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Abstract

Fragile digital watermarking has been applied for authentication and alteration detection in images. Utilizing the cosine and Hartley
transforms over finite fields, a new transform domain fragile watermarking scheme is introduced. A watermark is embedded into a host
image via a blockwise application of two-dimensional finite field cosine or Hartley transforms. Additionally, the considered finite field
transforms are adjusted to be number theoretic transforms, appropriate for error-free calculation. The employed technique can provide
invisible fragile watermarking for authentication systems with tamper location capability. It is shown that the choice of the finite field
characteristic is pivotal to obtain perceptually invisible watermarked images. It is also shown that the generated watermarked images
can be used as publicly available signature data for authentication purposes.
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1 INTRODUCTION

Finite field transforms link two sequences of data according to a
general pair of relationships given by

Vk =
N−1

∑
i=0

viK(i,k,ζ ), k = 0,1, . . . ,N−1, (1)

vi =
N−1

∑
k=0

VkK−1(i,k,ζ ), i = 0,1, . . . ,N−1, (2)

where v = (v0 v1 · · ·vN−1) and V = (V0 V1 · · ·VN−1) are data vec-
tors of length N with elements defined over a certain Galois field;
K(·, ·, ·) and K−1(·, ·, ·) are the forward and inverse transforma-
tion kernels, respectively; and ζ is a fixed element of the given
Galois field [1].

In this framework, the concept of number theoretic transforms
arises. If, for each vector v with components defined over GF(p),
its associated transform pair V has also components defined over
GF(p), then the transformation is said to be a number theoretic
transform (NTT) [2]. Number theoretic transforms have been
subject of much interest, because of their capability of exact cal-
culation. Being all operations required by an NTT performed in
a finite field, there are no errors due to rounding or truncation.
Consequently, in principle, the possibility of error-propagation
is eliminated.
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The first proposed NTT, due to Pollard [3], is a Fourier-
like transform often called finite field Fourier transform (FFFT).
Since its introduction, the FFFT was submitted to several gener-
alizations [4, 5] and further methods were devised [6, 7, 8, 9, 10,
2, 11, 12, 13].

Standard number theoretic transforms have been employed in
different frameworks, such as: (i) fast calculation of convolutions
and correlations [14, 15, 16]; (ii) algebraic coding theory [17];
and (iii) very large number multiplication [18]. In the past years,
it was observed a broadening of the NTT range of applications.
Other topics of research have also been benefited from the uti-
lization of NTT approaches. Just to illustrate some of them,
one could cite: (i) solving Toeplitz system of equations [19];
(ii) speech coding problems [20]; and (iii) fast matrix multipli-
cation [21]. Two-dimensional number theoretic transforms were
subject to a comprehensive exposition in [22]. Additionally, im-
age processing problems, involving motion estimation [23] and
geometrical rotation [24], were also addressed. In [25], Tamori et
al. suggested the use of the Fourier-based NTT to provide a frag-
ile watermarking scheme. In the current work, this specific tech-
nique is denominated Tamori-Aoki-Yamamoto scheme.

Generally, a watermarking operation consists of encapsulat-
ing a given information (e.g., an image) into raw image data.
The former is the watermark, the latter is the image to be water-
marked. Frequently, the watermark is required to be perceptu-
ally transparent. Invisible watermarks are typically categorized
in two different models: robust or fragile watermarking. De-
pending on the purpose of the watermarking, robust or fragile
schemes are chosen. Robust watermarks are designed to en-
dure a variety of data manipulations, such as adjustments of the
compression ratio, filtering, cropping, or scaling. Therefore, ro-
bust watermarks are suitable in situations involving misappropri-
ation of data, such as ownership assertion and copyright enforce-
ment [26]. Despite of this, because of its robustness, this class of
watermarking methodology is in part ineffectual for recognizing
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tampering.
On the other hand, fragile watermarking schemes can furnish

the necessary tools for authentication and integrity attestation. In
fact, fragile watermarking techniques are supposed to detect tam-
pering and determine the identity of the data originator with high
probability [26, 27]. However, fragile watermarks are not ade-
quate in situations that require copyright verification. Since min-
imal image alterations are expected to promptly damage frag-
ile watermarks, fragile watermarking can not properly deal with
misappropriation issues.

