
MEDRank: using graph-based concept ranking to index
biomedical texts

Jorge R. Herskovic, MD, PhD1, Trevor Cohen, MBChB, PhD1, Devika Subramanian, PhD2,
M. Sriram Iyengar, PhD1,3, Jack W. Smith, MD, PhD1, and Elmer V. Bernstam, MD, MSE,
MS1,4

1 School of Biomedical Informatics, The University of Texas Health Science Center at Houston
2 Rice University Engineering School, Department of Computer Science
3 NASA Johnson Space Center
4 Department of Internal Medicine, Medical School, The University of Texas Health Science
Center at Houston

Abstract
BACKGROUND—As the volume of biomedical text increases exponentially, automatic indexing
becomes increasingly important. However, existing approaches do not distinguish central (or core)
concepts from concepts that were mentioned in passing. We focus on the problem of indexing
MEDLINE records, a process that is currently performed by highly-trained humans at the National
Library of Medicine (NLM). NLM indexers are assisted by a system called the Medical Text
Indexer (MTI) that suggests candidate indexing terms.

OBJECTIVE—To improve the ability of MTI to select the core terms in MEDLINE abstracts.
These core concepts are deemed to be most important and are designated as “major headings” by
MEDLINE indexers. We introduce and evaluate a graph-based indexing methodology called
MEDRank that generates concept graphs from biomedical text and then ranks the concepts within
these graphs to identify the most important ones.

METHODS—We insert a MEDRank step into the MTI and compare MTI’s output with and
without MEDRank to the MEDLINE indexers’ selected terms for a sample of 11,803 PubMed
Central articles. We also tested whether human raters prefer terms generated by the MEDLINE
indexers, MTI without MEDRank, and MTI with MEDRank for a sample of 36 PubMed Central
articles.

RESULTS—MEDRank improved recall of major headings designated by 30% over MTI without
MEDRank (0.489 vs 0.376). Overall recall was only slightly (6.5%) higher (0.490 vs 0.460) as

© 2011 Elsevier Ireland Ltd. All rights reserved.
Corresponding author: Elmer Bernstam, MD, Professor, School of Biomedical Informatics, University of Texas Health Science Center
at Houston, 7000 Fannin, Suite 600, Houston, TX 77030, USA, Phone: 713 500 3901, Fax: 713 500 3929,
elmer.v.bernstam@uth.tmc.edu.
Authors’ contributions: Drs. Bernstam and Herskovic participated in every phase of the work described in this manuscript. Dr.
Cohen created the database of associations used by MEDRank. Drs. Subramanian, Iyengar and Smith participated in the formulation
of the core ideas and drafting of the manuscript. Each co-author participated in data analysis and manuscript preparation. All
coauthors have approved the final manuscript.
Statement on conflict of interest: None known.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Int J Med Inform. Author manuscript; available in PMC 2012 June 1.

Published in final edited form as:
Int J Med Inform. 2011 June ; 80(6): 431–441. doi:10.1016/j.ijmedinf.2011.02.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



was F2 (3%, 0.408 vs 0.396). However, overall precision was 3.9% lower (0.268 vs 0.279).
Human raters preferred terms generated by MTI with MEDRank over terms generated by MTI
without MEDRank (by an average of 1.00 more term per article), and preferred terms generated by
MTI with MEDRank and the MEDLINE indexers at the same rate.

CONCLUSIONS—The addition of MEDRank to MTI significantly improved the retrieval of
core concepts in MEDLINE abstracts and more closely matched human expectations compared to
MTI without MEDRank. In addition, MEDRank slightly improved overall recall and F2.

Keywords (MeSH)
MEDLINE; PubMed; Digital Libraries; Abstracting and Indexing as Topic; Medical Informatics;
Algorithms; Automatic Data Processing; Natural Language Processing

1. Introduction
Indexing is “the task of assigning to a document a limited number of terms denoting
concepts that are substantively discussed in the document.” [1] The index terms “describe a
document [and] serve as a synopsis of the subject matter discussed in the document.” [1]
Index terms are useful for a variety of purposes including retrieving documents from a
collection, identifying patients with particular diagnoses within a clinical data warehouse
and summarizing documents. Although this paper is focused on indexing MEDLINE
articles, we introduce a general approach that can, in principle, be used to index many types
of documents.

