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Background—Despite many decades of research on the effective development of clinical
systems in medicine, the adoption of health information technology to improve patient care
continues to be slow, especially in ambulatory settings. This applies to dentistry as well, a primary
care discipline with approximately 137,000 practitioners in the United States. A critical reason for
slow adoption is the poor usability of clinical systems, which makes it difficult for providers to
navigate through the information and obtain an integrated view of patient data.

Objective—In this study, we documented the cognitive processes and information management
strategies used by dentists during a typical patient examination. The results will inform the design
of a novel electronic dental record interface.

Methods—We conducted a cognitive task analysis (CTA) study to observe ten general dentists
(five general dentists and five general dental faculty members, each with more than two years of
clinical experience) examining three simulated patient cases using a think-aloud protocol.

Results—Dentists first reviewed the patient’s demographics, chief complaint, medical history
and dental history to determine the general status of the patient. Subsequently, they proceeded to
examine the patient’s intraoral status using radiographs, intraoral images, hard tissue and
periodontal tissue information. The results also identified dentists’ patterns of navigation through
patient’s information and additional information needs during a typical clinician-patient encounter.

Conclusion—This study reinforced the significance of applying cognitive engineering methods
to inform the design of a clinical system. Second, applying CTA to a scenario closely simulating
an actual patient encounter helped with capturing participants’ knowledge states and decision-
making when diagnosing and treating a patient. The resultant knowledge of dentists’ patterns of
information retrieval and review will significantly contribute to designing flexible and task-
appropriate information presentation in electronic dental records.

Keywords

cognitive task analysis; electronic health records; usability; cognitive engineering; system design;
electronic dental records

1. INTRODUCTION

Providing patient-centered cognitive support in electronic health records (EHR) for
clinicians is a significant research challenge in informatics [1]. Clinicians spend a great deal
of time and energy searching and sifting through raw data about patients, and trying to
integrate these data with their general medical knowledge, as they care for their patients.
Multiple shortcomings of EHR, such as usability problems and the resultant loss of time and
productivity [2-4], steep learning curves and unintended adverse consequences [5-13],
aggravate this situation. As a result, the adoption of health information technology (HIT) to
improve patient care continues to be slow, especially in ambulatory settings.

Multiple problems in human-computer interaction design contribute to the often suboptimal
support of clinical work by EHRs. For instance, cluttered screen designs and separation of
information across multiple screens make it difficult for clinicians to gain a quick overview
of the patient’s status. As a result, clinicians sometimes miss key information required to
make decisions, which in turn increases the chance of errors. Several studies suggest that
dentistry, a primary care discipline with approximately 137,000 practitioners in the United
States, may have problems similar to those found in medicine [14-19]. Studies conducted in
dentistry [15-21] have demonstrated that poor usability and a steep learning curve are major
barriers to the use of electronic dental record (EDR) systems. These studies suggest that
there is significant room for improvement of EDR systems. Similarly, despite widespread
adoption of EDRs at U.S. dental schools, investigators continue to find that many users are
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not convinced that they improve efficiency and effectiveness [15, 19, 21]. Users want better
design, shorter learning curves, reliable hardware and digital imaging capabilities [15, 19].

On the other hand, empirical studies have reported that clinical performance improves when
information displays match the users’ mental models and their clinical work processes [22—
27]. Clinicians are able to focus their attention entirely on patient problems and devote their
cognitive resources to clinical reasoning, strategy and treatment planning [28]. These
observations have led to the application of techniques and methodologies adapted from
applied cognitive psychology to study how HIT can support clinicians’ work processes and
decision-making activities [24, 27, 29]. For example, Patel and Kushniruk [24] proposed
cognitive engineering methods to study individual interactions of users with HIT, and to
understand group processes and interactions among health professionals and HIT using a
distributed cognitive framework. The results helped with assessing the clinicians’
information needs and understanding the problems they experienced when interacting with
clinical systems. They also contributed to redesigning these systems to support clinicians’
work.