Several fragile watermarking techniques have been proposed,
usually, with the purpose of still image authentication. A
glimpse of the current investigations embraces works on simul-
taneously robust and fragile systems [28]; authentication meth-
ods for JPEG images [29, 30]; protection of video communi-
cations [31]; and tamper detection with the aid of wavelet de-
compositions [32, 33]. Some non-conventional applications have
also been reported, such as blind estimation of the quality of
communication links [34], and image quality assessment [35].

In account of the above, the number theoretic transforms arise
as a natural tool to provide fragile watermarking methods. Since
(i) the NTT domain has no physical meaning, such as harmonic
content, and (ii) the concept of energy over a finite field is not
clear, any perturbation on a data sequence produces a dramatic
alteration of its associated number theoretic transformed se-
quence. Moreover, all computations required by an NTT are in-
teger modular arithmetic, which can be efficiently implemented.

The aim of this paper is twofold. First, an amplification
of the Tamori-Aoki-Yamamoto fragile watermarking scheme is
sought [25]. To explore this line, finite field trigonometry and
trigonometrical transforms are employed [9, 10, 2, 11, 12, 13].
Second, a new mode of operation for the discussed watermark-
ing scheme is suggested. The original method by Tamori et al.
is categorized as a private watermarking system. In the present
study, the proposal of a signature method with the ability of tam-
per detection and location is made.

The rest of the paper is organized as follows. Section 2 is de-
voted to the finite field trigonometry theory. Central aspects of
finite field transforms are also outlined. Mainly, the focus is di-
rected to the finite field cosine transform (FFCT) and to the finite
field Hartley transform (FFHT). In Section 3, the fragile water-
marking technique proposed in [25] is described. Then, a new
modus operandi for the discussed watermarking scheme is elab-
orated in Section 4. Finally, computational results are presented
in Section 5. Concluding remarks are given in Section 6.

2 FINITE FIELD TRIGONOMETRICAL TRANSFORMS

In a series of papers [10, 9, 12, 11, 13] by Campello de Souza
and collaborators, a trigonometry over finite fields was derived.
Equipped with such trigonometrical tools, it is possible to de-
fine finite field transforms other than Pollard’s Fourier transform
over finite fields [3]. In particular, the finite field trigonometry
successfully offers a formalism to encompass the finite field co-
sine transform and the finite field Hartley transform.

In this section, the theory of finite field trigonometry is briefly
discussed and its major properties are emphasized. This is neces-

sary to pave the way for subsequent definitions of the finite field
trigonometrical transforms.

Let GF(p) be a Galois field with odd characteristic p. If
p ≡ 3 (mod 4), then it is possible to construct an extension
field GF(p2) using the solution of the irreducible polynomial
x2 + 1 = 0 [6]. In addition, this extension field is isomorphic
to the Gaussian integer field GI(p) = {a+ jb : a,b ∈ GF(p)},
where j2 ≡ −1 (mod p). Furthermore, compared to the usual
complex numbers, the Gaussian integers enjoy similar arithmetic
operation rules.

For a given element ζ ∈GI(p) with multiplicative order N, the
trigonometrical cosine and sine functions are defined by [10, 11]

cos(i),
ζ i +ζ−i

2
, i = 0,1, . . . ,N−1, (3)

sin(i),
ζ i−ζ−i

2 j
, i = 0,1, . . . ,N−1, (4)

respectively. Remarkably, for each ζ in GI(p), the trigonometri-
cal functions define a different mapping. Moreover, unlike their
real field counterparts, the finite field cosine and sine can assume
complex values, since ζ is a Gaussian integer.

The following definition and lemma provide means to circum-
vent the need of complex arithmetic.

Definition 1 (Unimodularity [13]) An element a+ jb ∈ GI(p)
is unimodular if a2 +b2 ≡ 1 (mod p). �

In other words, unimodular elements have unitary Gaussian in-
teger norm, denoted by n(a+ jb), a2 +b2 (mod p) [36].