MEDLINE is the premier collection of biomedical articles. It currently contains over
19,000,000 references from more than 5,000 biomedical journals, and grows continuously,
at an ever-increasing rate. Finding relevant articles within MEDLINE requires good search
tools and high-quality indexing that describes the content precisely. All MEDLINE entries
corresponding to journal articles are indexed by hand using a purpose-built and continually
maintained vocabulary called the Medical Subject Headings (MeSH). MeSH is a controlled,
hierarchical vocabulary developed at the U.S. National Library of Medicine (NLM) and
updated yearly [2]. MeSH terms are assigned to every article in MEDLINE by professional
indexers. Thus, indexers must manually process approximately 670,000 articles per year [3]
and assign MeSH subject headings (i.e., MeSH terms denoting concepts substantively
discussed in the document) and major headings (i.e., MeSH terms reflecting the most
important, central concepts discussed in the document) for each entry. Human indexing is
expensive and inconsistent. Funk and Reid’s classic 1983 study of inter-indexer agreement
showed that different indexers assigned the same MeSH terms to the same article between
33.8% (when comparing detailed concepts) and 74.7% (when comparing very general
checktags) of the time [4]. Thus, automated indexing is an attractive alternative.

The NLM’s Medical Text Indexer (MTI) is a leading automated indexing effort in
biomedicine. Unfortunately, MTI does not yet perform well enough to replace human
indexers. Instead, it is used to suggest terms to human indexers [1, 5]. One reason for MTI’s
inability to replace human indexers may be that MTI extracts concepts from article titles and
abstracts rather than the full text [5]. As part of its processing MTI supplements the title and
abstract with human-indexed concepts from similar articles [6, 7]. Current research on MTI
focuses on subheading/heading attachment [1]. However, main heading selection is still
critically important [8]. For a deeper look at MTI and other automated indexing initiatives
see [8].

In this paper we present a novel way of indexing biomedical text called MEDRank that uses
graph-based ranking algorithms. MEDRank operates on concepts extracted from text to

Herskovic et al. Page 2

Int J Med Inform. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



identify the most important terms and is thus complementary to indexing systems such as
MTI.

2. Background
2.1 The structure of scientific writing

Frederick Suppe argued that scientific articles are rigidly structured [9]. Since journal space
is a scarce resource, scientific articles must use available space optimally to advance their
claims. An intuitive consequence of this theory is that scientific papers build a network of
interrelated concepts. Authors advance their claims by stating facts about those claims,
about related concepts or the relationships between concepts. These concepts and their inter-
relationships form a network that reflects the concepts in the original text. Thus, the most
“important” or “central” concepts in the network will be the most important concepts in the
text.

We leverage the structure of scientific writing by creating graphs that represent the concepts
in biomedical articles. We then apply graph-based ranking algorithms to identify the “most
important” nodes, i.e. the most important nodes as given by their relationships to other
nodes. We hypothesize that these “most important nodes” correspond to the most important
concepts in the articles, and are therefore good indexing terms. In particular, the highest-
ranked concepts should correspond to the major headings chosen by human indexers.

The approach we propose is also consistent with Kintsch’s widely used construction-
integration model of text comprehension [10], in which concepts occurring in a passage of
text, and related concepts from the memory of the reader, form an associative network in the
mind. Spreading activation across this network causes concepts that are most highly
connected to dominate the cognitive representation of the passage.

2.2 Graph-based ranking algorithms
A graph is “a diagram consisting of a set of points together with lines joining certain pairs of
these points” [11]. The points and lines in graph theory are commonly called “nodes” and
“edges” respectively. In this paper, we use Semantic Abstraction Graphs (SAGs) which
represent concepts from a piece of text as nodes and relationships between these concepts as
edges in the graph [12].

Graph theory and graph analysis are useful in dealing with many kinds of human-created
networks. Perhaps the best-known example of graph analysis is Google
(http://www.google.com). Google models the Web as a graph. Web pages are represented as
nodes, and the hyperlinks are the edges. The graph is analyzed using an algorithm called
PageRank. PageRank has been applied to multiple networks, including biomedical literature
citation networks [13], social networks [14], and text to achieve summarization by selecting
important sentences [15]. PageRank is thus a general algorithm that will rank nodes in a
graph based on their relative importance as established by the set of edges. TextRank is a
variant of PageRank that was created specifically to work on undirected graphs with
weighted links and performs well when choosing keywords out of text [15]. MEDRank uses
PageRank (for directed graphs) as described in [16] or TextRank (for undirected graphs) as
described in [15] modified to operate on SAGs derived from text documents as opposed to
web pages and text words respectively.

