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A B S T R A C T

Objective: The main goal of this study was to develop an automatic method based on supervised learning
methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy
waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a
novel optical system.
Materials and methods: The APW dataset analysed was composed by signals acquired in a clinical environment
from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were para-
meterised by means of 39 pulse features: morphologic, time domain statistics, cross-correlation features, wavelet
features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to
select the most relevant features. A comparative study was performed in order to evaluate the performance of the
two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN).
Results and discussion: SVM achieved a statistically significant better performance for this problem with an
average accuracy of 0.9917 ± 0.0024 and a F-Measure of 0.9925 ± 0.0019, in comparison with ANN, which
reached the values of 0.9847 ± 0.0032 and 0.9852 ± 0.0031 for Accuracy and F-Measure, respectively. A
significant difference was observed between the performances obtained with SVM classifier using a different
number of features from the original set available.
Conclusion: The comparison between SVM and NN allowed reassert the higher performance of SVM. The results
obtained in this study showed the potential of the proposed method to differentiate those three important signal
outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular
disease using APW.

1. Introduction

The blood pressure and related dynamic metrics have been ex-
tensively studied by the state-of-the-art literature and correlated with
several diseases and population features [1–4]. Hemodynamically, ra-
ther than merely consider its maximum and minimum values, the
overall shape of the arterial blood pressure waveform should be taken
into account to describe the mechanical effects on the arterial wall and
to give an adequate description of the arterial system behaviour. The
studies of arterial pulse waveform opened a new vision about this
biomedical signal and empathized the knowledge regarding the ex-
istence of linkages between cardiac and vascular dysfunction [5–8].
Information about the interaction between the left ventricle ejection
and the physical properties of the arterial circulation can be determined
by the descriptive and quantitative analysis of the arterial pulse

pressure waveform [9]. Age related changes in aortic pressure wave-
forms exhibit early reflected waves and high systolic and pulse pressure
amplitudes as a consequence of the arterial stiffness due to the early
systolic wave reflections [8,10]. Four types of carotid pressure wave-
forms have been identified as suitable to determine the health condition
and arterial stiffness degree based on the inflection point estimation
and the backward waveform contribution for the systolic pressure. The
clinical relevance of APW information boosted the development of
several solutions for a non-invasive way to acquire such waveform [11].
A novel optical probe to assess the pulse pressure waveform was de-
veloped and tested in a clinical environment. This novel approach for
the APW monitoring overcomes the main limitation of the existing
types of measurements [11]. The current devices present some limita-
tions due to the contact nature [11]. Emerging trends for APW mea-
surement are moving away from more invasive technologies to non-
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invasive and non-contact solutions. Optical sensors are an attractive
instrumental solution due to their truly non-contact nature that allows
the measurement of the skin surface pulsation at the carotid artery site
for APW assessment [11]. This novel laboratory research prototype
based on optical sensors boosted the knowledge of the APW and con-
firmed the correlation of arterial pulse waveform morphology-derived
parameters with feature population and clinical conditions [12–16].

The current study is a follow-up of a preliminary work about the
development of an automatic method that was able to distinguish valid
data (part containing arterial pulse waveform) from non-relevant in-
formation (noisy waveforms) acquired by the referred optical system
during a clinical examination, in order to reduce the variability be-
tween operators [17]. In this previous work a pool of 37 features split in
different subsets was used based on the following types: amplitude
features, time domain statistics, wavelet features, cross-correlation
features and frequency domain statistics. A solution based on the
combination between SVM RFE and other classifiers was implemented.
Two classifiers were tested and compared: the k-nearest neighbours and
SVM. The best result (0.952 accuracy) in the discrimination between
signals and noise was obtained for the SVM classifier with an optimal
feature subset. The features that have shown to be more relevant in the
previous study were maintained in this work. In the present work it was
intended to develop an automatic method to distinguish 3 classes of
signal segments: healthy APWs, pathologic APWs and noisy parts (non-
relevant segments of the signal). An automatic method for APW clas-
sification introduces important features to the optical system for clinical
usage: its ability to reduce the variability between operators and the
possibility to decrease the clinical proceeding analysis duration that
could be performed, in those conditions, by a less trained clinical pro-
fessional, on the contrary of past scenarios. This multi-class problem is
not completely new. In fact, some research teams have already pro-
posed methods to differentiate between various types of APW using
Machine Learning approaches [18–21]. However, as far as we know,
this is the first time that a pattern recognition-based method able to
differentiate “healthy” and “non-healthy” APW from “noisy” signal
portions is proposed. By training a classifier to identify a class of “non-
meaningful” from other classes of “meaningful” signal portions could be
an advantage, avoiding cases such for example the misclassification of a
signal pulse that is just noise as a “non-healthy” sample, leading to a
“false-positive” diagnosis. Thus, the purposed method could be an im-
portant contribution for helping physicians in the clinical diagnosis of
cardiovascular diseases, by ensuring a less biased as possible cardio-
vascular risk assessment evaluation, similarly with several Machine
Learning-based decision support approaches found in literature
[22–24].