Few studies have explored how cognitive engineering methods can inform the design of a
clinical system [22, 30-34]. These studies have typically employed methods such as think-
aloud protocols, work-flow observations and semi-structured interviews to understand the
cognitive processes and information management strategies of clinicians during patient care.
The resulting cognitive models were then used as the basis to design systems. Zhang and
colleagues [34-37] developed a human-centered distributed information design framework
to study the dynamic interactions among humans, artificial agents and the context in which
the system is situated. Preliminary results have demonstrated that these approaches may
improve systems’ cognitive support during patient care and thus suggest the possibility of
improving patient care quality and safety. Recently, investigators identified clinical data
presentation that facilitates the clinicians’ formulation of a patient’s problem as a critical
component for improving patient care through HIT [1, 38]. However, research is still
nascent as many methods have been proposed with little empirical evaluation. It is this gap
in knowledge — how cognitive engineering methods can be optimally applied to inform the
system design process — that we sought to address in this study.

Existing cognitive engineering studies have mostly focused on information processing and
management when users interacted with patient documentation or records or during their
clinical workflow [22, 31, 32, 39-41]. They do not reflect the actual patient or the
‘clinicians’ physical and cognitive interactions with a patient’ [38, 42, 43]. Thus, capturing
interactions with records may not necessarily capture the clinicians’ knowledge states and
decision-making as well as doing so with less abstract representations of patients. In this
paper, we adapt the current cognitive task analysis methods to closely simulate activities
during an actual patient visit, and to study how dentists access and interact with raw patient
data to diagnose a patient. We coded cognitive processes and information accessed in order
to learn what information dentists needed and how they used it in diagnosing and treatment
planning.

The objective of this study was to document how dentists review information and make
decisions during a new patient visit. We focused on the following questions:

1. What information sources do dentists retrieve and in what sequence when
examining simulated patient cases of varying complexities?

2. What information do dentists use to make clinical decisions and how do they use
it?
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3. What cognitive processes characterize a dentists’ information management and
decision-making activities when examining patients?

2. METHODS

Cognitive task analysis (CTA) is the “extension of traditional (behavioral) task analysis
techniques to yield information about the knowledge, thought processes and goal structures
that underlie observable task performance” [44]. It is typically used to identify the concepts,
contextual cues, goals and strategies that contribute to the mental activities of an individual
when solving a specific problem or a task. In this study, we conducted a CTA to observe ten
general dentists examining three simulated patient cases using a think-aloud protocol. The
three simulated patient cases referred here include only patient information and do not
include real patients or actors. From here on, we refer simulated patient cases as ‘cases’ in
this manuscript. We recruited a purposive sample of ten general dentists, five general
dentists practicing in Pittsburgh and five general dental faculty members, with more than
two years of clinical experience. The three cases were selected from the pool of
approximately 80 patient cases that senior dental students at the University of Pittsburgh
School of Dental Medicine develop each year as part of their Senior Case Presentation
course. All the cases are based on actual patients. Three dental faculty selected the clinical
cases from this pool to ensure that they represented patients typically seen in general dental
practice. One case represented a low complexity case (a patient who maintains regular
dental visits); the second, a medium complexity case (patient with multiple dental needs);
and the third, a high complexity case (patient with multiple dental needs and underlying
systemic disease).

Each session was video- and audio-recorded to capture participants’ interactions with the
patient information. Before starting the session, the goal and the process of conducting the
experiment were reviewed with the participant. Participants were trained through practice
with the think-aloud process, using one or two tasks that were not used in the study.

After practice, the cases were presented to the participants one by one in random order to
prevent sequential bias. The observer began by handing out the first patient information,
which included basic patient information and the chief complaint. All other information
about the case was provided only if the participant requested it while assessing the patient
and developing a treatment plan. Each participant was instructed to verbalize both the type
of information desired and what s/he was thinking while reviewing and assessing patient
information. The observer reminded participants to keep thinking aloud if they fell silent for
more than 15 seconds.

The transcribed sessions were analyzed to identify and code both the kinds of information
dentists reviewed and the cognitive processes they used.