2.3 MEDRank overview
The basic architecture of MEDRank (available as Open Source code from
http://github.com/drh-uth/MEDRank) is shown in Figure 1. First, we split documents into
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individual sentences. Then, we feed each sentence separately to a concept extraction stage
that returns an ordered list of concepts for each sentence. MEDRank can use the list of
concepts to infer relationships between them, or it can accept a list of relationships between
concepts. MEDRank uses the concepts and relationships to generate SAGs. It then ranks the
concepts in the SAG with a graph-based ranking algorithm. Finally, MEDRank translates
the ranked list of concepts into the destination indexing vocabulary; in this case, MeSH.

3. Methods
3.1 Rationale

To verify that MEDRank can help MTI discover the most important indexing terms in a
biomedical article, we compared MTI with and without MEDRank. MTI processing is
complex [17–20] and contains several steps that are difficult to replicate exactly, including
the Restrict to MeSH algorithm [19], and a clustering/ranking step [20]. To evaluate the
contribution of MEDRank, we used a modified version of MTI. NLM staff prepared this
modified version of MTI at our request. It separates MetaMap from the later stages MTI
processing, allowing us to inject MEDRank’s processing into MTI’s pipeline (Figure 2). In
summary, we processed articles using MetaMap and MTI but added a stage where the
extracted UMLS concepts were ranked with MEDRank. We call this MTI+MEDRank.

Additionally, we know that indexers review the abstract and title of an article carefully and
skim the text of the paper [21]. Therefore, we compared MTI to MTI+MEDRank using only
the abstract and title.

In summary, MTI+MEDRank differs from MTI in two important ways. First, MTI
+MEDRank uses graph-based ranking, while MTI does not. Second, MTI’s normal
workflow uses MetaMap to extract concepts from the abstract and title of articles as a
whole, while MTI+MEDRank processes each sentence separately. This change may affect
MTI’s performance. Therefore we evaluated it separately.

We recognize that there is no single definitive strategy for evaluating indexing systems. We
chose to use the terms chosen by NLM (human) indexers as the gold standard. As noted
above human indexers are not always consistent with an agreement ranging between 74.7%
for checktags to 33.8% for heading/subheading combinations [4]. Checktags, such as
HUMAN, ANIMAL, MALE and FEMALE, are “large-volume descriptors routinely
checked for in every indexed article.”[22] Since they are very general, checktags are not
good indicators of what the article is really about. In contrast, major headings “reflect the
central concepts of an article.” [4] Further, inter-indexer agreement was relatively good for
major headings (61.1%). While evaluation of overall recall and precision provides a measure
of the match between system and indexer preference, it does not address the relative
importance of selected indexing terms. Consequently, while we have reported overall
statistics, the emphasis of our evaluation is on the recall of major headings. Finally, we
expect the system to have a measurable impact in the real world. We therefore determined
whether blinded human readers preferred terms produced by MEDLINE indexers, MTI, or
MTI+MEDRank (see below for details).

3.2 MetaMap
We used the NLM’s MetaMap program to extract concepts from the article’s abstract and
title. We ran MetaMap directly on the NLM’s Semantic Knowledge Representation (SKR)
server, available at http://skr.nlm.nih.gov, using the Batch Generic with Validation facility
and the command “metamap0809 –iDNE” as suggested by NLM staff to emulate the first
stage of MTI processing. MetaMap produces a list of UMLS concepts and a confidence
score between 0 and 1000 for each concept.
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3.3 MEDRank
The pseudocode for MEDRank is given in Figure 3, below.

We performed two experiments with different SAGs. We first created SAGs by inferring
relationships between adjacent concepts where the distance between concepts determined
the strength of the relationship. We set the initial score of the nodes in our SAGs to the
normalized MetaMap confidence score. We set the weight of the relationship between two

concepts to  where d was the number of concepts between them. In other words, we
considered concepts to be closely related if they appeared close to each other in the text; the
strength of the relationship decayed exponentially with distance. To speed processing and
prune weak links we arbitrarily rounded the weight of any relationship with a d of 5 or more
to 0. We also created SAGs by using a database of known relationships between UMLS
concepts produced by Reflective Random Indexing (described below). As all SAGs in these
experiments are undirected, we used our modified TextRank to rank the nodes.