A sample database composed by both healthy volunteers and car-
diovascular patients, in a total of 213 subjects, was used. A novel set of
features was created, the multiclass SVM RFE method was used to select
the most relevant features and a comparative study was performed to
evaluate the performance of two classifiers, Support Vector Machine
and Artificial Neural Networks. The solution based on the combination
between SVM RFE and other classifier was already implemented with
success in other biomedical challenges [25]. However, to the best of our
knowledge is the first time that this combined approach (Multiclass
SVM RFE + SVM or other classifier) is applied to the APW type’s dif-
ferentiation problem. Additionally, in general, it is not much common
to apply the Multiclass SVM RFE method for feature selection. The
binary SVM RFE is more frequently applied and in the context of binary
problems [26]. SVM classifier was already used to distinguish between
signals and noise parts in our previous study mentioned above [17].
ANN was also explored here and its performance was compared with
SVM results for this novel APWs differentiation approach.

Neural Network (NN) algorithms have been frequently applied to
solve data mining problems in biomedical applications [27–29], as for
example to develop novel information extraction, diagnosis and clinical
prediction techniques based on the electrocardiogram (ECG) signal

[30–35]. On the contrary, the application of NN algorithms in APW-
related problems is not being so frequently observed. However, Orjuela-
Cañon et al. [36] were able to develop a novel algorithm for accurate
APW detection of fiducial points based on a Multilayer Perceptron
Neural Network, a specific type of NN-based classification algorithm,
and less expensive than the state-of-the-art techniques for being effi-
cient without ECG-based additional information. Therefore, despite NN
algorithms not being frequently applied for cardiovascular health as-
sessment, several research teams have reported successful results for
such applications [36,37]. Considering that this algorithm is suitable
for fitting non-linear problems as the physiological ones, scientists have
begun to apply NN-based and deep learning algorithms for abnormal
health conditions detecting [38,39].

The features that have shown to be more relevant in the previous
study were maintained in this work. Additionally, morphology-based
features were also used to introduce waveform structure information.
For this reason, features based on inflection points, involving areas and
intervals were introduced. This work contributes also as an improve-
ment of the APW features study, in which techniques extensively used
in other types of biosignals were applied, from which could result an
interesting metrics toolset for APW analysis. Studies about APW have
great relevance, contributing for enhancing the importance of this
signal in clinical routines.

2. Materials and methods

2.1. Data collection

The segments used in this work were acquired using the referred
optical system [40]. The APWs were acquired in a clinical environment
from 213 subjects, including patients (68 subjects) and healthy volun-
teers (145 subjects), a population sample size that is consistent with
several studies found in literature about cardiovascular risk assessment
methodologies through pulse wave-derived metrics [41–45]. The study
protocol was approved by the Ethical Committee of the Centro Hospi-
talar e Universitário de Coimbra (CHUC), Portugal. All the subjects
were volunteers and agreed with the exposed terms by signing a written
informed consent. Measurements were performed after a rest period of
15 min in the supine position at temperature-controlled environment.
Each exam procedure consisted in the acquisition of a set of cardiac
cycles at the carotid artery during few minutes, with the subject lying in
supine position. Patient measurements were performed in a study po-
pulation of 68 patients, with a cardiovascular pathology, who had un-
dergone cardiac catheterization.