2.1 Coding of Data

The transcribed data were first segmented into individual protocol statements (data
segments). Each individual protocol statement (data segment) represents a phrase, sentence
or a group of multiple sentences that refer to the same thought (content or knowledge) [45].
From here on, individual protocol statements will be referred as data segments in this
manuscript. Initially, two researchers (TT and TS) reviewed the verbal reports from two
sessions and drafted a coding scheme. An incremental and iterative process was followed to
develop and refine the coding scheme. Once it was finalized, the two researchers coded two
sessions independently to refine and validate the coding scheme. Table | shows the final
coding scheme and examples of individual protocol statements. One researcher (TT) coded
all thirty sessions. Inter-rater reliability was then calculated for each variable using the «-
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statistic for a randomly selected case coded by the two researchers. Data coding followed the
process described in the two research studies on cognitive processing published by Jaspers
[22] and Crowley [45].

Each data segment of the verbal protocol was coded for process type, process code and
information source. Process type refers to “information processes that produce new states of
knowledge by acting on existing states of knowledge” [45]. In this study, four major process
types were identified: 1) Information retrieval or review; 2) Processing; 3) Deciding; and 4)
Other. Information retrieval or review included actions or processes involved with retrieving
and reviewing patient information, such as requesting information, asking a follow-up
question, scanning records or reviewing images. Processing included actions involved with
processing the information reviewed, such as setting a goal, hypothesizing, contextualizing
and comparing/cross checking. Deciding included decision-making actions such as
establishing a finding, diagnosis or a treatment and making recommendations for a treatment
or on a diagnostic procedure. Other, the fourth process type, included actions that led to the
conclusion or evaluation of one’s own reasoning, such as summarizing, wrapping up and
expressing ignorance.

Process codes refer to actions or processes that occur within each of the four major
processing types described above. The final coding scheme consisted of 28 specific process
codes — four within information retrieval or review, 11 within processing, nine within
deciding and four within other. Last, there was an option for “not coded.”

The third major variable coded, information source, included the different patient
information participants reviewed during the simulated patient examination. In this study,
information sources included chief complaint, dental history and medical history, intraoral
exam findings recorded on hard tissue and periodontal information, and intraoral images and
radiographs. As shown in Table I1, we organized these information sources into three major
categories for data analysis: patient meta-information, examination information and images.

To summarize, each data segment from every examination was coded as to one of the four
process types, one of the process codes within that type and by the relevant information
source(s). Since the time taken was not expected to be the same for each case, an additional
time-percent variable was created by calculating duration completed against total duration in
ten percent intervals. This helped in plotting data from all 30 cases on the same graph in ten
percent time intervals for comparison purposes.

2.2 Data Analysis

We performed the following data analysis to identify the dentists’ information usage and
their patterns of navigation:

» quantified, analyzed and compared across case types of specific information
sources used, including frequency and sequence of use (Table 1V)

» graphed the average frequency of information sources used against time-percent in
ten-percent time intervals: to show which information sources supported their
decision-making process and their sequence of using information sources (Figure
1)

» graphed each participant’s information source usage against data segments to
identify patterns of navigation (Figure 2)

» determined instances when participants reviewed at least two information sources
simultaneously and when they needed additional information. (Figure 2 & Table V)
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» graphed average frequency of process types used against time-percent in ten-
percent time intervals.

Generalized linear mixed models for count data were used to carry-out the primary analyses.
These models account for the inherent correlation within and heterogeneity between
dentists. In particular, Poisson or negative binomial regression models with random intercept
were fitted to determine 1) whether the distribution of information sources was same or
different; 2) whether the average number of dental history utilization was different than the
average number of radiograph utilization; 3) whether the mean number of each information
source used varied by complexity of the case; and 4) whether the distribution of information
source used varied across dentists. Process types were also analyzed to determine 1) whether
the distribution of process types were same; 2) whether the average number of information
retrieval/review events were different from the average number of decision events; 3)
whether the mean number of occurrences of each process type varied by case; and 4)
whether the distribution of process types varied across dentists.

