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Abstract

Objective

To assess the extent of variation of data quality and completeness of electronic health 

records and impact on the robustness of risk predictions of incident cardiovascular 

disease (CVD) using a risk prediction tool that is based on routinely collected data

(QRISK3). 

Design:

Longitudinal cohort study. 

Setting

392 general practices (including 3.6 million patients) linked to hospital admission 

data.

Methods

Variation in data quality was assessed using Sáez’s stability metrics quantifying 

outlyingness of each practice. Statistical frailty models evaluated whether accuracy of 

QRISK3 predictions on individual predictions and effects of overall risk factors

(linear predictor) varied between practices. 

Results

There was substantial heterogeneity between practices in CVD incidence unaccounted 

for by QRISK3. In the lowest quintile of statistical frailty, a QRISK3 predicted risk of 

10% for female was in a range between 7.1% and 9.0% when incorporating practice 

variability into the statistical frailty models; for the highest quintile, this was 10.9%-

16.4%. Data quality (using Saez metrics) and completeness were comparable across 

different levels of statistical frailty. For example, recording of missing information on 

ethnicity was 55.7%, 62.7%, 57.8%, 64.8% and 62.1% for practices from lowest to 
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highest quintiles of statistical frailty respectively. The effects of risk factors did not 

vary between practices with little statistical variation of beta coefficients.

Conclusions

The considerable unmeasured heterogeneity in CVD incidence between practices was 

not explained by variations in data quality or effects of risk factors. QRISK3 risk 

prediction should be supplemented with clinical judgement and evidence of additional 

risk factors.

Key words

Electronic health records; QRISK; practice variability; statistical frailty model; CVD 

risk prediction; random slope model
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Introduction

        Cardiovascular disease (CVD) has been the most common cause of death around 

the world for decades1. The prevention of CVD through targeting treatment to high 

risk patients is recommended in many international guidelines1-2. Risk prediction 

models are now an important part of CVD prevention strategies3. Many CVD risk 

prediction models have been developed around the world4, including the Framingham 

risk score (FRS)5 in the  USA, QRISK36 in the  UK and ESC HeartScore in Europe7. 

These models were developed by fitting statistical survival models (e.g. Cox model8) 

incorporating CVD risk factors on longitudinal patient cohorts. Specifically, QRISK 

was first developed in 2008 using routinely collected electronic health records (EHRs) 

from 355 general practices included in the QResearch database6. It considered age, 

sex and CVD risk factors such as body mass index (BMI) and smoking status. A 

recent update, QRISK3, incorporated more risk factors, such as variation in  systolic 

blood pressure6. 

        A previous study has found that QRISK3 scores that are derived from EHRs can 

have limited generalisability and accuracy, as they do not account for the substantive 

heterogeneity between different general practices9. Considerable changes in the 

individual risk estimates occurred when taking into account the heterogeneity between 

different general practices, and this effect cannot be explained by practice random 

variability9. Additionally, this study found that a CVD risk of 10% over 10 years as 

predicted by QRISK3 could change by over absolute 13% in a model that also 

incorporated variability between sites. Heterogeneity between sites may be related to 

either data quality (mainly including variation of missingness and coding10) or 

unadjusted underlying practice heterogeneities (variation of patient case mix and 

association between outcome and predictors11). However, it is unknown which of 
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these influences contribute to the observed effects of practice variability on individual 

risk prediction. Therefore, the objective of this study was to assess the extent of 

variation of data quality and completeness of electronic health records and impact on 

the robustness of risk predictions of cardiovascular disease (CVD) using QRISK3. 

The QRISK3 model is recommended to be used in UK general practice and is now 

also accessible for members of the public12, 13.

Methods

        The study used data from approximately 3.6 million anonymised patient records 

derived from 392 general practices from the Clinical Practice Research Datalink 

(CPRD GOLD), which had been linked to Hospital Episode Statistics (HES), Office 

for National Statistics (ONS) mortality records and Townsend deprivation scores6. 

CPRD GOLD is a representative demographic sample of the UK population in terms 

of age, gender and ethnicity14. Overall, CPRD includes data on about 6.9% of the UK 

population. The linkages to other datasets such as HES or ONS provide additional 

patient information about secondary care, specific disease and cause-specific 

mortality14. CPRD includes patients’ electronic health records from general practice 

capturing detailed information such as demographics, symptoms, tests, diagnoses, 

prescribed treatments, health-related behaviours and referrals to secondary care14. 

CPRD data has been widely used for public health research15, including an external 

validation of the QRISK2 model16. 

        The study used the same patient population as described in a previous study9, and 

used similar selection criteria and risk factors to QRISK36. The follow-up of patients 

started at the date of the patient’s registration with the practice, 25th birthday, or 
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January 1 1998 (whichever latest), and ended at the date of death or CVD outcome, 

the date of leaving the practice, end of study window or last date of data collection 

(whichever earliest). The index date for measurement of CVD risk was randomly 

chosen from the total period of follow-up17. This study used a random index date, as it 

captures time-relevant practice variability with a better spread of calendar time and 

age18. The use of a random index date was the only difference with the original 

QRISK3 studies6. The main inclusion criteria for the study population were aged 

between 25 and 84 years, with no CVD history or any statin prescription prior to the 

index date. Patients were censored at the date of the statin prescription if received 

during follow-up.

