured to accommodate some users in the same
istrict from accessing certain functions within an applica-
ion, while allowing another user in the same district to have
ull access.

Since the Profiler Component is a framework that is cus-
omized using data, new entities such as emerging diseases
an be added or modified easily by inserting data specific to the
ew requirement, thus addressing the flexibility requirement.
n application that can be adapted to handle the addition of
merging diseases solves one of the problems that hindered
he fight against SARS [2,3].

Finally, the Profiler Component provides the ability to han-
le differences between jurisdictions. Some jurisdictions may
ant to collect surveillance data that others may not need.
he non-required data elements are then ‘switched off’, so

hey do not appear in the application. As a result, data collec-
ion is streamlined and application navigation is optimized at
o additional cost to the development process.

.2.2. Message Server
oftware systems are typically comprised of disparate applica-
ions, each executing in different process spaces. These appli-
ations can reside entirely on one machine, or be distributed
ver several machines. One of the requirements identified in
he previous section outlines that there are times when appli-
ations need to share information. For this reason, a commu-
ications component is required to handle inter-application
ommunication. The Message Server is designed to meet this
equirement.

Messages are transmitted between applications over a
ecure HTTP link using the Simple Object Access Protocol
SOAP). These messages are modeled using XML.

We use a Service Locator to identify whether the ser-

ice to be invoked should be done locally or remotely. For
nstance, a service to retrieve a patient’s current active cases

ay be done within an application itself (i.e., locally). How-
ver, a service to retrieve a patient’s case history may require

Fig. 3 – Message Server Co
f o r m a t i c s 7 5 (2 0 0 6) 741–754 745

sending a message to a central application, which, after
authorizing the request, sends back the required informa-
tion (i.e., remotely). The ability to configure where services are
invoked gives flexibility to re-route messages based on current
needs.

Once the decision has been made for a service to be invoked
remotely, a Message Creator creates the XML message using
the correct schema. This message is transmitted to the receiv-
ing application that uses a Message Parser to interpret the XML
message, and a Message Handler routes it to the correct ser-
vice. Since SOAP is based on Remote Procedure Calls (RPC),
results are returned to the calling application. Fig. 3 shows the
Message Server Component Framework.

3.2.3. Agents
An Agent is an autonomous entity that is assigned specific
tasks to perform. These tasks, typically performed as a back-
ground process, can assist in addressing jurisdictional config-
urability and alert notification requirements through the use
of business rules. Therefore, an Agent’s duties involve the peri-
odic collection of rules and data and applying these rules to
the data.

We model an Agent using the observer design pattern [14].
In this design pattern, there exists a 1:n relationship between
a subject and its observers. When the state of the subject is
changed in any way, the subject’s observers are notified so
they can take the correct course of action. In our Agent model,
the subject is a gatherer that retrieves information from a data
source (e.g., surveillance data stored in a relational database).
Once the gatherer has retrieved the information it requires,
the observers are notified of the event. The observers then
retrieve the information from the gatherer, analyze it and take
the appropriate course of action. A Notification Receiver is
informed of the results. We have implemented the Agent using
a thread so that it can operate on a sleep–wakeup schedule.
For example, an Export Agent wakes up at a pre-
determined time and retrieves information from an appli-
cation’s database instance. One observer is setup to export
this data to a centralized repository, while another observer is

mponent framework.

746 i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

ork u
Fig. 4 – Agent component framew

setup to export this data to another application. Fig. 4 shows
the Agent Component Framework.
3.2.4. Workflow
The Workflow Component defines a set of tasks to be com-
pleted, and the order in which they should be completed.
These tasks can be a set of screens to display, or a set of auto-

Fig. 5 – Modeling a work
sing the observer design pattern.

mated work items to perform. One example of a workflow is
an escalation scenario, whereby each task performs a higher-
degree work item than its predecessor.
The Workflow Component assists in addressing the juris-
dictional configurability and usability requirements. Work-
flows are configured based on the jurisdiction in which the
application is deployed without affecting the underlying code.

flow using a graph.

i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754 747

to v

A
e

s
f
i
t

d
m
s
c
s
e
l
u
d

d
f
d
a

b
n
c
o
a

3
B
d
o
d
a
a
e
s
i

t
i
s
p
P
a
d
O
s

Fig. 6 – Business Rule

lso, data entry is facilitated as a user is guided through the
ntire process.