The dataset used is composed by APWs and noise, segmented into
1118 pieces (411 are labelled as normal APW, 124 are pathologic APW
and 583 are noise). Ground-truth was defined by one highly trained
physician with 10 years of work experience as “noise”, “normal APW”
and “pathologic APW”. The physician is an experienced operator of this
type of devices and trained to accurately identify and classify the data.

2.2. Features study

Some of the features that showed to be suitable in the previous
study for identifying this type of physiological wave pattern were also
included here. However, more focus has been done here to waveform-
related metrics, in order to extract features that reveal differences re-
garding the structure of a normal waveform and a pathological one.
Eight time intervals and areas were therefore determined (Fig. 1). This
kind of analysis, regarding the signal inflection points timings and
areas, was extensively studied in the ECG or intracranial pressure pulse
signals [46,47].

Signal segments were parameterised by means of 39 pulse features
divided in the following subsets: morphologic characteristics (systolic
peak; reflection point; dicrotic notch; dicrotic peak and intervals and
areas defined between them – Fig. 1) [7,48,49]; time domain statistics
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(mean; median; standard deviation; variance; interquartile range;
range; skewness; kurtosis; root mean square; entropy), cross-correlation
features (maximum of cross-correlation with template waveform) [50],
[51]; and wavelet features (relative power at six levels of wavelets for
two mother wavelets, Haar and Daubechies (db4)) – Table 1 [7,48,49],
[51–56].

For the amplitude features computation a low-pass filter (with a cut-
off frequency of 30 Hz) was used for noise filtering improving the signal
differentiation, which is essential to detect waveform inflection points
[12].

Due to the big difference in characteristics (amplitude and varia-
tion) of the feature components a normalization procedure was re-
quired. This task has a strong impact on the classification, and consists
in subtracting to each value the mean over all training values and di-
viding it by the corresponding feature standard deviation [57].

2.3. Features selection

Feature selection allows the dimensionality reduction removing ir-
relevant and/or redundant features [58]. The issue of selecting an op-
timal set of relevant features plays an important role in pattern classi-
fication for ensuring the higher accuracy as possible [59,60]. In pattern
recognition problems, high-dimensional feature sets impose a high

computational cost and the risk of “overfitting”. Feature selection ad-
dresses the dimensionality reduction problem by determining a subset
of available features that is essential for classification and avoids the
inclusion of redundant information, which could compromise classifi-
cation performance, on the training model [58]. In this type of pro-
blems, it is desirable to discard features with no significant contribu-
tion, selecting a subset of features prior to design the subsequent
classifier [61]. The implementation of feature selection method allows
the identification of most relevant subset to distinguish the “healthy”
vs. “non-healthy” or “noisy”.

SVM RFE algorithm was used here to create a ranking score able to
measure the significance of the initial set of features [62]. It starts with
all of the original features set and removes one feature at a time step.
Therefore, at each step, the feature ranking score sorted by order of
significance in terms of the classification accuracy is generated ac-
cording to the coefficients of the weight vector (W) of a linear SVM
algorithm [62], [63]. According to the definition of SVM classifier,
which uses a separating hyperplane with the maximal margin between
two classes in order to distinguish one class from another, the best
combination between the parameters kernel and C must be also
screened for SVM RFE [62,63]. Usually, the kernel functions used to
train SVMs are the linear and the Gaussian Radial Basis Function (RBF)
[61]. Similarly to a standard machine learning problem, SVM-RFE
parameters C and kernel type must be also optimized for each specific
problem. In line with the SVM-RFE original proposed method procedure
[63,64], we considered a fixed kernel type, the linear kernel, for the
SVM RFE algorithm. For reducing SVM-RFE evaluation process com-
putational complexity and cost, we defined a previously limited range
for the evaluated SVM-RFE C values. According to the results of our
previous study [17], only very low values could ensure a good perfor-
mance of the SVM RFE for APW types differentiation. Therefore, only
the following C parameter values were assessed:

=
− − − − −C e e e e e{0.1, 0.01, 0.001, 0.0001, 1 , 1 , 5 , 1 , 1 }5 6 7 7 8 . Consequently,

a different features ranking was generated for each one of these values.
However, SVM is a binary classifier [65], and therefore, in the case

of multiclass problems, as the one that is presented here, it is necessary
to convert a multiclass into a binary decision function [66,67]. The
approach adopted here was based on the R software-based im-
plementation of the SVM RFE algorithm that considers the division of
the original multiclass classification problem into several binary clas-
sification problems [64,68], based on the One-Against-One (OAO)

Fig. 1. Typical pressure waveform of a healthy subject and its in-
flection points, intervals and areas used here as APW features (T1 –
interval between the systolic peak, T2 –reflection point, T3 – dicrotic
notch and T4 and T5 – foot of the wave and between them). The area
under the curve was explored (AUC), and also determined for the
systolic (AUCS) and diastolic (AUCD) period.

Table 1
Feature subsets and corresponding internal number identification used in the structure of
the algorithm.

Group Feature Feature
number

Morphologic
features

Time inflections point 1–4
Time intervals 5–9
Areas 10–12
Half Width 13

Time domain
statistics

Mean, Median, Standard deviation,
Variance, Interquartile range, Range,
Skewness, Kurtosis, Root mean square,
Entropy

14- 23

Cross-correlation
features

Cross-correlation 24–27

Wavelet features Haar 28–33
Doubechies 4 34–39
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procedure [66,69].
Nine subsets from the features ranking were therefore generated

using this SVM RFE implementation [69], one for each value of C tested
in order to determine which SVM-RFE C value optimized final classi-
fication performance (the three signal types differentiation problem).
The ranking of features obtained for each value of C is provided in
Table 1, Supplementary Material (SM). Performance results of train and
test sets were evaluated for each one of those rankings to identify the
most suitable features sorting order.

2.4. Classifiers

The discrimination between APW waveforms and noise was already
performed in a previous study [17], in which higher accuracy results
were obtained using the SVM classifier with an optimal feature subset.
Considering that the SVM classifier showed good performance results in
that study, we decided to test here this same classifier against a Feed-
Forward Back-propagation Neural Network [30,31]. Both SVM and NN
algorithms were performed using the Statistical Pattern Recognition
Toolbox [70] and Neural Network Toolbox, respectively, that run in
Matlab®.

SVM is able to cope with as aspects such as non-linearity and/or
high-dimensionality of the input data, which are intrinsic attributes of
physiological data, in particular, from the electrocardiographic and
other cardiovascular-derived data. This property is particularly en-
hanced especially when SVM is used in combination with the Radial
Basis Function (RBF) kernel function. Kernel functions are responsible
to implicitly map non-linear features into a high-dimensional features
space and use linear approaches for solving learning and estimation
issues. This type of classifier has been widely used in several biomedical
problems with great success [66,67], [71–75]. SVM is currently con-
sidered, for example, the most suitable type of classifier for ECG-based
biometric applications [65,76]. Additionally, several authors have so
far proved that SVMs are suitable to be embedded in low-cost wearable
hardware modules for physiological monitoring [73,77–79].

As explained above, SVM is a binary classifier [66]. However,
considering that the APW types differentiation problem that we are
proposing to solve here is itself a multiclass problem, it was converted
into several binary problems. However, on contrary of the SVM routine
that was applied in the SVM RFE, the One-Against-All (OAA) strategy
was used here, given the good results that are being reported using this
approach in the scope of physiological data [80,81]. Also differently
from the features selection procedure, the kernel function selected was
based on the Radial Basis Function (RBF), once, despite being more
complex, is able to separate nonlinear data, as the nature physiological
data [82,83]. Therefore, the best combination between the parameters
C and sigma was tuned in the performance evaluation phase (section
2.5).

Artificial Neural Networks are, similarly to SVM, supervised classi-
fication methods, being, as the name suggests, designed considering the
working mode and information transmission adopted by our neurons
[66,84]. The most important feature of this type of classification al-
gorithm is its versatility and adjustment ability, being suitable to be
applied to problems which cannot be described by a strict mathematical
model, despite having a sufficiently representative set of samples [84].