       There were four analysis parts in this study. The first measured data quality and 

completeness in each of the different practices. Second, we evaluated the 

heterogeneity between practices in CVD incidence that was not taken into account in 

the development of QRISK3. This analysis addressed the miscalibration of QRISK3 

at practice level which can be described as the closeness (accuracy) of the QRISK3 

prediction to the observed CVD incidence in each practice. Unmeasured 

heterogeneity between groups is also known as statistical frailty, which can be 

modelled in regression analyses19. Bootstrap resampling with 1000 times was used to 

quantify the confidence intervals of individual risk predictions in the random intercept 

model for patients who had a QRISK3 predicted risk of 10%. The level of 

unmeasured heterogeneity in CVD incidence (statistical frailty) for each practice was 

used to stratify practices into quintiles. Third, we evaluated whether the effects of the 

QRISK3 risk factors (i.e., the overall linear predictor) varied between practices (i.e., 

whether the beta coefficients varied). This variation in the linear predictor between 

practices could occur in case of unmeasured effect moderators for CVD incidence or 
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differences in data recording/misclassification of risk factors. Finally, we compared 

data quality across different levels of statistical frailty. 

        Several indicators of data quality were used in this study to measure the variation 

in coding between general practices. First, the percentages of missing records were 

measured for the variables ethnicity, systolic blood pressure (SBP), body mass index 

(BMI), cholesterol, high-density lipoprotein (HDL), ratio of cholesterol and HDL, 

smoking status and Townsend score for deprivation. Second, two metrics as proposed 

by Sáez20 were used to measure the multidimensional variability (stability) in data 

quality across practices. The proposed metrics quantified the variability in the 

probability distribution functions of practices. Variation of coding was measured by 

the distribution-dissimilarity (quantified by Sáez’s metrics) of CVD risk factors and 

their missingness among practices. Inconsistent coding of clinical data could result in 

misclassification and different distributions of the variable among practices, which 

may influence risk prediction. This effect of misclassification was considered using 

Saez metric to measure the distribution-dissimilarity of all coded clinical variables 

including atrial fibrillation, chronic kidney disease, erectile dysfunction, angina or 

heart attack in a 1st degree relative < 60, migraines, rheumatoid arthritis, systemic 

lupus erythematosus, severe mental illness, type 1 diabetes and type 2 diabetes. Sáez’s 

metric20, which was based on Jensen–Shannon divergence21 measured the distribution-

dissimilarity of variables across practices. Specifically, source probabilistic 

outlyingness (SPO) can be thought of as a measure of how different a practice is from 

the average practice in terms of distribution of variables. SPO ranges from 0 to 1 

measuring the extent of outlyingness of the variables’ distribution. A variable with a 

SPO close to 1 means that the distribution of the variable in the practice is more 

different from the overall average indicating the outlyingness of coding. Further 
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technical details about the Sáez’s metric are provided in the eAppendix 2. 

        The unmeasured heterogeneity between practices in CVD incidence was 

evaluated by fitting a Cox proportional hazards model that included a statistical frailty 

term on its intercept (this type of model is also known a random intercept Cox model). 

The outcome of interest was the time to CVD onset. The linear predictor of QRISK3 

(sum of the multiplication of beta coefficients and predictors) was used as an offset 

(i.e. coefficient fixed at one) to calculate the statistical frailty for each practice19.

        The variation between practices in the effects of the QRISK3 risk factors was 

evaluated by also adding a single frailty term to the beta coefficients of the QRISK3 

linear predictor (known as a mixed effects Cox model22). This model calculated a 

random slope for the QRISK3 risk factors in each practice (assuming fixed effects and 

independent random effects of the QRISK3 linear predictor) in addition to the random 

intercept (assuming unmeasured heterogeneity in CVD incidence between practices). 

The random slopes and intercepts were calculated separately for each gender as 

QRISK3 has separate model formula for each gender23. 

        The effects of practices’ random slopes on individual risk prediction were 

visualised by estimating the difference of individual CVD risk predictions in the 

random slope model to that of the random intercept model. The range of individual 

risk predictions were calculated from the random slope model. Using a QRISK3 risk 

of 10%, a random slope and a random intercept were randomly drawn from a 

Gaussian distribution based on the variation of the random slope and random intercept 

calculated from this study’s original cohort and the predicted risk was estimated (this 

was repeated one million times). The difference of the predicted CVD risk when the 

same patient was from practices with the same random intercept, but different random 

slope was visualised. Two hypothetical variations in random slopes (0.03 and 0.1) 
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were used as reference lines. The variation in random slopes of 0 indicates that there 

was no variation in the effects of CVD risk factors between practices. The variation of 

0.03 was chosen as reference because a previous study found that this variation in the 

random effects of the intercept9 resulted in large differences in individual risk 

predictions (a QRISK3 predicted risk of 10% would change in the random effects 

model to a range from 7.2% to 13.7%). 

        Finally, practices were grouped by quintiles of statistical frailty and data quality 

metrics were estimated for each quality indicator. The random intercept Cox models 

estimated the level of statistical frailty for a QRISK3 predicted CVD risk of 10% 

(over 10 years). The mean and standard deviation of each CVD risk factors were 

summarised. Sáez’s metric for the CVD risk factors and their missingness were 

plotted against the percentile of practice frailty to show possible correlations and the 

Pearson correlation coefficients were calculated24. Practice statistical frailty was also 

plotted against the percentile of the mean (for continuous variables) or percentage (for 

categorical variable) of CVD risk factors at practice level and their corresponding 

Sáez’s metric using a Beeswarm plot25. This aims to identify any correlation between 

them and practice statistical frailty was plotted with value 1 as a reference line (red 

line). Beeswarm plots visualise the distribution by plotting practices as separate dots 

in each bin, so it has benefit to highlight individual points in distribution comparing to 

classical distribution-visualisation such as histograms. 