3. RESULTS

Six of the ten participants were male and five participants were graduates of the University
of Pittsburgh. All of them completed diagnosis and treatment planning for all three
standardized cases. The time spent on working through the cases varied by participant and
case complexity (average: 73 minutes; std. dev. 22 minutes). Table 111 shows that time and
average number of segments per case increased with case complexity.

The transcribed sessions consisted of a total of 6,631 data segments, an average of 664
segments per participant. In the sections below, we describe which information sources the
ten participants requested and reviewed while working with the three cases and their
information needs during different time periods of the patient examination.

3.1 Use of Specific Information Sources by Participants

Participants spent approximately 80 percent of their time interacting with patient
information during diagnosis and treatment planning of the three cases. In the remaining
20% of the time, participants recalled facts from past clinical experiences and personal
knowledge. Table 1V shows that radiographs and intraoral images were the most often used
information, constituting 72% of information source usage. In general, the frequency of
participants’ information source usage increased with case complexity, with few exceptions.

Figure 1 shows information source usage over time as participants worked through each
case. (We normalized absolute time spent on each case to percent in order to be able to
group participants by case.) Each vertical bar shows how often participants used particular
information sources during the particular 10% increment in case time. In all three cases,
participants started by reviewing patient information to understand the patient’s reason for
the dental visit. They then reviewed the patient’s medical history and/or dental history. Once
they determined the patient’s general health status they examined the patients’ oral status
through radiographs, intraoral images, hard tissue and periodontal information. In one case,
the participant did not ask for the medical or dental history of any patient. Below, we
describe in more detail how participants reviewed specific information and how the process
of discovery led them to review additional information.

3.1.1 Patient Demographics—All participants started with patient information and

looked for patient’s age, sex, ethnicity and the chief complaint. More than half of the
participants also looked for specific information such as patients having tooth ache and their
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expectations for treatment. Seven participants commented that a patient’s financial status for
dental treatment such as insured or uninsured influences the treatment plan.

3.1.2 Medical History—Dentists reviewed the patients’ medical history to determine any
medical conditions that contraindicated dental treatment, or needed additional precautions/
pre-medications before receiving dental treatment [46]. Important questions included
patient’s vital signs, drug or food allergies and any underlying systemic diseases. Specific
diseases such as HIV (in high complexity case) triggered participants to seek more
information on patient’s medications, medical consults and current lab values for viral load.
They also asked about the patients’ occupation, drinking and smoking habits.

3.1.3 Dental History—More than half of the study participants asked for the dental
history to review the patient’s past dental treatment. This information helped participants to
determine the patient’s preferences for dental treatment, previous experiences and treatment
anxiety levels. The latter is important when planning treatment because about 5-10% of
U.S. adults are estimated to have dental anxiety or fear.

3.1.4 Transition to Oral Examination—To examine the patient’s oral status,
participants primarily looked at intraoral images, radiographs, and hard tissue and
periodontal information. Some participants asked for additional information such as study
models to check the patient’s occlusion, pulp testing results to determine vitality of the teeth,
and the patient’s smile or front profile photo to determine the teeth’s influence on the
patient’s facial aesthetics. For all three cases, participants first reviewed the intraoral images
and the radiographs to gather information and to make decisions for a case, and then
integrated information about hard tissue and the periodontal status to diagnose and plan
treatment.

3.1.5 Intraoral Images and Radiograph Usage—Typically, all participants started
with the intraoral images to examine the patient’s oral condition. For instance, they looked
at the oral hygiene of the patient, any obvious signs of inflammation or swelling as well as
color changes of the oral soft tissue. They also looked for missing and carious teeth before
they proceeded to examine each tooth individually, starting from the upper right third molar
to the upper left third molar and then moving to the lower left third molar and progressing to
the lower right third molar, in a standard sequence (UR—LR). During this time, they
checked for any discontinuity or cracks on tooth structure that indicated tooth decay or
fracture. They also checked for tooth mobility, which plays an important role in deciding
whether to save or extract teeth. They looked at radiographs for more information (such as
extent of tooth decay or bone loss) or for confirmation of what they saw in the images. If
participants started by reviewing the radiographs, they essentially followed the same order
and integrated information from the images to confirm their observations.