A multi-layer neural network is therefore comprised by a large
number of units (neurons) joined together, assuming a given connec-
tions pattern [84]. These units are divided into three types: input units
or neurons, responsible for receiving the information to be processed;
output neurons, at which are found the results of the processed data;
and the hidden units or neurons, which consist in the elements that
exist between the input and output neurons [66,84,85]. The perfor-
mance of an ANN is dependent on several aspects: units activation
functions; weight value of each input connection; the number of net-
work hidden neurons used, etc. The determination of the best number
of hidden neurons could be a problem associated with ANN-based

classification issues [66,84]. This should not be too small, in order to
avoid decision function poor approximation and generalization abil-
ities; despite, on the contrary, a high number of hidden neurons could
contribute for a higher complexity of the model, to overfitting events
and a hard search for the global optimal solution [66,84,86]. For those
reasons, the best number of ANN hidden neurons must be determined
based on the information provided from the algorithm performance
evaluation. Feed-forward Back-propagation ANN was implemented
here using Matlab® scripts available on the Neural Network Toolbox,
and the number of hidden layers was optimized as described in section
2.5.

2.5. Performance evaluation

Performance analysis was conducted considering both Accuracy
(Acc) and F-Measure (F-M) values [66]. Considering that the dataset
was unbalanced relatively to the number of samples per class (Table 2),
performance evaluation was conducted also considering F-Measure
values, beyond Accuracy. Considering that SVM-RFE C margin was also
tuned using final classification performance values obtained in the
three signal classes differentiation problem, possible data in-
homogeneities in terms of number of samples per class were considered
in the overall F-Measure results, Thus, classes imbalance was also in-
directly corrected in the features selection method. The most suitable
features ranking was selected taking only into account final F-Measure
values obtained in the main classification problem (signal types dif-
ferentiation).

The aim of the performance evaluation task is to find the classifi-
cation model and associated parameters values that ensure the highest
Accuracy and F-Measure, which here implied to find the best combi-
nation values between parameters C, SVM separating margin width,
and sigma, the width for SVM gaussian kernel, for the SVM; and the
number of hidden neurons/layers for the ANN. 5-folds Cross Validation
(CV) method was used here for screening the best combination between
classifier parameters, for both SVM and ANN [66].

In order to avoid overfitting and to test each model as closely as
possible from a real scenario, 20% of the number dataset samples was
randomly chosen for generating the test set (Table 2), which was never
involved in the training phase. Therefore, the remaining 80% of the
data was used for determining the best model parameters through the
Cross-Validation method and to train the best classification model for
both SVM and ANN, after being normalized in order to avoid within-
subject differences in amplitude and variation among features.

Training samples averaged values for each feature and corre-
sponding standard deviation values were therefore stored in order to
normalize novel test feature sets, being therefore possible to map novel
values into the training model features space.

The following set of values for C and sigma were screened for SVM in
the CV method: C = {0.1, 10, 50, 100, 150, 200} and sigma = {0.01,
0.1, 1, 10, 100}. ANN best amount of hidden layers was also analysed in
the CV considering the following set of values: net size = {3, 5, 10, 15,
20, 30, 50, 100}. Considering that SVM RFE was previously used, the
best features ranking from the ones that were generated by it, and the
most suitable number of selected features N were studied. Therefore, for
each one of the nine rankings generated by the SVM RFE (Table 1, SM),
the best combination between C and sigma regarding SVM and the best
net size number for ANN were evaluated for each one of the following
number of ranking features used for each classifier: N = {5, 10, 15, 20,

Table 2
Number of samples used per class in the training and test stages.

Number of training samples Number of test samples

Class1 Class 2 Class 3 Total Class1 Class 2 Class 3 Total
466 328 99 893 117 83 25 225
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25, 30, 35, 40, 45, 48} (Fig. 2). According to this performance eva-
luation scheme, an optimal model (containing the best combination of
classifier parameters values) for both SVM and ANN was determined,
for each number N of features used for a given features ranking from the
nine that were generated by SVM RFE (Fig. 2).