        The statistical software R version 3.4.226 with package “coxme”27 was used to 

model the data; SAS 9.4 was used in data preparation, missing value imputation and 

visualisation. Multiple imputation using Markov chain Monte Carlo (MCMC) method 

with monotone style28 was used to impute missing values before model fitting. Ten 

imputed datasets were created with pooling of the results based on the averages.
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Results 

       There were 3,630,818 patients included in the study cohort, 103,350 of which had 

a CVD event in the 10 years after the index date. Overall, for patients with QRISK3 

predicted risk of 10%, the 95% range of predicted risks were between 7.2% (95%CI: 

7.15%~7.34%) and 13.7% (95%CI: 13.5%~13.9%) with the random intercept model 

(which incorporated practice heterogeneity into the model). Table 1 shows the

differences between the predictions by the QRISK3 and random intercept models 

(statistical frailty) for patients with a QRISK3 prediction of 10% with practices 

classified into quintiles of practice statistical frailty. Practices in the lowest quintile 

had predicted CVD risks at 10 years between 7.1% and 9.0% in the random intercept 

model for females compared to a predicted risk of 10% with QRISK3. For males, this 

was 6.1% and 9.0%. For practices in the highest quintile, QRISK3 predictions 

underestimated CVD risks compared to the random intercept model with predicted 

risks between 10.9% and 16.4% (for males, this was 10.9% and 15.5%). As shown in 

Table 1, a practice statistical frailty below 1 indicated that QRISK3 overestimated 

CVD risk and above 1 underestimated CVD risk compared with the random intercept 

models. 

       Table 2 compares the baseline characteristics between practices with different 

levels of statistical frailty (i.e., mean difference between individual risk predictions by 

QRISK3 and random intercept models). For example, practices in the second quintile 

(20%~40%) of practice statistical frailty have on average 62.7% (standard deviation: 

20.0%) patients with missing values on ethnicity and practices in the  fourth quintile 

(60%~80%) of practice statistical frailty also have similar average 64.8% (standard 
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deviation: 23.0%) of patients with missing values on ethnicity. There were no major 

differences in CVD risk factors and missing levels between practices with high and 

low statistical frailty. Practices with high/low statistical frailty had comparable means

and standard deviations for these characteristics.      

        Figure 1 shows the relationship between risk factors’ dissimilarity between 

practices (measured by Sáez’s metric) and practice statistical frailly. Sáez’s metrics

for the CVD variables and for their missingness were not related to the statistical 

frailty of practices (blue lines), indicating that practices with high or low statistical 

frailty had similar distribution of these risk factors. The same result was found for the 

overall effects of the coded clinical variables, which suggests that misclassification 

may not be related to practice statistical frailty. Only a few variables (including

Townsend score) were distributed differently between practices with high or low 

statistical frailty, but there were differences in the patterns between females and 

males. 

        Figure 2 (Beeswarm plot) also confirms that there was no visual relationship 

between practice statistical frailty and most CVD risk factors and their stability 

metrics (only variables with non-flat trend in Figure 1 are shown). Practices were 

grouped by percentile of CVD predictors or their stability metrics. The Pearson 

correlation coefficients between practice frailty and practice characteristics were low. 

The percentage of smokers had the highest correlations of 0.46 (95% CI: 0.38, 0.54)

for females and 0.35 (95%CI: 0.26, 0.44) for males. 

        Figure 3 shows that there was no variation across practices in the effects of the 

risk factors on the risk of CVD outcomes, as the fixed effects of QRISK3 linear 

predictor was near 1 and the variation of random effects on slope among practices was 

near 0 (0.000111 for females and 0.000302 for males) in the random slope model. 
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Comparing two reference variations of random slope (0.03 and 0.1), Figure 3 shows 

that there was almost no random slope, indicating similar associations between 

predictors and CVD outcome among practices. 

        As shown in Figure 4, the incorporation of random slopes into the models (i.e., 

varying effects of the risk factors on CVD between practices) did not increase the 

accuracy in individual risk prediction. The distributions of the individual risk 

predictions for patients with a QRISK3 of 10% were comparable between the random 

slope and the random intercept model. For patients with a QRISK3 predicted 10% 

risk, the random slope alone would only change the patients’ risk by an absolute 0.6% 

between practices on 97.5% and 2.5% random slope percentile (eFigure3). The effects 

of variation of random slope on individual patients’ risk was small compared with the 

effects of the random intercept, which could change patient’s risk from 10% to a 

range of 5% and 17%.