Participants reviewed the hard tissue and periodontal information either to confirm their
findings or to obtain more information. However, radiographs and images were the primary
information sources they used to diagnose and develop a treatment plan for each of the three
cases. An interesting finding is that while the five dental faculty participants requested and
reviewed the hard tissue information, the five practicing dentists did not. Instead, they said
they would document all findings in the hard tissue chart during the oral examination.

3.2 Variations among Participants and across Cases

Although participants used almost the same information sources for all three cases, there
were some differences in how they used it based on case complexity. For instance,
participants reviewed patient meta-information (patient information, medical history, dental
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history, social history, medication list, medical consult) at significantly higher frequencies (p
value < 0.01) for the high complexity case in the beginning of the session (20th time
percent) than for the low and medium complexity cases. This difference was most likely due
to the fact that the high complexity case had additional information on medications, medical
consults and social history. Another interesting finding was that while participants rarely
went back to patient demographics, medical history, medical consult and medications at the
end of the low or medium complexity case sessions, they revisited this information for the
high complexity case. Five of the 10 participants reviewed medical history, medications and
medical consult again when finalizing the treatment plan at the end of the session. Few
participants recorded notes as they reviewed the three cases. Those who did so took fewer
notes when reviewing the low complexity case than the medium and the high complexity
cases. Participants also started writing halfway through the session for the medium and the
high complexity cases and only towards the end of the session for the low complexity case.

of Navigation through Information Sources

It is important to learn how clinicians navigate through various information sources when
diagnosing and planning treatment. Analysis revealed that participants exhibited three
common patterns of reviewing information sources: 1) reviewing information in a linear
sequence, which was observed mostly when they reviewed the low complexity case; 2) rapid
switching between different information sources when they needed additional information or
confirmation to decide on a finding, diagnosis or treatment; and 3) reviewing at least two
information sources simultaneously, especially when confirming their findings or finalizing
their diagnoses and treatments. Figure 2 illustrates these three patterns of navigation when a
participant reviewed a high complexity case and Table V shows the frequency and time they
spent reviewing at least two information sources simultaneously.

3.3.1 Analyzing Process Types Over Time—Of the 6631 coded segments, 13.8%
were coded as the process type information retrieval or review, 26% as processing, 40.5%
as deciding and 4.25% as other. Process type other comprised segments coded as expressing
ignorance, summarizing and wrapping up. Of the total segments, 15.4% were not coded as
they did not contain any information related to the patient case. In all 30 sessions,
information retrieval or review occurred predominantly in the first quarter and leveled off
about halfway through the case. At that point, deciding started to peak. Participants made
most decisions in the middle phase and few at the end of each case. Processing was
observed to be constant throughout all the cases. The pattern of process types, i.e.
information retrieval/review, processing, deciding and other appeared to be the same over
time in the three cases. The incidence rates of process types were highest for the low
complexity case (p < 0.01). This may be because dentists processed information more
quickly with the low complexity case than those of medium or high complexity. The overall
inter-rater reliability (ik-statistic) for coded process types was 0.7. The individual k-statistic
for each process type was 0.82 for deciding, 0.97 for information review, 0.54 for processing
and 0.82 for other.

These results suggest that clinicians spent the early phases of patient examination gathering
information. The process types, information retrieval or review, processing and deciding
occur throughout the patient examination. The process type other was significantly low in
all sessions. These findings suggest that it is important to display clinically relevant
information together and in context right from the beginning to support the clinicians’
continuous information review, processing and decision-making activities. Clinicians
currently spend significant time searching and sifting through electronic patient information
which makes it difficult to process and diagnose without making mistakes.
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4. DISCUSSION

In this project, we studied how dentists review and process information, and make decisions,
when examining new patients. To do so, we used cognitive task analysis, a method to
capture and document manual and mental activities, artifacts, and task characteristics during
a work process. CTA has only rarely been used during the needs analysis phase of clinical
systems development, despite enhancing the understanding of clinician-patient encounters
necessary for systems design [22, 24, 25, 31, 40].