Note that the best parameter classifier values were determined
based on the results obtained in the Cross-Validation method and were
used for testing each classifier, considering a set of “unseen” and “un-
known” test samples.

The most suitable number of chosen features N and combination of
parameters values (C and sigma for SVM; and net size for ANN) were
determined for each one of the two classifiers evaluated, SVM and ANN,
for each one of the SVM RFE feature rankings. Statistical tests were also
performed using the Statistics Toolbox from Matlab®, in order to iden-
tify the best classifier, SVM or ANN, as well as the best number of
features and the best value for SVM RFE C, for each one of the classifiers
evaluated (SVM and ANN). Parametric tests were used here since per-
formance values follow a normal distribution, being ranged between 0
and 1. Student t-test was used in order to compare performance values
between SVM and ANN. Kruskal Wallis tests were performed to de-
termine the best value for C in the SVM RFE and the best value for N,
number of features.

3. Results and discussion

The evolution of the F-Measure results corresponds to the combi-
nation of number of features N and SVM RFE C values for both classi-
fiers. Fig. 3 shows that higher performance values were obtained with
SVM comparing to NN. The SVM presents a region with higher values of
F-measure that corresponds to a range of combinations between SVM
RFE C values and number of features, N. The F-Measure results obtained
with NN had higher variability than with SVM (Fig. 3a, b).

Better results were obtained for SVM RFE features ranking C values
of 0.1 and 0.01 (Maximal F-M: 0.9957 for both conditions). However,
considering also the results obtained in the training phase, (Table 2,
SM), we conclude that the best SVM model is the one obtained con-
sidering a SVM RFE C value of 0.1 (Fig. 3c), and selecting the first 15
features from the correspondent features ranking (Fig. 3d). Indeed, the
maximal training performance values were achieved for this SVM
classifier: Maximal F-M: 0.9894; Maximal Acc: 0.9888, (Table 2 in SM).
In general, performance results above 0.9700 were obtained regarding
SVM for training and test phases, for both Accuracy and F-Measure,
higher than the ones obtained in the previous study [17]. Regarding the
number of selected features, N, only two values showed to be the best
option across the different values for SVM RFE parameter C: 15 and 20

(Fig. 3a–c), being the first one the most frequently observed value. We
could therefore conclude that the best value for the number of features
selected N regarding SVM classifier is 15, which is reinforced by the
statistical analysis performed (Table 3). A statistical significant differ-
ence was found between test F-M values, by varying the number of
features N (p-value < 0.05; Kruskal Wallis test; two-tailed), showing
that the number of selected features significantly influences SVM per-
formance. The 15 first features of the ranking correspondent to the best
SVM model achieved were, in the majority, morphological-, cross-cor-
relation- and time domain statistics-derived features. The less fre-
quently selected type was related with wavelet decomposition, for
being, probably, noisy and complex. The most frequently selected one is
the morphological type, as in accordance with previous studies [18]. On
the contrary of the number of features, the difference found between
the performance values obtained for the several feature rankings (left
side of Table 3) was not significant (p-value > 0.05; Kruskal Wallis
test; two tailed), indicating that the order by which the 39 total features
were selected did not significantly affected F-Measure, despite, as re-
ferred above, a better result was achieved using the feature ranking
generated by C = 0.1.