Discussion

Key results

        This study found that the observed variation in data quality between general 

practices did not explain the unmeasured heterogeneity in QRISK3 risk prediction 

across practices (miscalibration at practice level). Specifically, practices with higher 

or lower statistical frailty had comparable indicators of data quality, including those 

based on more innovative techniques (Sáez metric). In addition, the effects of the 

QRISK3 predictors on CVD risk were comparable across practices despite these 

differences in data quality, since the random slope models found little variation of the 

beta coefficients across practices.
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Strength and limitation

        This study was based on a very large patient cohort. It also used the innovative 

Sáez’s metric, which quantifies the distribution-dissimilarity29. There are several 

limitations in this study. We considered several aspects of practice variability that

covered important areas identified in literature4, 11, but there may be other aspects of 

data quality. The study used Saez metric with distribution-dissimilarity indirectly 

measured the effects of misclassification for clinical variables. The limitation of our 

approach was that the multivariate frequencies of clinical variables was evaluated 

using the Saez metric rather than direct evidence for misclassification. The rationale 

for our approach was that different coding practices and levels of misclassification are 

likely to be presented as different levels of frequencies of the variables. Future 

research might consider a more direct measure of misclassification. Sáez’s metric, 

which measured the CVD risk factors’ distribution-dissimilarity among practices, has 

information loss as it suffers the “curse of dimensionality”30.  With more practices, 

there are more dimensions, but this needs to be reduced to estimate summarised

statistics resulting in loss of information. Another limitation concerned the estimation 

of the variation of the random slopes. One thousand bootstrap samples of 40% of the 

practices were used to estimate this rather than the whole dataset because the current 

random slope model algorithm27 has computational difficulty to reach the converge 

criteria when there is only a small effect on the slopes with greater number of 

practices. The sensitivity analysis (eFigure 2) shows consistent results of variation of 

random slope among samples of 20%, 40%, 50% and 60% of total practices

suggesting that the variation estimate is accurate. 
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Interpretation

        Data quality is an important aspect of practice variability as it influences the

performance and generalisability of a model. Damen et al.4 discussed that data quality

limits a model’s generalisability and models developed from poor data would

generally have poor performance. However, this study shows that although there was

a large variation in data quality among practices, it did not affect the accuracy of the 

risk prediction on individual patients. This indicates data quality among practices 

were well handled by the data cleaning methods (including multiple imputation for 

missing values).

        Wynants et al.11 suggested that patient case mix or true variation of association 

between outcome and predictors might be related to the variation of a model’s 

performance in a heterogeneous setting. Patient case mix was already adjusted in 

QRISK36, and the present study found no random slopes for beta coefficients across

practices. This indicates that the effects of QRISK3 predictors on CVD risk were 

comparable across practices. The comparison between the random slope and random 

intercept models found that the effects of practice variability on individual patients 

was fully explained by the random intercept, i.e. the unmeasured heterogeneity in 

CVD incidence between practices and deviation from the baseline hazard.

        A recent study31 found that the addition of another risk factor (standard deviation 

of blood pressure) to QRISK3 did not improve model performance despite it being

significantly related to CVD. Previous studies9 discovered models with similar 

discrimination and calibration could predict the same patient differently using the 

current model’s predictors. Therneau32 demonstrated an example that the effects of 
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random intercept could come from unknown covariates missed by a model. This study 

found that unexplained heterogeneity at practice level cannot be resolved using 

current measured risk factors. Therefore, this study supports the conclusion from 

Damen et al.4 that current CVD models lack information on other important CVD risk 

factors, e.g. those that better measure the heterogeneity in incidence between different 

areas. 

Implications for research and practice

        This study found that variation between practices in data quality and effects of 

CVD predictors were not associated with the considerable heterogeneity in CVD 

incidence. This suggests that a further study might focus on determining whether the 

CVD risk prediction models can be extended with new risk factors from patient level 

CVD risk factors (e.g. biomarkers) or practice level, which could reduce the 

unmeasured heterogeneity in CVD incidence across practices. Further research could 

consider more individual level based methods, such as a Bayesian clinical reasoning 

model33 and machine learning models34, as this study and other findings18, 35, 36 show 

that Cox models with similar conventional model performance metrics (C-stat37 and 

calibration) could predict inconsistent risk to the same patients. Alternatively, new 

statistics might be required to measure a population-based model performance on an 

individual level. 

        In conclusion, the considerable unmeasured heterogeneity in CVD incidence 

between practices was not explained by variations in data quality or effects of risk 

factors. QRISK3 risk prediction should be supplemented with clinical judgement and 

evidence of additional risk factors.
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Summary points

What was already known

• Risk prediction tools based on routinely collected data are used by clinicians 

to predict a 10-year CVD risk for individual patients.

• A previous study found that there was considerable variability between 

clinical sites in the robustness of individual risk predictions. This 
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heterogeneity in incidence between sites is not incorporated into current risk 

prediction approaches.

What this study has added

• There was substantial heterogeneity between practices in the incidence of 

cardiovascular disease (CVD) which was not explained by a commonly used 

risk prediction model (QRISK3).

• Data quality, as measured by probabilistic indicators based on information 

theory and geometry, varied substantially between clinical sites.