We model a workflow as a graph, G = (V, E), where V repre-
ents the tasks and E represents the action required to move
rom one task to another. For any, ti, tj ∈ V, there exists (ti, tj) ∈ E
f ti is a task that must be completed before completing tj (i.e.,

j depends on ti).
For example, assume three data entry screens exist, di,

j, dk ∈ V. Selecting a value from a data element’s drop-down
enu in the first screen, di, may lead to the second data entry

creen, dj, to get more information. In this case, (di, dj) ∈ E. After
ompleting data entry on the second screen, dj, the user is next
hown the third data entry screen, dk. Therefore, (dj, dk) ∈ E
xists. If the value on the first data entry screen, di, which
eads to the second data entry screen, dj, was not chosen, the
ser is shown the third data entry screen, dk. Therefore, (di,

k) ∈ E also exists. Fig. 5 shows this example’s workflow.
Modeling a workflow using a graph allows us to conduct a

epth-first search in order to determine all paths in the graph
rom one node to another. This assists in determining what
ata needs to be removed based on revisiting a previous node,
nd choosing an alternative course.

We enforce certain rules, since workflow graphs can
ecome quite complex. A workflow must have a single start
ode and a single end node. Furthermore, while navigation
an occur between a node and the node that preceded it, in
rder to avoid infinite loops an action cannot directly point to
preceding node.

.2.5. Business Rules
usiness Rules are capable of monitoring data stored in a
atabase or memory, and making intelligent decisions based
n that data. Since databases house large amounts of data in
istributed tables, valuable information can reside undetected
mong these tables. Information such as a user logging in at
n abnormal time, or the frequency of a person visiting differ-
nt clinics within a 24-h period, could be critical knowledge to
ome application users. Therefore, monitoring and extracting
nformation from data stores is of great importance.

We model Business Rules using a rules-based expert sys-
em. Expert systems encode the knowledge of domain experts
n order to solve particular problems. In a rules-based expert
ystem, these problems are solved using production rules. A
roduction rule is stated in the form: P → Q, which states IF
THEN Q, where P represents a set of premises, or conditions,
nd Q represents a set of conclusions, or actions [15]. The con-
itions can be linked together using Boolean logic (i.e., AND,
R, NOT) and organized into sub-conditions using parenthe-
es (i.e., order of operations). Testing these production rules
alidate date of birth.

and firing, or executing, those rules whose conditions are sat-
isfied, transform an initial state of knowledge into a new state
of knowledge. Problems can therefore be solved in a logical
manner.

The rules and the data upon which those rules act are
stored in a knowledge base. The knowledge within the knowl-
edge base can constantly change as data is added, modified or
deleted when different rules are executed. Furthermore, the
rules can also be added, modified or deleted, without mod-
ifying the source code, in order to dynamically evaluate the
rule set. This helps reduce code complexity, as increasing the
amount of logic needed to handle many different scenarios
can lead to difficult to read code, or spaghetti code. Spaghetti
code can be difficult to thoroughly test and debug [16]. Further-
more, hard-coding logic inevitably leads to multiple software
configurations of the same application, which further com-
plicates maintenance [12]. Therefore, part of a business rules
system’s power is not locking an application into a predeter-
mined set of rules.

Due to the dynamic nature of the Business Rules Compo-
nent, the jurisdictional configurability and alert notification
requirements are addressed. Policies can be encoded as rules
are deployed to different jurisdictions as seen fit. Furthermore,
alerts and notifications can be configured depending on the
data to be monitored and the behaviour to detect.

We use forward chaining for the business rules inferencing
engine. Forward chaining systems start with an initial state,
where certain facts are known, and the rules are used to infer
an end result, where the conclusions are initially unknown
[15]. For example, Fig. 6 shows a Business Rule to validate date
of birth.