3.4 Random Reflective Indexing
Distributional models of semantic relatedness correlate well with human estimates in general
[23], as well as in the biomedical domain [24]. Consequently, we chose to utilize a variant of
the Random Indexing [25, 26] method to measure the semantic relatedness between UMLS
concepts in order to weight the links of our SAGs. We derive these measurements from a
corpus of all abstracts and titles that have been added to MEDLINE over the past decade.

We generated semantic vectors [27] for each UMLS concept in the data set. These semantic
vectors are derived from the distribution of terms that occur in documents with each
concept. We then measured associations between UMLS concepts using the normalized dot
product between vectors (i.e. a vector cosine comparison). The advantage of using a
semantic vector representation is that its reduced dimensionality makes it small enough to
retain in RAM, and therefore it is possible to rapidly calculate associations between
concepts that occur in each SAG (please see [8, 23, 25, 26, 28] for more information on
these techniques).

3.5 MTI
NLM staff provided a modified MTI that accepts a custom delimited input format. This
“custom” version of MTI allowed us to split the normal MTI processing of articles [29, 30]
into a concept extraction phase (performed by running MetaMap as described above)
followed by ranking and filtering. In our experiments, MTI performed the clustering,
converting to MeSH, and ranking steps that are part of the regular MTI workflow. We left
the output length at the MTI default of 25 terms. Therefore, running this modified MTI on
the output of the MetaMap phase described above produced the same results as running
regular MTI on the input text.

3.6 Sample
We used a custom Python script to retrieve a list of all articles in PubMed Central
(ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/file_list.txt), and repeated the following procedure until
14,000 distinct, randomly-selected articles were downloaded. The script downloaded
random articles and verified that each article was associated with a PubMed record
containing MeSH indexing terms. To facilitate future indexing experiments on full text, we
chose articles that were stored in PubMed Central. We used the 2008 edition of MeSH to
perform our experiments. Therefore, we excluded articles without MeSH 2008 mappings
from the sample (see “Results” below).
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3.7 Indexing Experiments
We first indexed the articles’ title and abstract using the MTI processing pipeline. In other
words, we used MetaMap configured as described above, on the entire abstract and title at
once as is usual for MTI processing, plus our custom MTI.

We then indexed the articles’ titles and abstracts by extracting the concepts sentence by
sentence using MetaMap separately on each sentence. We processed this list of concepts
with MTI to determine whether the different extraction process affects performance. We
found that MetaMap identifies more concepts when extracting sentence by sentence than
when extracting from the entire abstract and title simultaneously. Thus, we expected MTI’s
recall to be higher and its’ precision to be lower when using sentence-by-sentence
extraction. We also used these concepts extracted sentence by sentence to build the SAG for
each article, which we then ranked using MEDRank. We performed the experiment
configuring MEDRank to discard all concepts with a ranking score of 0.50 or less, a
threshold we determined empirically during development. We rescaled MEDRank scores,
normally between 0 and 1, to a scale between 0 and 1000 to imitate MetaMap output. The
output from MEDRank became the input to the rest of MTI processing (see Figure 2).
Consequently, in addition to MetaMap’s confidence score, the modified MTI+MEDRank
pipeline takes into account the extent to which each extracted concept relates to other
concepts that occur in the citation concerned, providing a measure of sensitivity to context.

The goal of our experiment was to determine whether MTI+MEDRank could identify the
most important concepts in biomedical articles. Major headings are thought to represent the
most important concepts in an article. Thus, our main outcome measure was the micro-
averaged recall (the average across the entire sample of the recall on each document) of
major headings from the MEDLINE record. We defined recall of major headings as the
number of MeSH terms marked by an indexer as a major heading present in MTI’s output,
since MTI does not mark terms as major headings. We also report micro-averaged recall,
precision, and F2 (the harmonic mean of precision, recall, and recall) for all MeSH headings.
We also report major heading precision at ranks 5, 10, 15, 20, and 25. As the major headings
are embedded in the overall retrieval process we also report the maximum achievable
precision at a certain rank, computed by assuming that all major headings are ranked before
any other terms.