Similarly to SVM, ANN showed Accuracy and F-Measure values
above 0.9700 for both the train and test stages (Average F-Measure
Test: 0.9852 ± 0.0031; Average Accuracy Test: 0.9847 ± 0.0032;
Average F-Measure Train: 0.9852 ± 0.0031; Average Accuracy Train:
0.9848 ± 0.0031) – Table 3 in SM. The best combination between
SVM RFE C value and number of features N selected was 5e−7 and 39,
respectively, achieving the ANN trained with those parameters the
value of 0.9915 for test F-Measure. However, on contrary of SVM, the
most suitable number of selected features N is highly variable across the
different feature rankings. Indeed, statistical results showed that the
difference between test F-Measure across feature ranking C values
considering different number of features was not significant (p-
value > 0.05; Kruskal Wallis test) (Table 4). Therefore, it is not pos-
sible to determine the best number of features given the independency
of test results relatively to this parameter. As observed above for SVM,
the different order by which features were selected did not also sig-
nificantly influenced the F-Measure test results for ANN classifier,
Table 4 (p-value > 0.05; Kruskal Wallis). However, an observation
that is common to both classifiers is their diminished F-Measure test
values considering models trained with only 5 features, in comparison
with other models. In fact, by performing several student t-tests com-
paring test F-Measure values for 5 versus all other number of features N,
for each time, in a parwise fashion, it was observed that performance
values were always significantly decreased for 5 features in comparison
with any other number N of features (p-value < 0.05; student t-test; two

Fig. 2. - Evaluation scheme adopted in order to find the best combination values – [C, sigma] in the case of SVM and net size, the number of hidden layers used in the ANN –for each one of
the ranking generated by the SVM RFE and each one of the number N of features considered for the classification task.
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tailed), for both SVM and ANN. This suggests that it is relevant to train
our model using more than 5 features.

By observing the results of the statistical comparison (Table 5), SVM
classifier is significantly better in distinguishing the three type of
classes, noisy, healthy and non-healthy (Test Average Acc SVM:
0.9917 ± 0.0024; Test Average Acc ANN: 0.9847 ± 0.0032; Test
Average F-M SVM: 0.9925 ± 0.0019; Test Average F-M ANN:
0.9852 ± 0.0031), as it was expected, based on evidences reported in

literature and similarly to our previous study [17]. However, significant
differences were not found between performance measures (Acc and F-
M) regarding the training phase (Table 3 in SM).

In fact, the good performance of SVM classifier while dealing with
this type of problems was already reported in our previous study [17].
Despite the fact that in this case a higher number of features is required
to accurately differentiate noisy from APWs (between 15 and 20) in
comparison with the latter study (5 features), being more computa-
tionally demanding, it has the advantages of, beyond being trained for

Fig. 3. Grid search showing the F-measure of SVM and NN classifier for the values tested for the number of features and the SVM RFE C parameter. a) Results for the SVM classifier; b) for
the NN classifier; c) and d) show the behaviour of the classifier performance with the different SVM RFE C and N values, respectively.

Table 3
SVM average and correspondent standard deviation values for F-M obtained across
number of features N for each feature ranking value C (left); and across the different
feature rankings for each number of selected features N (right); and associated p-values
for Kruskal Wallis tests (two-tailed; significance level: 0.05).

Test F-M results Multiclass SVM

Feature ranking C value Number of features, N

C = 0.1 0.9887 ± 0.0045 N = 5 0.9724 ± 0.0074
C = 0.01 0.9871 ± 0.0052 N = 10 0.9901 ± 0.0022
C = 0.001 0.9834 ± 0.0077 N = 15 0.9925 ± 0.0019
C = 0.0001 0.9872 ± 0.0061 N = 20 0.9900 ± 0.0044
C = 1e−5 0.9861 ± 0.0088 N = 25 0.9862 ± 0.0036
C = 1e−6 0.9850 ± 0.0086 N = 30 0.9852 ± 0.0023
C = 5e−7 0.9877 ± 0.0036 N = 35 0.9871 ± 0.0000
C = 1e−7 0.9861 ± 0.0072 N = 39 0.9871 ± 0.0000
C = 1e−8 0.9856 ± 0.0082
p-value (Kruskal

Wallis)
0.9306 p-value (Kruskal

Wallis)
2.84e−8 *

* Statistically significant (significance level: 0.05).

Table 4
ANN average and correspondent standard deviation values for F-M obtained across
number of features N for each feature ranking value C (left); and across the different
feature rankings for each number of selected features N (right); and associated p-values
for Kruskal Wallis tests (two-tailed; significance level: 0.05).