This Business Rule evaluates a data element to ensure that
the integrity of the information collected is intact. In this
case, the Business Rule ensures that if the date of birth has
been specified, it cannot be empty, it must be in the format
yyyy/mm/dd, and it must be a valid date. Such a policy would
not be acceptable in a small jurisdiction where the collection
of a subject’s full birth date would violate legislation. The pol-
icy deployed in that jurisdiction would be changed to only
accept four digits. In both cases, the underlying application
code remains untouched.

4. Case studies
This section outlines case studies of three applications built
using the ALPHA architecture. In the past two and a half years,
we have built 11 applications for the Public Health Agency of
Canada using the ALPHA architecture. The three applications

748 i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

acce
Fig. 7 – Smith—partial

presented in this section were chosen since they show a wide
range of services used.

4.1. Infectious Disease Surveillance System

The Infectious Disease Surveillance System is a web-based
application that collects case information on tuberculosis (TB)
and sexually transmitted diseases (STDs) in Canada’s federal
penitentiary system. This data is sent to Correctional Service
Canada (CSC) for data entry and analysis.

The following central services are found in IDSS.

4.1.1. Disease Access Service
The Disease Access Service is a service that controls users
access to case information. The access to information is both
at the presentation level (what the user can view), as well
as at the data level (what the user can retrieve, update or
report).

The Disease Access Service uses the Profiler Component

to implement its service. Users in different roles and differ-
ent locations can only access data they are permitted to see.
Therefore, a user in one institution cannot view data about
subjects in another institution.
ss to Robertson’s data.

An administrator, when creating a user, controls the level
of access to the disease case information. The administrator,
for example, can restrict access to individual data elements
on a form, a section of the form, or the entire form. Therefore,
it is possible for users to see tests that have been run on a
particular subject, but not the test results.

Figs. 7 and 8 show how a user in an institution can have
different views of the data depending on the user’s role.

4.1.2. Jurisdictional Policy Service
The Jurisdictional Policy Service is a service that handles the
different policies of jurisdictions. Each jurisdiction may have
different requirements for its data. For instance, in one juris-
diction only an initial can be stored for a first name, while no
such policy exists in another jurisdiction.

The Jurisdictional Policy Service uses the Business Rules
Component to implement its service. Rules are encoded into
the Business Rules Component, and when a user attempts to
save data, these rules are tested for data violations. Since these

rules are not hard-coded into the application, rules are cre-
ated, deleted or modified as seen fit. Therefore, if one policy
rule is not applicable in a jurisdiction, it can be deactivated or
removed.

i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754 749

on’s

4
T
m
n
o
r

B
s
m
a
u

4

T
t
t
p

H

Fig. 8 – Smith—full access to Roberts

A Jurisdictional Policy rule was shown in Fig. 6.

.1.3. Message Routing Service
he Message Routing Service is a service that handles the com-
unication between different applications. Applications may

eed to share data with other applications, or get data from
ther data sources. Therefore, a communications service is
equired.

The Message Routing Service uses the Message Server and
usiness Rules Components to implement the service. This
ervice extends the Message Server Component by imple-
enting an XML schema and parser to send generic retrieval

nd update requests. These requests allow the application to
se local as well as remote databases as its data source.

.2. Anti-Microbial Resistance Surveillance System

he Anti-Microbial Resistance Surveillance System is a dis-
ributed, data collection system designed to gather informa-

ion into one central repository for reporting and analysis pur-
oses.

There are three separate locations, Guelph, Ontario; St.
yacinthe, Quebec and Winnipeg, Manitoba that currently
data (part of clinical results shown).

input their disease and biological data from animals, food and
humans into their respective local databases. This data is then
exported periodically (e.g., every 15 min) into the central repos-
itory in Ottawa, Ontario.

The creation of a central repository enables the assessment
of event relatedness, detection of time trends and geographi-
cal patterns. Furthermore, resources at the separate locations
have the ability to analyze their own data, and also the capa-
bility to perform analysis on the integrated data.

The data is simultaneously accessible by selected resources
in different office locations, and within different departments.

The following central services are found in AMRSS.