• This study adds that this unmeasured heterogeneity in CVD incidence was not 

explained by variations in data quality or effects of risk factors between 

clinical sites.
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Table 1: Predicted CVD risks in random intercept models (for patients with QRISK3 predicted 
risk of 10%) stratified into quintiles based on the level of differences between these predictions

Quintile of practice frailty Number of practices Frailty

Predicted CVD risk
with random intercept model 

(%)

Female

0~20% 78 0.7~ 0.9 7.1~ 9.0

20~40% 78 0.9~ 1.0 9.0~ 10.0

40~60% 79 1.0~ 1.0 10.0~ 10.0

60~80% 78 1.0~ 1.1 10.0~ 10.9

80~100% 79 1.1~ 1.7 10.9~ 16.4

Male

0~20% 78 0.6~ 0.9 6.1~ 9.0

20~40% 78 0.9~ 1.0 9.0~ 10.0

40~60% 79 1.0~ 1.0 10.0~ 10.0

60~80% 78 1.0~ 1.1 10.0~ 10.9

80~100% 79 1.1~ 1.6 10.9~ 15.5
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Table 2: Characteristics of the practices stratified by different quintiles of statistical frailty

Male Female

mean (SD)) (mean (SD))

Frailty 
(0~20%)

( 0.7 ~  0.9)

Frailty 
(20~40%)

( 0.9 ~  1.0)

Frailty 
(40~60%)

( 1.0 ~  1.0)

Frailty 
(60~80%)

( 1.0 ~  1.1)

Frailty 
(80~100%)
( 1.1 ~  1.7)

Frailty 
(0~20%)

( 0.6 ~  0.9)

Frailty 
(20~40%)

( 0.9 ~  1.0)

Frailty 
(40~60%)

( 1.0 ~  1.0)

Frailty 
(60~80%)

( 1.0 ~  1.1)

Frailty 
(80~100%)
( 1.1 ~  1.6)

General characteristics of practices

Average number of CVD events in 10 years within practice 
strata by gender

84.5 (58.5) 133.1 (89.3) 142.0 (92.1) 181.2 
(101.7)

182.4 (87.0) 89.0 (57.6) 104.0 (86.3) 122.7 (91.5) 143.4 (80.3) 159.5 (75.8)

Average age within practice 43.6 (2.9) 44.5 (3.0) 44.2 (3.1) 44.7 (2.4) 44.2 (2.0) 44.9 (4.0) 46.0 (3.8) 45.0 (3.6) 46.2 (2.7) 45.6 (2.6)

Average number of patients within practice strata by gender 
at index date

4528.0 
(2543.6)

4680.9 
(2737.6)

4330.1 
(2392.9)

4930.5 
(2723.2)

4112.1 
(1825.2)

5415.8 
(2805.9)

4590.3 
(2951.9)

4578.5 
(2767.0)

4819.0 
(2375.8)

4341.2 
(2012.4)

Number of practices 78 78 79 78 79 78 78 79 78 79

CVD risk factors

% patients with alcohol abuse 1.5 (0.8) 1.6 (1.0) 1.8 (1.7) 2.0 (2.0) 2.4 (1.3) 0.7 (0.4) 1.0 (1.7) 0.9 (0.7) 0.8 (0.4) 1.1 (0.7)

% patients with anxiety 8.9 (3.5) 8.9 (3.0) 9.7 (3.7) 10.9 (3.4) 12.0 (5.2) 15.5 (5.9) 15.9 (5.9) 17.2 (6.7) 17.4 (6.3) 20.1 (7.6)

% patients with HIV 0.1 (0.2) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.2) 0.1 (0.1) 0.0 (0.1)

% patients with left ventricular hypertrophy 0.2 (0.1) 0.2 (0.1) 0.3 (0.2) 0.3 (0.1) 0.3 (0.2) 0.2 (0.1) 0.2 (0.1) 0.2 (0.2) 0.2 (0.1) 0.2 (0.2)

% patients with atrial fibrillation 0.8 (0.4) 0.9 (0.4) 0.8 (0.4) 0.9 (0.3) 0.7 (0.3) 0.6 (0.3) 0.7 (0.3) 0.6 (0.3) 0.7 (0.3) 0.6 (0.3)

% patients on atypical antipsychotic medication 0.4 (0.3) 0.4 (0.3) 0.4 (0.3) 0.4 (0.2) 0.5 (0.2) 0.4 (0.2) 0.4 (0.2) 0.4 (0.3) 0.4 (0.2) 0.5 (0.2)

% patients with chronic kidney disease (stage 3, 4 or 5) 0.8 (0.4) 0.8 (1.0) 0.8 (0.5) 0.7 (0.4) 0.6 (0.3) 1.3 (0.9) 1.5 (1.0) 1.5 (2.2) 1.3 (0.8) 1.1 (0.6)

% patients on regular steroid tablets 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1)

% patients with angina or heart attack in a 1st degree relative 
< 60

3.5 (2.5) 3.5 (3.1) 3.2 (2.2) 2.9 (2.8) 2.8 (2.2) 4.5 (3.8) 4.3 (3.5) 4.0 (2.7) 4.0 (4.1) 3.2 (2.4)

% patients on blood pressure treatment 5.5 (2.0) 5.9 (1.6) 6.0 (1.7) 6.0 (1.5) 5.6 (1.5) 7.4 (2.7) 8.2 (2.6) 7.6 (2.0) 8.2 (1.8) 7.8 (2.2)

% patients with migraines 3.3 (1.3) 3.3 (1.2) 3.6 (1.3) 3.7 (1.2) 3.6 (1.5) 8.7 (3.0) 8.5 (2.7) 9.6 (2.9) 9.3 (2.8) 9.7 (3.6)

% patients with rheumatoid arthritis 0.3 (0.2) 0.3 (0.2) 0.3 (0.1) 0.4 (0.1) 0.4 (0.2) 0.8 (0.3) 0.9 (0.3) 0.9 (0.4) 0.9 (0.3) 0.9 (0.3)