For two reasons, we combined cognitive task analysis with a think-aloud protocol to
simulate clinician activities during the patient encounter as closely as possible. First,
capturing clinicians’ knowledge states and decision-making is likely to work better when the
clinical care process is simulated more closely than possible through a simple interaction
with a patient record. Second, using humans as real or simulated patients is with a patient
record. Second, using humans as real or simulated patients is costly, time-consuming and
logistically difficult.

Previous studies have focused on the clinical workflow or the interaction with patient
documentation to understand how clinicians work [22, 31, 32, 39-41]. Observing the
clinical workflow often faces logistical and practical challenges, which may make it difficult
for researchers to observe the behavior of interest. On the other hand, inferring clinical
behavior solely from EHR data is challenging [38, 43] because they are a reflection of the
recording process inherent in healthcare, not the patient care process [43]. In our study,
participants started with the basic information patients typically provide. Subsequently, they
gathered, reviewed and processed information on their own, as they would with an actual
patient. We simulated the patient as closely as possible with rich visual, graphical and other
materials.

Our study produced three major insights into how clinicians reviewed and processed
information relevant to the design of EDR systems. First, we determined which information
was critical to the review, diagnosis and treatment planning during initial patient
examinations. Second, we identified three main ways in which dentists navigate through the
information in the process. Third, we identified information needs that EDRs currently may
not be equipped to satisfy optimally. Below, we discuss these findings in more detail.

1. Information critical to review, diagnosis and treatment planning

Although participants reviewed information in the order they preferred, the study identified
some common patterns. For instance, all participants had reviewed the general patient
information, and the medical, medication and dental histories, before they made their first
decision on the general status of the patient. Then, they typically reviewed radiographs and
photos together, and integrated hard tissue and periodontal information. Dentists often use
multiple information artifacts together, and work fluidly between high-fidelity information
(e.g. radiographs and photos) and its abstract representation(s) (hard tissue and periodontal
charts). In most EDRSs, radiographs and intraoral photos are displayed on separate screens,
making navigation cumbersome, and forcing recall rather than supporting recognition. These
findings argue for designs that present clinically relevant information together and in
context.

2. Three main navigation patterns through information

Participants navigated through information using three main patterns: (1) reviewing
information artifacts in a linear sequence; (2) switching rapidly between information
artifacts; and (3) reviewing multiple information artifacts simultaneously. This finding is
significant because previous studies of EDRs indicated significant usability problems as a
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result of information that is fragmented across multiple screens [15, 17, 19, 20]. EDR users
must remember key information while navigating through different screens, requiring them
to focus on locating information and avoiding mistakes, rather than on the task itself. In
contrast, paper-based records provide a higher degree of flexibility, because they allow the
clinician to arrange forms as needed, for instance side-by-side. Supporting the navigation
patterns identified in our study in EDRs may enhance access and navigation, and possibly
improve the efficiency and effectiveness of users’ clinical decision-making processes.

3. Information needs

Our CTA also helped identify information needs that may not necessarily be part of routine
patient documentation. For instance, most participants wanted to know whether the patient
was in pain. Acute pain is an important part of the patient’s chief complaint, and helps the
clinician prioritize and plan treatment. Yet, as one of our earlier studies has found [47], the
chief complaint, as a separate data field, is not part of the four market-leading EDR systems.
Similarly, participants wanted to check the patient’s bite and occlusion, and rule out
parafunctional habits, often using study models. Anecdotal reports suggest that dentists
continue to use plaster study models even after they have moved to electronic records.
Despite the increasing availability and adoption of digital models, they are yet to become a
part of the EDR in general dentistry.

Financial information also played a crucial role when the participants planned treatment.
Currently, all EDRs manage patients’ financial and insurance information separately from
the patient’s clinical information. This is because front desk personnel typically handle
financial transactions, while clinical personnel manage clinical information. Given the
relevance of financial considerations, access to financial and insurance information in the
context of the treatment planning process should be improved. For instance, EDR systems
could provide real-time financial estimates for planned treatment.