4.2.1. Message Routing Service
The Message Routing Service uses the Agent, Message Server
and Business Rules Components to handle communication.
This service defines an Agent to periodically send messages
containing disease and biological data collected from animal,
food and human specimens from the local databases to the

central repository. This service extends the Message Server
Component by implementing the necessary XML schemas and
parsers. Business Rules are used to route these messages to
the correct service.

750 i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

Y su
Fig. 9 – ESCS

4.2.2. Alert and Notification Service
The Alert and Notification Service is a service that handles
raising events of interest to a designated person or persons. An
event of interest could be an error condition, a policy violation,
or some other event of which a person should be notified.

The Alert and Notification Service uses the Business
Rules Component to implement its service. Rules are cre-
ated to look for data transformation, data transfer or data
integrity failures. For instance, if a record is not imported
correctly into the central repository, the local Administra-
tor must be notified of this event. The local administrator
must also be notified if a record does not contain the cor-
rect mandatory fields. If such errors are detected, an error
report is created and sent via email to the local Administra-
tor. The Administrator can then use the report to remedy the
situation.

4.2.3. Application Function Access Service
The Application Function Access Service is a service that han-
dles access control to various functions of an application. The
privileges a user has dictates what that user can and cannot
do within an application.

The Application Function Access Service uses the Pro-
filer Component to implement its service. The data man-
aged within the component is organized into the applications
(e.g., Administration Tool, Data Viewer), properties of these
applications (e.g., User Management, Code Management), and

attributes of these properties (e.g., Create User, Delete User).
A local Administrator is permitted to create user accounts for
those at their location; however, they are not permitted to
change the values of the data element pick lists. The central
Administrator has access to all application functions.
rvey screen.

4.3. Enhanced Surveillance of Canadian Street Youth

The ESCSY system is a web-based application that collects
information on sexually transmitted diseases in street youth.
Data is collected from youth in their teens and early twenties
by public health nurses who use paper-based surveys. These
surveys are then sent to PHAC for data entry and analysis. The
following central services are found in the ESCSY system.

4.3.1. Survey Service
The Survey Service is the central service in the ESCSY applica-
tion. It is responsible for loading questions, saving responses
and assisting in navigating through the survey.

The Survey Service uses the Workflow Component to
implement its service. The Workflow Component permits
this service to implement features such as Branch/Skip Logic
to bypass questions that are based on answers to previous
question; Conditional Logic to control such things as gender-
specific questions from being answered by the wrong gender;
Full Navigation to go to the first and last questions, the previ-
ous question, the next question, as well as being able to specify
a specific question and Data Integrity to prevent navigation to
those questions that cannot be viewed. Fig. 9 shows an exam-
ple of a question.

4.3.2. Jurisdictional Policy Service
As in the IDSS application, the Jurisdictional Policy Service
uses the Business Rules Component to handle policies. The

ESCSY application has certain security policies to enforce. One
of the policies is user access expiry. Survey data is entered
using data entry clerks, typically students. In order to pre-
vent access to those that have not logged onto the system in

i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 5 (2 0 0 6) 741–754 751

g th

a
t
t
p

p
t
w
t

4

T
b
c

4
L
s
e
r
a
u

n
A
s
l
a

4
T
a
m
F
a

Fig. 10 – Rules implementin

certain timeframe, a policy is in place to prevent access to
hose not involved with the project anymore. This is a policy
hat is not required by our other survey applications that use
ermanent staff.

Fig. 10 shows the two rules involved to implement this
olicy. The rule engine, operating in stand-alone mode, tests
hese rules every day. If the rule finds an expired user, the rules
ill deactivate that user and send an email to the Administra-

or explaining the action taken.

.4. Management Services

wo other services used by these applications are outlined
elow. These services assist in the management of the appli-
ation environment.

.4.1. Logging and Auditing Service
ogging and auditing are fundamental to all applications,
ince they record exceptions, errors and other events of inter-
st. The Logging and Auditing Service provides a level of secu-
ity by monitoring, and capturing application and network
ccess, messaging requests, failure events and system mis-
se.