Test F-M results Multiclass ANN

Feature ranking C value Number of features, N

C = 0.1 0.9795 ± 0.0077 N = 5 0.9737 ± 0.0058
C = 0.01 0.9805 ± 0.0054 N = 10 0.9791 ± 0.0057
C = 0.001 0.9790 ± 0.0043 N = 15 0.9828 ± 0.0031
C = 0.0001 0.9796 ± 0.0055 N = 20 0.9770 ± 0.0044
C = 1e−5 0.9785 ± 0.0052 N = 25 0.9760 ± 0.0088
C = 1e−6 0.9735 ± 0.0069 N = 30 0.9758 ± 0.0092
C = 5e−7 0.9752 ± 0.0104 N = 35 0.9770 ± 0.0078
C = 1e−7 0.9785 ± 0.0060 N = 39 0.9789 ± 0.0083
C = 1e−8 0.9736 ± 0.0094
p-value (Kruskal

Wallis)
0.5262 p-value (Kruskal

Wallis)
0.1437
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distinguishing noisy from real APWs, it is also able to detect abnormal
and normal APWs. This is possible for the cost of more 10 features, with
a better performance. Furthermore, the selected set of the most suitable
features has attributes in common with the best features set selected in
the study of 2015, which reinforces their role in providing useful in-
formation about this type of signal [17].

The majority of the studies dedicated to APW, reported less expedite
performances because their purpose was not to distinguish only be-
tween healthy and pathologic APWs, but rather on different number of
APW types with different physiological relevance. This is the case of
Joshi et al. [18] which proposed a method to differentiate between
eight different types of pulse waves, using statistical metrics instead of
machine learning algorithms, achieving limited performance results
around 0.86. Alty et al. [82], similarly with this present study applied
both binary SVM and ANN in order to automatically diagnose arterial
stiffness through APW evaluation, by distinguishing healthy from pa-
thologic waveforms. Despite the fact that the population evaluated in
their study was approximately the double in number than the present
study, they reported performance values which, in general, did not
achieved 0.93 for both SVM and ANN, including more computationally
demanding features.

The most significant limitation of the present study rely on the
population sample size, which, despite being equivalent with several
studies found in literature, if larger, higher could be the generalization
degree of the classification method proposed here. Additionally, our
conclusions must be further validated using an APW dataset including
patient’s information from other clinical centres.

4. Conclusions

With the development of novel solutions to measure vital signals, an
exhaustive study of the features that characterize those signals and their
correlations is imposed. This paper describes a study of arterial pulse
waveform-derived features, for distinguishing normal from patholo-
gical and noise segments.

The comparison between two classifiers, SVM and NN, for the signal
type automatic classification allowed reassert the higher performance
of SVM that represents here the best solution. SVM performs sig-
nificantly better to distinguish between “noisy” from “pathological” and
“non-pathological” APWs, achieving maximal F-Measure and Accuracy
values of 0.9957 and 0.9956, respectively, considering an 823 training
versus 225 test samples evaluation scheme.

The order by which the features are chosen by an original set
(morphologic, time domain statistics, cross-correlation and wavelet
features) did not show to be significantly different for the classifier test
performance in this type of problem. The results obtained here showed
the potential of the proposed method in distinguishing those three
important clinical outcomes (healthy, pathologic and noise), due to its
simplicity, low complexity in comparison with the existent literature
algorithms, its near-100% test performance, and its ability to remove
noisy signals which could lead to misdiagnoses.
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Summary Points

• Development of an automatic method to distinguish normal to
the pathological arterial pulse pressure waveforms (APW)
from non-relevant information (noisy segments) acquired by
a novel optical system during a clinical examination.

• The APW dataset analysed was composed by signals acquired
in a clinical environment from a total of 213 subjects, in-
cluding healthy volunteers and non-healthy patients.

• The signals were parameterised by means of 39 pulse features:
morphologic, time domain statistics, cross-correlation and
wavelet-derived features.

• The multiclass Support Vector Machine Recursive Feature
Elimination (SVM RFE) method was used to select the most
relevant features.

• A comparative study was performed in order to evaluate the
performance of two types of classifiers: Support Vector
Machine (SVM) and Artificial Neuronal Network (ANN).

• SVM achieved a statistically significant better performance.
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