% patients with severe mental illness 4.5 (2.7) 5.3 (3.0) 4.8 (2.7) 6.2 (3.0) 6.4 (3.3) 8.1 (5.2) 8.8 (4.9) 10.4 (7.0) 11.1 (6.1) 12.0 (6.5)
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Male Female

mean (SD)) (mean (SD))

Frailty 
(0~20%)

( 0.7 ~  0.9)

Frailty 
(20~40%)

( 0.9 ~  1.0)

Frailty 
(40~60%)

( 1.0 ~  1.0)

Frailty 
(60~80%)

( 1.0 ~  1.1)

Frailty 
(80~100%)
( 1.1 ~  1.7)

Frailty 
(0~20%)

( 0.6 ~  0.9)

Frailty 
(20~40%)

( 0.9 ~  1.0)

Frailty 
(40~60%)

( 1.0 ~  1.0)

Frailty 
(60~80%)

( 1.0 ~  1.1)

Frailty 
(80~100%)
( 1.1 ~  1.6)

% patients with Systemic Lupus Erythematosus 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1)

SBP

Average SBP within practice 130.1 (2.6) 130.4 (2.8) 130.6 (3.2) 130.8 (2.6) 130.6 (2.5) 123.4 (3.2) 124.4 (3.2) 123.8 (3.2) 124.8 (2.7) 125.0 (2.5)

% patients with missing SBP 36.2 (9.8) 34.9 (8.4) 36.7 (8.9) 37.5 (8.4) 38.3 (9.4) 14.7 (5.8) 13.7 (5.8) 13.9 (5.3) 14.6 (6.6) 16.5 (6.5)

BMI

Average BMI when recorded 26.5 (0.7) 26.5 (0.6) 26.7 (0.5) 26.7 (0.6) 26.7 (0.5) 25.7 (1.1) 26.1 (1.0) 26.2 (0.9) 26.3 (0.6) 26.6 (0.7)

% patients with missing BMI 45.6 (12.5) 47.3 (11.2) 47.2 (13.3) 50.2 (10.7) 50.0 (12.1) 30.4 (11.7) 29.1 (13.6) 28.9 (11.8) 31.3 (11.7) 33.6 (12.9)

Cholesterol/HDL ratio

Average Cholesterol/HDL ratio within practice 4.3 (0.2) 4.4 (0.2) 4.4 (0.3) 4.4 (0.2) 4.4 (0.2) 3.6 (0.2) 3.6 (0.2) 3.6 (0.3) 3.7 (0.2) 3.8 (0.2)

% patients with missing Cholesterol/HDL ratio 65.6 (10.4) 66.3 (8.8) 64.8 (8.9) 69.0 (9.4) 65.5 (8.1) 63.3 (10.4) 60.1 (11.2) 61.8 (10.7) 64.9 (11.0) 62.7 (11.4)

Smoking

% current-smokers 32.3 (8.0) 32.9 (6.1) 33.5 (6.1) 36.4 (6.9) 38.8 (6.7) 22.1 (5.5) 24.3 (6.5) 24.4 (7.4) 26.5 (5.4) 31.0 (6.7)

% patients with missing smoking status 26.2 (9.4) 28.6 (8.2) 27.7 (9.7) 31.7 (8.8) 33.1 (8.1) 17.4 (7.5) 17.8 (8.4) 16.9 (8.4) 21.0 (8.3) 22.9 (8.8)

Diabetes

% patients with type 1 diabetes 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.3 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1)

% patients with type 2 diabetes 1.2 (0.5) 1.3 (0.4) 1.5 (0.5) 1.6 (0.4) 1.6 (0.4) 1.0 (0.4) 1.1 (0.4) 1.1 (0.4) 1.3 (0.4) 1.3 (0.5)

Ethnicity

% white patients 83.0 (16.3) 87.4 (15.5) 83.2 (20.0) 89.7 (11.0) 90.1 (12.9) 84.6 (15.9) 86.4 (16.9) 83.9 (18.1) 88.9 (12.1) 90.3 (11.8)

% patients with missing ethnicity 55.7 (21.7) 62.7 (20.0) 57.8 (26.6) 64.8 (23.0) 62.1 (22.4) 54.2 (23.0) 54.9 (26.3) 53.2 (25.1) 61.4 (23.1) 58.9 (24.7)

Townsend (Socioeconomic Status)

% patients with Townsend score 5 (the most deprived) 16.2 (25.8) 11.9 (21.0) 15.1 (21.9) 14.0 (19.1) 24.5 (20.1) 10.0 (19.5) 14.9 (22.4) 17.2 (24.0) 11.2 (16.4) 25.9 (21.6)

% patients with Townsend score missing 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.2 (1.4) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.2 (1.4)
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Figure 1 Relationship between quintiles of statistical frailty in practices and the stability metrics for QRISK3 CVD predictors and level of missingness
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Figure 2. Relationship between quintiles of statistical frailty in practices and CVD risk 
predictors and their stability metrics (SPO) - Beeswarm plot
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Figure 3 Effects of the variability between practices of the QRISK3 linear predictor (random slope)  
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Figure 4 Comparison of the CVD risk predictions between the random intercept and slope models for patients with a QRISK3 risk of 10% (in a cohort of 
one million patients with 50% males and 50% females)
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eAppendix 1. Interpretation of appendix tables and figures.

eTable1 summarises the distribution-dissimilarity of all CVD risk factors and their 

missingness using Sáez’s proposed metrics global probabilistic deviation (GPD) and source 

probabilistic outlyingness (SPO). GPD measures risk factors’ overall outlyingness of 

practices, which ranges from 0 to 1 and the closer to 1 means there is more variation of 

practices. SPO measures the latent distance of risk factors’ distribution between one practice 

to the average of overall practice, which also ranges from 0 to 1 and closer to 1 means the 

practice is more far away from the average. The table shows part of CVD risk factors (e.g. 