The Logging and Auditing Service uses the Agent compo-
ent to implement its service. Applications built using the
LPHA architecture write all their logs and audits to the file
ystem. The Logging and Auditing Agent periodically col-
ects the messages stored in these files and stores them in
database.

.4.2. Application Management Service
he Application Management Service works with the Logging

nd Auditing Service to provide application-level manage-
ent. The Application Management Service is based on the

CAPS model (Fault, Configuration, Accounting, Performance
nd Security) [17].
e user access expiry policy.

The Application Management Service uses the Agent and
Business Rules Components to implement its service. The
Application Management Agent periodically analyzes the log
messages stored in the database from the Logging and Audit-
ing Service to determine if policy violations have occurred. For
instance, the Application Management Agent can determine if
a fault exception has occurred which needs immediate atten-
tion (e.g., an application has produced a critical fault), or that
some other potential faults have occurred (e.g., 10 warnings
from an application within 1 min). Furthermore, the Applica-
tion Management Agent also determines if a security breach
has occurred (e.g., an application has produced an audit trail
of a user logging in after work hours to retrieve sensitive infor-
mation).

5. Analysis of Public Health Surveillance
Data

The applications we have developed using the ALPHA archi-
tecture provide surveillance officers and analysts the tools
they need to do their jobs. Preliminary analysis is done using
the Jurisdictional Policy Service to perform frequency analy-
sis and correlation of variables relevant to that jurisdiction.
For instance, in IDSS, business rules have been created to
run a frequency analysis on variables such as Tests Completed
or Positive Tests in order to generate a summary report on
HIV/AIDS, Hepatitis A/B/C and Tuberculosis. Monthly graphic
or textual reports can include region, institution and disease
form-specific information.

More in-depth analysis and statistical reporting were
deemed outside the scope of our work based on the num-

ber of readily available commercial applications. However, the
surveillance officers and analysts are provided a Data Export
Service that extracts the information from their application
into a text file based on their specific variables and formats.

i c a l
752 i n t e r n a t i o n a l j o u r n a l o f m e d

These text files are then imported into a tool such as SAS (SAS
Institute Inc., Cary, NC), and analyzed using various statistical
analysis methods [18].

Results from data collected within the ESCSY application
have been presented at a variety of forums [19–22].

6. Related work

A number of surveillance systems currently exist, as well as a
few initiatives to create an inter-operable network of coordi-
nating systems. We discuss one of these surveillance systems
and two of the initiatives under way.

The Real-Time Outbreak and Disease Surveillance (RODS)
system [23–25] is a syndromic surveillance system developed
in the RODS Laboratory at the University of Pittsburgh. A syn-
dromic surveillance system is designed to identify outbreaks
based on reported symptoms that precede a diagnosis [26]. In
the RODS system, data is collected from patients’ chief com-
plaints during emergency department visits, as well as patient
registration at acute care clinics. After removing patient iden-
tifying information, the data is automatically sent to the RODS
system using a Health Level-7 (HL7) message. The RODS HL7
listener parses this message and routes it to a Bayesian text
classifier, which assigns it to a syndromic category. The data is
then stored in the database for other applications to use. This
data can then be analyzed to detect disease and bioterrorism
outbreaks. The RODS system is deployed within several health
systems in the United States.

Two of the initiatives to create a network of surveillance
systems in order to enhance surveillance in a larger domain
are the Canada Health Infoway project, and the Public Health
Information Network (PHIN) project at the Centers for Disease
Control (CDC).

The Canada Health Infoway Blueprint [27] is a government
funded program to create a Pan-Canadian Electronic Health
Record System (EHRS). The conceptual architecture of the
blueprint outlines how Point-of-Service applications (e.g., case
management applications at clinics, and hospitals) send infor-
mation using standardized messages (e.g., HL7) to a Health
Information Access Layer (HIAL). The HIAL, which defines ser-
vices that can be used by inter-operating networks, stores
information it receives into the appropriate repositories and
registries.

The CDC is working on a framework to implement a
standards-based network of inter-operable public health care
systems [9]. The PHIN Functions and Specifications [9] out-
line components for those Intranet and Internet-based health
systems that transmit data with their public health partners
(e.g., laboratories, local public health agencies). These compo-
nents are focused on detection and monitoring, data analysis,
knowledge management, alerting and response.