We analyzed results using R 2.11.1 (http://r-project.org) running on Mac OS X 10.6.4
(Apple Computer, Inc., Cupertino, CA). Since major heading recall was not normally
distributed, we used a paired non-parametric Wilcoxon rank-sum test to compare results. We
also estimated the mean and 95% confidence interval using a basic non-parametric bootstrap
implemented by the R Hmisc library function smean.cl.boot.

3.8 Reader preference experiment
We hypothesized that identifying the “most important” concepts in an article would be a
better match to searcher expectations than MTI. In other words, we asked the question: “Do
indexing terms selected by MEDRank match searcher expectations better than MTI?” We
therefore determined whether MEDLINE users prefer terms generated MTI+MEDRank or
by MTI alone. We also compared the results to terms chosen by MEDLINE indexers.

Three authors with medical training (EVB, TC, and JRH) voted for five potential indexing
terms for a random sample of articles. We were blinded to the source of the term (i.e.,
whether the term was selected by MTI, MTI+MEDRank or by MEDLINE indexers). In an
informal experiment on three articles (15 terms chosen), we tried to identify the source of
the term (i.e., which system generated the term) and there was no apparent correlation
between our “guesses” and the actual source system. Thus, it is not likely that our results
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were biased by knowledge of the study or the systems being evaluated. We simply could not
tell which system generated the terms for a previously-unseen random article. We selected
terms that best captured the content of the article. Each rater received a set of pages with an
article’s title and abstract, and a randomly ordered list of terms selected at random from the
output of MTI, MTI+MEDRank, and the MEDLINE record for the article. Since a given
term could have more than one source (for example, [myocardial infarction] could be
“selected” by MTI, MTI+MEDRank and MEDLINE indexers) we sampled from the lists
with replacement and randomly removed terms from the output until each source had the
same number of potential votes. In other words, the prior probability of a vote going to a
term from each source was identical. The authors did not communicate with each other
while performing this experiment, and were blinded to the source of the terms (Figure) (i.e.,
the raters did not know whether the term was selected by MTI, MTI+MEDRank or by
MEDLINE indexers).

Each rater received fifteen articles for the reader preference study. The first three of these
randomly chosen articles were identical, and were used only to compare inter-rater
consistency. We computed the average of three two-way Hooper’s consistency measures for
each article [4]. The other 12 articles for each author were different, and were used to
compute reader preference. We asked each rater to “vote” for exactly five terms in each
article. We then counted the votes as points for each source “system” that “selected” the
term. Terms that were present in the output of two systems gave a point to each. We
compared the number of votes the different systems obtained using the normal
approximations of the paired Wilcoxon rank sum tests, which gave us an estimated median
of the difference between groups and a p value. As we performed three comparisons
(MEDLINE vs. MTI, MEDLINE vs. MTI+MEDRank, MTI+MEDRank vs. MTI) we used a
Bonferroni correction to establish a desired alpha of 0.016667 (0.05 divided by 3). We chose
the sample size of 36 articles to detect at least a 0.5 term/article preference difference with a
statistical power of 0.8 and an alpha of 0.016667, using non-parametric statistics (we
computed the power required for a t-test and overpowered the study by 15% [31]). In other
words, we were able to detect a statistically significant difference in preferences of at least
one term every two articles. We considered a difference of less than one term every two
articles to be practically insignificant.

4. Results
Our final sample contained 11,803 articles after excluding articles without 2008 MeSH
headings (which includes all articles published after MeSH 2009 was made available), and
articles where MetaMap or MTI malfunctioned during processing. A total of 339 articles
(2.5%) were excluded due to MetaMap or MTI malfunction. Notably, these 339 articles
were excluded from both MTI and MTI+MEDRank groups.

4.1 MTI
On these articles the default MTI processing pipeline was able to retrieve major headings
with a micro-averaged recall of 0.376 (95% CI: 0.370–0.381). Switching the concept
extraction step to a sentence-by-sentence extraction improved major heading recall using the
default MTI workflow to 0.405 (95% CI: 0.399–0.410) at the cost of decreased precision
(Table 1).