5. LIMITATIONS

Our study only approximated, but did not replicate, a clinical patient examination. This
design may have influenced our results in multiple ways. First, dentists do not generally
verbalize their thoughts during a clinical examination. Second, reviewing intraoral images
and written information had to substitute for examining and interacting with the patient.
Last, some of the nuances of the workflow of the clinical appointment may have been lost.
A second limitation was that only a convenience sample of dentists participated in the study.
We thus do not know whether the study results would generalize.

However, we believe that the CTA was one of the best options to achieve our study
objectives. Lab studies are typically more appropriate for studying clinical decision-making
than field studies. In the clinic, dentists often combine data gathering and treatment planning
into a single activity [20], making it difficult to “tease out” specific cognitive processes. Our
participants were able to focus their attention completely on the patient case and verbalize
their thoughts, thus facilitating data collection in ways that would have been difficult to
achieve in the clinical setting.

6. FUTURE DIRECTIONS

In future research, we plan to elucidate how EDRs can be designed optimally for clinical
work using additional methods, such as contextual inquiry. While our current study focused
on the cognitive processes of a single clinician in examining and treatment planning a single
patient, our next step will be to study the clinical encounter in its actual work context. In this
way, we will capture not only the dentist’s activities, but also his interaction with the dental
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team as well as the entire workflow. Another question for future research is how an EDR
system designed on the basis of a CTA differs from one that was not with respect to
usability, usefulness and user perceptions. Last, a long-term question we pursue is how CTA
compares with other methods in helping optimize the design of health information
technology systems.

7. CONCLUSION

Our study made several important contributions to understanding the requirements of and
methods for designing EDR systems. First, our results provide a detailed and rich
representation of how dental clinicians review, diagnosis and treatment plan patient cases.
Using cases at three levels of complexity, we identified what information participants
needed, in what sequence they reviewed it, how they navigated through it, and what
information needs were unlikely to be met with current EDRs. We expect our results to
significantly contribute to the development of flexible and task-appropriate information and
interaction designs for EDRs. Second, our study helped reinforce the significance of
applying cognitive engineering methods to the design of clinical system, as other authors
[22, 24, 25, 31, 40] have already suggested.
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Figure 1.

Information source usage over case time (normalized to 100% for all participants/cases since
absolute case times differed). Information source usage demonstrates specific patterns as

participants progress through each case.
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Figure2.

Three patterns of navigation through the information sources for the high complexity case.
1) reviewing information sources in a linear sequence 2) rapidly switching between
information sources and 3) reviewing multiple information sources simultaneously.
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Variables Values Example(s)
Independent variables

Dentist ID of the dentist nla

Case Complexity (CASE) Case 1 (low complexity), Case 2 (medium nla

complexity), Case 3 (high complexity)

Time (time_percent)

Time taken to complete each case converted to
percentage

Dependent variables

Process type (PROCESS)

Information retrieval/review

“Looking at that, the next thing that | would like to
know is a medical history.”

Processing “ But the patient, in my clinical charting, | would note
that tooth No. 16 has retained root tips.”

Deciding “| can already tell that she has a lot of cavities or
caries.”

Other “That’s basically it. I think she’s in good shape. |

would just do those things | recommended. That would
be it.”

Information source (INFO)

Identification of form or artifact (e.g., radiograph);
section on form (if applicable); data element (if
applicable)

Medical history form — cardiovascular system —
stroke in 2000

Segment order (ORDER)

Sequential number assigned to each successive
segment

n/a
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Table Il

Three categories of information sources and the information sources organized under these categories

Categories of I nformation sources

Information sour ces

1 | Patient meta-information (general status and attitudes of
the patient)

Patient information, medical history, medications, medical consult, dental
history, social history

2 | Examination information (information typically acquired
during a patient examination)

Hard tissue and periodontal information, extraoral and intraoral exam
findings, study models, notes, pathology consults

3 | Images

Intraoral images and radiographs
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Average Time Spent By Participants and Average Number of Data Segments
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Case complexity

Avg. time (min.)
reviewing case

Standard deviation (min.)

Avg. number of segments
per case (rounded)

Standar d Deviation (segments)

Low 17 7 158 65
Medium 25 7 240 89
High 31 14 266 106
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