Rheumatoid arthritis) among practices are very stable, which means they have similar 

distribution among practices.  Other variables, such as ethnicity, Townsend and missing level 

of ethnicity, were unstable among practices, which means the distribution of these variables 

has substantial variation among practices. 

eFigure1 visualises the distribution-dissimilarity of all CVD risk factors and their 

missingness using percentile of Sáez’s proposed metrics SPO strata by gender. The result is 

consistent with eTable1, as part of risk factors are very stable among practices (blue lines), 

and other variables such as Townsend and ethnicity has substantial variation among practices. 

Preliminary analysis showed that the variation of random slopes of full CPRD practices was 

too small and current statistical package would take very long to calculate results for full 

practices, so the study estimated practices’ variation of random slope by averaging practices’ 

variation of random slope of 1000 random samples (each sample contained 40% practices of 

all CPRD practices). Sensitive analysis (eFigure 2) shows that there is no difference of the 

average variation of random slope among different sample size of practice (20%, 40%, 50% 

and 60% percent of full CPRD practices). All of them shows that there is no variation of 

random slope among practices, which suggests all practices have similar association between 

predictors and outcome. This also suggests all of samples are a representative sample of 

CPRD practices, just as CPRD is a representative sample of the whole UK practices.

eFigure3 shows that for patients with a QRISK3 predicted 10% risk, random slope alone 

would only change the patients’ risk by absolute 0.6% between practices on 97.5% and 2.5% 

random slope percentile. The effects of variation of random slope on individual patients’ risk 

is small comparing to that random intercept could change patient’s risk from 10% a range of 

5% and 17%.The effects of random slope on individual patients however increases with the 



increase of patients predicted risk by QRISK3, but it would not affect patients' classification 

at most of the time. For example, although patients' risk could change about 2% when they 

have 25%, but the patients would still be prescribed statin after change. Also, the larger 

patients’ predicted risk by QRISK3 means the larger linear predictor which then enlarges the 

effects of random slope through exponential function from Cox model. Consider following 

empirical example which compares exp (10*1.05) - exp (10*1.01) = 11972.49 to exp 

(20*1.05) – exp (20*1.01) = 726233627. We think 20 is a linear predictor for patients with a 

very high risk, and 10 is for a patient with low risk. Ignoring random intercept here and think 

1.01 is a sum of fixed and random slope. Say the fix slope is 1, and 97.5 random slope is 0.05 

and 2.5% random slope is 0.01. We can see the larger linear predictor enlarges the differences

because of exponential function here.

eAppendix 2. Technical details of Sáez’s metric of distribution-dissimilarity

        Sáez proposed non-parametric information theory metrics to quantify the distribution-

dissimilarity of single or multiple variables among different practice (sites) 1. Saez quantified 

the distribution-dissimilarity of variables using Jensen–Shannon divergence (JSD) 2. JSD 

(ranges from 0 to 1) calculates an information distance (divergence) of the variable’s 

probability distribution in different practices (sites), which measures the distribution-

dissimilarity of a variable among different practices (sites). Once the information distance of 

a variable between all pair of practices were acquired, Euclidean embedding 3 and simplex 4

theory could be used to construct a coordinate for each practice based on the information 

distance among them. Based on the geometry theory, the coordinate of a latent center

(centroid 4) could be calculated by averaging all practices’ coordinates. The centroid 

represents a latent average distribution of the variable among all practices, so the information 

distance between one practice to the centroid quantifies the dissimilarity of variable’s 

distribution of one practice to the overall average. By standardising this distance (so the 

information distance of different variables is comparable), Sáez proposed source probabilistic 

outlyingness (SPO) metric, which ranges from 0 to 1 and the higher means the site is more far 

away from centroid, to quantify the distribution-dissimilarity of variable from one practice to 

the overall average. Sáez also proposed global probabilistic deviation (GPD), also ranges 

from 0 to 1 and the higher means the more variation of the variable among practices, to 

quantify variable’s the overall distribution stability among practices 1. For multiple variables, 

dimension reduction method such as principle component analysis (PCA) 3 and factor analysis 
3, could be used to construct three or four independent principle components to represent the 

overall variation of multiple variables. Joint probabilities could be calculated using these 



principle components’ distribution, and then JSD of joint probabilities could be calculated to 

represent the combined distribution-dissimilarity of multiple variables among practices.  
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eTable 1. Stability metrics of all QRISK3 CVD predictors and their missing level on practice level

Male Female

GPD 5th 25th 50th 75th 95th GPD 5th 25th 50th 75th 95th

CVD risk factors (distribution dissimilarity to the overall practice average)

Atrial fibrillation 0.02 0.00 0.01 0.01 0.02 0.04 0.02 0.00 0.01 0.01 0.02 0.03

Whether patients on atypical antipsychotic medication 0.02 0.00 0.01 0.01 0.02 0.03 0.02 0.00 0.00 0.01 0.02 0.03