4.2 MEDRank indexing experiments
When we added MEDRank to MTI (MEDRank+MTI), major heading recall improved by
26% to 0.475 (95% CI: 0.469–0.481) (Table 1). Therefore, MEDRank was able to improve
MTI’s recall of major headings significantly when working with just the titles and abstracts
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(Wilcoxon paired sum-rank test, p<0.001). Recall of major headings improved by 30%%
over MTI to 0.489 (95% CI: 0.484–0.495) when using Reflective Random Indexing (RRI)
[26] instead of sentence-level co-occurrence to weight the edges of the SAGs. Overall F2
was also modestly (3%) better when applying MEDRank+MTI using RRI to weight edges
than when using MTI alone (0.408, 95% CI: 0.406–0.410 versus 0.396, 95% CI: 0.395–
0.399). MEDRank also significantly improved MTI’s precision of major heading retrieval at
all ranks (Figure 5).

4.3 Reader preference study
In our preference study, we agreed on indexing terms on three articles reviewed by all three
authors within the ranges reported by Funk and Reid [4]. The Hooper’s indexing consistency
values were 37%, 51%, and 37%. Raters significantly preferred terms generated by
MEDLINE indexers over MTI (estimated median difference=1.00 votes/article, p < 0.010)
and MEDRank+MTI over MTI (estimated median difference=1.00 votes/article, p= 0.015).
There was no significant difference in reader preference between MEDRank+MTI and
MEDLINE (estimated median difference=0.05 votes/article in favor of MEDLINE, p=0.36).

5. Discussion
We presented MEDRank, an application of graph-based ranking. We found that MEDRank
can be “inserted” into the MTI pipeline and can improve recall of major headings by 30%,
and the precision @ rank 5 of major headings by 47%. Further, MEDRank+MTI performed
comparably to human MEDLINE indexers and significantly better than MTI alone when
compared against human expectations of indexing terms associated with a particular article.

The addition of MEDRank, our graph-based algorithm designed to identify the most
important concepts in a document, to MTI improves indexing performance. The use of
sentence-by-sentence concept extraction also improved the recall of major headings. The
combination of sentence-by-sentence concept extraction and MEDRank increased major
heading recall from MTI’s 0.376 to 0.475; a 26% relative increase. When we derived edge
weights from a database of known co-occurrence between concepts drawn from a larger
sample of the biomedical literature, recall of major headings increased again to 0.489, a 30%
increase relative to MTI’s baseline. It was previously suggested that most major gains in
MTI performance had already been realized [32]. Our experience with MEDRank
contradicts this and shows that new approaches based on novel theories can improve
indexing performance. Further, our reader preference evaluation supports the idea that the
terms MEDRank+MTI identifies are qualitatively ‘better’ (i.e., are a closer match to
searcher expectations) than the terms MTI identifies, and may even be similar to human
MEDLINE indexer performance.

MEDRank+MTI are also able to surpass MTI’s general performance measured by F2, albeit
modestly, which was surprising. In contrast to MEDRank, MTI is actively optimized for F2
(see [32]). F2 is an appropriate measure for MTI’s main goal, suggesting terms to the NLM
indexers, but it is not ideal for measuring whether an algorithm identified the most important
concepts in a biomedical article. Despite this limitation the addition of MEDRank to the
MTI process improved MTI’s performance (Table 1). As MEDRank can work within the
existing NLM infrastructure, it could be adopted as-is and added to the indexing process.

Selecting appropriate descriptors, i.e., indexing terms for a document is a well-known
problem in information retrieval [5, 8], and is of particular interest to biomedical
information retrieval. Recent research in biomedical indexing focuses on improving the
quality and quantity of subheadings and main heading/subheading pairing [1] and on
improving main heading selection [8].
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Similar graph-based algorithms have used to select keywords from free text [15]. Other
graph-based algorithms have been used to cluster terms into semantically similar clusters
[33]. To our knowledge, this is the first application of a graph-based ranking algorithm to a
concept graph and the first implementation of a SAG for indexing purposes.

It is difficult to compare our quantitative results directly to previous work. Many previous
studies of automated or semi-automated indexing focused on a particular domain (e.g.,
genetics) [34], did not focus on MEDLINE (e.g., dermatology atlas) [35] and/or used a very
different gold standard (e.g., a 200-article test set [8]. Further, MTI changes over time and
thus affects both MTI results and, to some extent, the terms chosen by human MEDLINE
indexers. Thus, we have chosen to perform a relative comparison (MTI vs. MTI+MEDRank
vs. human MEDLINE indexing) using a large, randomly selected subset of MEDLINE.
Further, we also compared systems with respect to their match to searcher expectations.