The Canada Health Infoway Blueprint and PHIN Framework
are primarily interested in building an inter-operable architec-
ture for a cross-jurisdictional network, whereas the purpose

of our work is to build an architecture for creating applica-
tions that would live in this network. Both the Canada Health
Infoway Blueprint and PHIN Framework work on the principle
that a secure, standards-based network of public health sys-
tems lead to better public health management and response.
i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

7. Discussion

A key success factor for creating an architecture for public
health applications is that the application must be useful to
a surveillance officer. If surveillance officers cannot change
the surveillance targets in a timely manner, they cannot meet
their public health objectives. Therefore, the architecture, in
order to be successful, must be flexible enough to allow both
existing and new applications the ability to adapt to new
surveillance targets so that surveillance officers can collect
and analyze their data efficiently. In the ALPHA architecture,
the data elements and data types collected within IDSS were
easily modified after the surveillance officer required differ-
ent data elements. Also, in another application, the Canadian
Tuberculosis Reporting System (CTBRS), we were able to adapt
to a set of different disease data forms. In both cases, the
changes were made through configuration without modifying
the underlying code.

Another key to the success of an architecture for public
health applications is that the applications should assist users
to enter or retrieve data efficiently so they can spend less time
on administrative tasks and more time on their primary work
(e.g., health care professionals spend more clinical time with
patients, surveillance officers and analysts spend more time
analyzing data). In the ALPHA architecture, feedback from the
surveillance analysts has indicated this objective has been
met, since they now have the ability to configure access to
specific disease elements.

Finally, one more key to the success of an architecture is
that each application’s software development cycle should be
reduced as time goes on. Consequently, there will be a drop
in costs associated with each new application. In the ALPHA
architecture, the ESCSY survey application took three develop-
ers 5 months to design and develop. By the time the third sur-
vey application was built, it only took one developer 1 month
to configure the necessary Survey, Alert/Notification and Pol-
icy Services. Furthermore, IDSS took five developers 9 months
to design and develop, but a similar surveillance application,
CTBRS, took one developer only 3 months to configure the nec-
essary Disease Access, Alert/Notification and Policy Services.
Once again, the increased reliance on application configura-
tion rather than development allowed the ALPHA architecture
to meet these goals.

Furthermore, the work we have done on the ALPHA archi-
tecture has provided us a lot of information on building public
health applications. These lessons are being applied to extend
our work in the future.

The usability of an application provides one of the biggest
sources of frustrations for our clients. We have addressed this
issue using the Profiler Component and, more specifically, a
service such as the Disease Access Service in IDSS. This Ser-
vice only presents the necessary data elements to a user based
on their role, privileges and interest. Therefore, a data entry
clerk does not have to sort through a screen full of irrelevant
data elements in order to enter data into one or two fields.

Furthermore, most of the field surveillance officers enter data
onto paper forms that data entry clerks enter into the system.
We are currently investigating the feasibility of using Personal
Digital Assistants (PDAs) that can be distributed to the field in

a l i n

o
t
t
v
P

n
w
i
i
o
v
T
M
a

t
w
u
p
c
s

h
a
g
h
d

m
o
s

8

I
u
b
C
l
W
t
v
t

A

T
t
A
t
S

r

i n t e r n a t i o n a l j o u r n a l o f m e d i c

rder for the data to be entered once and synchronized with
he application at the end of each day. This will help automate
he data entry process. An issue still to be resolved is the pri-
acy concerns of information stored and transferred using a
DA.

We continue to investigate the extension and addition of
ew components and services through analysis of our soft-
are as it is produced. For instance, we are currently expand-

ng our Data Entry Workflow Service for a new project that
nvolves directing the user to different screens (tasks) based
n information they provide. This service, like the Survey Ser-
ice in the ESCSY application, uses the Workflow Component.
o assist in this activity, we are also developing a Workflow
anager tool that will reside in the Configuration Layer to

utomatically create, edit and evaluate workflows.
Our latest project, a prototype for a Mobile Clinic Sys-

em, is designed to be used for special events. This system,
hich is a combination of the IDSS and AMRSS systems, link
p distributed, mobile clinics to a centralized repository to
resent aggregate data. Business rules are created dynami-
ally to monitor for anomalies, such as a high frequency of
ymptoms from one particular clinic or from all clinics.