Chronic kidney disease (stage 3, 4 or 5) 0.02 0.00 0.01 0.01 0.02 0.04 0.03 0.00 0.01 0.02 0.03 0.05

CVD censors 0.08 0.02 0.02 0.03 0.05 0.11 0.08 0.02 0.02 0.03 0.05 0.10

Time to CVD event 0.19 0.05 0.07 0.10 0.14 0.40 0.20 0.05 0.08 0.11 0.15 0.42

Cholesterol 0.08 0.02 0.03 0.05 0.07 0.11 0.10 0.02 0.04 0.06 0.09 0.17

Regular steroid tablets 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.02

Erectile dysfunction 0.03 0.00 0.01 0.02 0.03 0.06 0.01 0.00 0.00 0.01 0.01 0.02

Angina or heart attack in a 1st degree relative < 60 0.06 0.01 0.02 0.03 0.06 0.10 0.07 0.01 0.02 0.04 0.06 0.11

HDL 0.11 0.03 0.06 0.07 0.10 0.15 0.12 0.03 0.05 0.08 0.11 0.17

Blood pressure treatment 0.03 0.00 0.01 0.02 0.03 0.06 0.04 0.00 0.01 0.02 0.04 0.07

Migraines 0.03 0.00 0.01 0.02 0.03 0.06 0.05 0.00 0.02 0.03 0.05 0.10

Nelson-Aalen estimator 0.18 0.05 0.07 0.10 0.14 0.36 0.19 0.05 0.08 0.11 0.14 0.36

Rheumatoid arthritis 0.01 0.00 0.00 0.01 0.01 0.02 0.02 0.00 0.00 0.01 0.01 0.03

Systemic Lupus Erythematosus 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.02

Severe mental illness (this includes schizophrenia, bipolar 
disorder and moderate/severe depression)

0.07 0.01 0.02 0.04 0.07 0.10 0.10 0.01 0.04 0.07 0.10 0.15

Type 1 diabetes 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.02



Male Female

GPD 5th 25th 50th 75th 95th GPD 5th 25th 50th 75th 95th

Type 2 diabetes 0.02 0.00 0.01 0.01 0.02 0.03 0.02 0.00 0.01 0.01 0.02 0.04

Age 0.11 0.02 0.04 0.07 0.10 0.17 0.12 0.03 0.05 0.07 0.12 0.20

BMI 0.09 0.02 0.04 0.06 0.08 0.12 0.09 0.02 0.04 0.06 0.08 0.14

Cholesterol and HDL 0.11 0.03 0.05 0.07 0.09 0.15 0.12 0.03 0.05 0.07 0.11 0.17

Ethnicity 0.57 0.27 0.32 0.38 0.47 0.63 0.61 0.29 0.34 0.40 0.50 0.63

SBP 0.13 0.03 0.06 0.08 0.11 0.18 0.12 0.03 0.05 0.08 0.10 0.17

Standard deviation of SBP 0.09 0.02 0.04 0.06 0.08 0.13 0.08 0.02 0.04 0.05 0.07 0.12

Smoking 0.10 0.02 0.04 0.06 0.09 0.16 0.11 0.02 0.04 0.06 0.10 0.19

Townsend 0.48 0.17 0.24 0.32 0.43 0.58 0.48 0.17 0.24 0.31 0.43 0.56

Missing level (distribution dissimilarity to the overall practice average)

Missing level of Cholesterol 0.07 0.01 0.02 0.04 0.08 0.14 0.09 0.01 0.03 0.05 0.09 0.16

Missing level of HDL 0.09 0.01 0.03 0.05 0.09 0.18 0.11 0.01 0.03 0.06 0.11 0.21

Missing level of Nelson-Aalen estimator 0.04 0.00 0.01 0.02 0.03 0.06 0.03 0.00 0.01 0.02 0.03 0.06

Missing level of BMI 0.12 0.01 0.03 0.07 0.12 0.22 0.13 0.01 0.04 0.08 0.13 0.24

Missing level of ratio of Cholesterol and HDL 0.09 0.01 0.03 0.05 0.09 0.18 0.11 0.01 0.03 0.06 0.11 0.21

Missing level of ethnicity 0.26 0.04 0.10 0.16 0.24 0.43 0.28 0.05 0.11 0.18 0.25 0.44

Missing level of SBP 0.09 0.01 0.02 0.05 0.09 0.17 0.08 0.01 0.02 0.05 0.08 0.14

Missing level of standard deviation of SBP 0.07 0.00 0.02 0.04 0.07 0.14 0.08 0.01 0.02 0.05 0.08 0.15

Missing level of smoking 0.10 0.01 0.03 0.06 0.10 0.18 0.11 0.01 0.03 0.06 0.11 0.19

Missing level of townsend 0.02 0.00 0.00 0.01 0.02 0.02 0.01 0.00 0.00 0.01 0.02 0.02



eFigure 1 Stability metrics of all QRISK3 CVD predictors and their missing level on practice level



eFigure 2-1. Effects of practice variability on QRISK3 linear predictor (random slope) (20% of overall CPRD practices)



eFigure 2-2. Effects of practice variability on QRISK3 linear predictor (random slope) (50% of overall CPRD practices)



eFigure 2-3. Effects of practice variability on QRISK3 linear predictor (random slope) (60% of overall CPRD practices)



eFigure 3. Difference of individual patients’ prediction between practice with 2.5% random slope and 97.5% slope 
and a random selected fixed random intercept
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