Our study had several limitations. Perhaps most importantly, we cannot conclude that the
addition of MEDRank to MTI indexing will improve the practical experience of MEDLINE
users. To draw this conclusion, we would need a user study with representative MEDLINE
users. However, we found that blinded raters preferred terms selected by MTI+MEDRank
compared to MTI alone. Further, the difference between MTI+MEDRank and human
MEDLINE indexers was not statistically significant. Thus, there is reason to believe that if
articles were indexed using MTI+MEDRank, user experience may be comparable to the
status quo that relies on human indexers.

MTI+MEDRank also showed a modest but significant decrease in precision when compared
to MTI. It could thus be argued that all we do is trade off some precision for recall. Our task,
however, was to establish whether MEDRank can identify the most important concepts in
the article, which we operationalized as the starred major headings. We traded off a small
4% relative loss in precision (between baseline MTI and MTI+MEDRank using the
relationship database) for a 30% relative increase in major indexing recall. The increase in
general recall was large enough to offset the precision losses and obtain a net increase in F2,
the main MTI outcome measure. Finally, in our reader preference experiment, we show that
readers select terms from MTI+MEDRank as much as from MEDLINE, suggesting a
qualitative increase in term quality. Any evaluation of MTI using MEDLINE as the gold
standard is inherently biased towards MTI. Since some MEDLINE indexers use MTI during
their work it is likely that, if there are two equally appropriate terms, the indexer will choose
the term suggested by MTI. Unfortunately, we are not aware of any objective way to
measure this effect [36].

5.1. Future work
The work we present raises issues that we will explore in the future. We show that
MEDRank matches end-users’ expectations better than MTI. It is possible that MEDRank
will also match indexers’ expectations better than MTI. We will attempt to evaluate this
hypothesis. We will also study the effect of MetaMap’s newly-added support for negations
[37] on MEDRank’s performance, and continue working to improve MEDRank’s quality.

6. Conclusion
MEDRank is a novel graph-based algorithm that can improve the performance of existing
concept extraction systems. We found that adding MEDRank to MTI, the current state of the
art in MEDLINE indexing, improved recall of important concepts by 30% at the cost of a
slight (4%) decrease in overall precision. Further, MEDRank helped MTI select terms that
are likely to match searcher expectations. Since MEDRank does not incorporate expert
knowledge regarding a particular indexing tasks or specific vocabularies, we are applying
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MEDRank to other indexing tasks including identifying important concepts within clinical
text.
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Figure 1.
MEDRank Standalone Workflow
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Figure 2.
MTI and MEDRank processing pipelines
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Figure 3.
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Figure 4.
Example rating page for readers. The first line contains a unique article ID.
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Figure 5.
Column graph showing bootstrapped micro-averaged mean precision at rank n and 95%
confidence intervals for major headings for MTI and MEDRank+MTI using distributional
relationships. We show the maximum achievable precision at each rank below the x axis.
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Table 1

Performance measures: bootstrapped micro-averaged mean and 95% confidence interval by indexing
technique (n=11,803) (best performance in bold)

Recall (major headings) Recall (all headings) Precision (all headings) F2 (all headings)

Traditional MTI workflow (whole
abstract and title)

0.376 [0.370–0.381] 0.460 [0.458–0.463] 0.279 [0.278–0.281] 0.396 [0.395–0.399]

MTI workflow on the abstract and
title, extracted sentence by sentence

0.405 [0.399–0.410] 0.472 [0.469–0.474] 0.277 [0.276–0.279] 0.402 [0.400–0.404]

MEDRank + MTI on abstract and
title (co-occurrence relationships)

0.475 [0.469–0.481] 0.461 [0.458–0.464] 0.248 [0.246–0.249] 0.381 [0.379–0.383]

MEDRank +MTI on abstract and
title (distributional relationships
derived using RRI)

0.489 [0.484–0.495] 0.490 [0.487–0.492] 0.268 [0.266–0.270] 0.408 [0.406–0.410]
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