Although the applications we have implemented so far
ave been based on infectious diseases, they can easily be
dapted to track chronic diseases and other conditions. Inte-
rated systems that monitor and track a wide range of public
ealth concerns can lead to a better understanding of certain
iseases [28].

Finally, we continue to monitor the activities and advances
ade by the Canada Health Infoway and PHIN projects so that

ur applications can integrate with these networks using mes-
aging standards and protocols such as HL7.

. Conclusion

n this paper, we have described an architecture that can be
sed to build public health applications. The architecture is
ased on four layers: a Component Layer, a Service Layer, a
onfiguration Layer and an Application Layer. We have out-

ined the components that form the core of the architecture.
e have presented as examples three applications built using

he architecture and the common service elements. These ser-
ices illustrate how the components were configured in order
o produce the application products.

cknowledgements

his work is supported and funded by the Centre for Infec-
ious Disease, Prevention and Control (CIDPC), Public Health
gency of Canada; Information Technology Management Sec-

ion (ITMS), Public Health Agency of Canada and Correctional
ervice Canada (CSC).

e f e r e n c e s
[1] CDC. Updated Guidelines for Evaluating Public Health
Surveillance Systems: Recommendations from the
f o r m a t i c s 7 5 (2 0 0 6) 741–754 753

Guidelines Working Group. MMWR, 50 (No. RR-13),
2001.

[2] D. Naylor, D. Butler-Jones, S. Basrur, M. Bergeron, R.
Brunharn, G. Dafoe, M. Ferguson-Paré, F. Lussing, A. McGeer,
K. Neufeld, F. Plummer, Renewal of Public Health in Canada,
October 2003, pp. 28–29, 65, 92, 97.

[3] A. Campbell, The SARS Commission Interim Report: SARS
and Public Health in Ontario, April 2004, pp. 101–111.

[4] W.A. Yasnoff, J.M. Overhage, B.L. Humphreys, M. LaVenture,
A national agenda for public health informatics;
summarized recommendations from the 2001 AMIA Spring
Congress, J. Am. Med. Inform. Assoc. 8 (2001) 535–545.

[5] WHO, An integrated approach to communicable disease
surveillance, Weekly Epidemiol. Record 75 (1) (2000)
1–8.

[6] V. Dato, M.M. Wagner, A. Fapohunda, How outbreaks of
infectious disease are detected: a review of surveillance
systems and outbreaks, Public Health Rep. 119
(September/October) (2004) 464–471.

[7] L. MacLehose, M. McKee, J. Weinberg, Responding to the
challenge of communicable disease in Europe, Science 295
(5562) (March 2002) 2047–2050.

[8] N.H. Bean, S.M. Martin, Implementing a network for
electronic surveillance reporting from public health
reference laboratories: an international perspective, Emerg.
Infect. Dis. 7 (5) (September–October 2001).

[9] Public Health Information Technology Functions and
Specifications, Version 1.2. Centers for Disease Control,
December 18, 2002.

[10] A. Campbell, The SARS Commission Interim Report: SARS
and Public Health in Ontario, April 2004, pp. 97–100.

[11] J. Koskinen. Software Maintenance Costs, September 2003,
http://www.cs.jyu.fi/∼koskinen/smcosts.htm (last accessed
February 4, 2005).

[12] S.R. Schach, Software Engineering, Richard D. Irwin,
Inc./Aksen Associates, Inc., 1990.

[13] E. Maldoff, L. Lizotte-MacPherson. Canada Health
Infoway/Vancouver Stakeholder Forum, March 2002,
http://www.canadahealthinfoway.ca/pdf/CHI-Report-
Vancouver.pdf (last accessed February 4,
2005).

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns
Elements of Reusable Object-Oriented Software,
Addison-Wesley Publishing Company, 1995.

[15] G.F. Luger, W.A. Stubblefield, Artificial Intelligence Structures
and Strategies for Complex Problem Solving, second ed., The
Benjamin/Cummings Publishing Company, Inc., 1993.

[16] J.A. Whittaker, J. Voas, Toward a More Reliable Theory of
Software Reliability, IEEE Comput., December 2000, pp.
36–42.

[17] R.L. Freeman, Telecommunication System Engineering, third
ed., John Wiley & Sons, Inc., 1996.

[18] S.A. Shields, T. Wong, J. Mann, A.M. Jolly, D. Haase, S.
Mahaffey, S. Moses, M. Morin, D.M. Patrick, G. Predy, M.
Rossi, D. Sutherland, Prevalence and correlates of chlamydia
infection in Canadian street youth, J. Adolescent Health 34
(5) (May 2004) 384–390.

[19] M. Gully, S. Shields, C. Bowman, J. Phelan, T. Wong, Hepatitis
B in Canadian street youth: trends in immunity between
1999 and 2003, in: Poster Presentation Presented at The
International Society for Sexually Transmitted Diseases
Research (ISSTDR), July 2005.

[20] M. Gully, S. Shields, C. Bowman, J. Phelan, T. Wong, STI and
hepatitis C in Canadian street youth 1999–2003: What are

the rates in this population? in: Poster Presentation
Presented at the International Society for Sexually
Transmitted Diseases Research (ISSTDR), July 2005.

[21] J. Phelan, R. Kropp, C. Bowman, S. Shields, T. Wong,
Canadian street youth: sexual behaviours and self-perceived

http://www.cs.jyu.fi/~koskinen/smcosts.htm
http://www.canadahealthinfoway.ca/pdf/chi-report-vancouver.pdf

i c a l
754 i n t e r n a t i o n a l j o u r n a l o f m e d

risk, in: Canadian Public Health Association 95th Annual
Conference, June 2004.

[22] J. Phelan, S.A. Shields, T. Wong, J. Mann, D.A. Haase, S.
Mahaffey, S. Moses, M. Morin, D.M. Patrick, G. Predy,
M. Rossi, W.D. Sutherland, Enhanced surveillance of
Canadian street youth: an overview, in: Poster
Presentation Presented at the British Association
for Sexual Health and HIV Conference (BASHH),
May 2004.

[23] F.-C. Tsui, J.U. Espino, V.M. Dato, P.H. Gesteland, J. Hutman,
M.M. Wagner, Technical description of RODS: A real-time

public health surveillance system J. Am. Med. Inform. Assoc.
10/5 (September/October) (2003) 399–408.

[24] W.W. Chapman, J.N. Dowling, M.M. Wagner, Fever detection
from free-text clinical records for biosurveillance, J. Biomed.
Inform. 37 (2004) 120–127.
i n f o r m a t i c s 7 5 (2 0 0 6) 741–754

[25] M.M. Wagner, J. Espino, F-C. Tsui, P. Gesteland, W. Chapman,
O. Ivanov, A. Moore, W. Wong, J. Dowling, J. Hutman,
Syndrome and Outbreak Detection Using Chief-Complaint
Data—Experience of the Real-Time Outbreak and Disease
Surveillance Project. Morbidity and Mortality Weekly Report,
September 24, 2004, pp. 28–31.

[26] J.W. Buehler, R.S. Hopkins, J.M. Overhage, D.M. Sosin, V. Tong,
Framework for Evaluating Public Health Surveillance
Systems for Early Detection of Outbreaks. Morbidity and
Mortality Weekly Report, May 7, 53 (RR05), 2004, pp. 1–11.

[27] M. Francis, D. Giokas, EHRS blueprint: an interoperable EHR

framework (1.0), Canada Health Infoway (July 2003) 2–205.

[28] S.A. Hearne, M.A. Hamburg, L. Segal, SARS and its
implications for U.S. public health policy: “we’ve been
lucky”, Biosec. Bioterrorism: Biodefense Strategy Pract. Sci. 2
(2) (2004) 127–131.