Besides, if ζ has unitary norm, then the computation of
trigonometrical functions are simplified, as it is shown in the fol-
lowing lemma. Let the real and the imaginary parts of a Gaussian
integer a+ jb, where a,b ∈GF(p), be denoted by ℜ(a+ jb) = a
and ℑ(a+ jb) = b, respectively.

Lemma 1 (Real Cosine and Sine [2]) If ζ ∈GI(p) is unimodu-
lar with multiplicative order N, then cos(i) = ℜ(ζ i) and sin(i) =
ℑ(ζ i), i = 0,1, . . . ,N−1.

Proof: Manipulating the cosine function expression (Equation 3)
yields

cos(i) =
ζ i +ζ−i

2
(5)

=
ζ i +(ζ i)−1

2
. (6)

Let ζ i = a+ jb, where a,b∈GF(p). Then, by usual arithmetical
operations, the inverse of ζ i is given by

(ζ i)−1 =
a− jb
a2 +b2 =

a− jb
n(ζ i)

. (7)

On account of the fact that n(·) has a multiplicative property [36],
n(ζ i) = [n(ζ )]i = 1. Thus, the inverse of ζ i is equal to its com-
plex conjugate a− jb. Therefore, it yields

cos(i) =
(a+ jb)+(a− jb)

2
(8)

= a = ℜ(ζ i). (9)
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A comparable derivation can be obtained for the sine function.
�

This result is of paramount importance. Once a unimodular el-
ement ζ is chosen, any arithmetic manipulation involving finite
field cosine or sine functions results in quantities defined over the
ground field GF(p). Therefore, the unimodularity of ζ is a suffi-
cient condition for the definition of number theoretic transforms
that utilize the finite field cosine or sine. Under this condition,
two consequences are accomplished: (i) the finite field trigono-
metrical functions induce no complex arithmetic operations and
(ii) all related computations are performed by means of modular
integer arithmetic. In terms of computational implementation,
these two properties are significant.

2.1 FINITE FIELD COSINE TRANSFORM

Early investigations on the finite field discrete cosine transform
were reported in [22]. Independently, an extended study of the
FFCT, based on the finite field trigonometry, was introduced
in [9]. A comprehensive derivation and detailed proofs of related
FFCT theorems are described in [9].

Generally, the FFCT is a transformation that provides a spec-
trum that is not in GF(p), thereby exhibiting a complex nature.
Nevertheless, for carefully selected unimodular ζ values, it is
possible to ensure that the FFCT spectrum assumes purely real
quantities. Consequently, the FFCT becomes an NTT. In the
present study, only the NTT case is of interest. The following
simplified presentation of the FFCT is formulated to guarantee a
real spectrum.

Definition 2 (FFCT [9, 22]) For a given unimodular element
ζ ∈ GI(p) with multiplicative order 4N, the FFCT maps an N-
dimensional vector with elements vi ∈ GF(p), i = 0,1, . . . ,N−
1, into another vector with components Vk ∈ GF(p), k =
0,1, . . . ,N−1 according to

Vk ,
N−1

∑
i=0

2vi cos
(
(2i+1)k

)
, (10)

for k = 0,1, . . . ,N−1. �

An inversion formula can be derived and is given by the follow-
ing expression [9, 22]:

vi =
1

N (mod p)

N−1

∑
k=0

akVk cos
(
(2i+1)k

)
, (11)

for i = 0,1, . . . ,N−1. The auxiliary sequence a is defined by

ai =

{
2−1 (mod p), if i = 0,
1, otherwise,

(12)

for i = 0,1, . . . ,N−1.
Table 1 brings a list of adequate unimodular ζ elements to be

used in the definition of cosine and sine functions in order to
make the FFCT act as an NTT.

Table 1: Suitable values of ζ and the associated transform block-
length N for the FFCT over several finite fields GF(p)

p N ζ

7 2 ±2±2 j
11 3 ±3±5 j
19 5 ±4±2 j, ±3±7 j

23
2 ±9±9 j
3 ±8±11 j
6 ±10±4 j, ±4±10 j

31
2 ±4±4 j
4 ±13±7 j, ±7±13 j
8 ±11±2 j, ±10±5 j, ±5±10 j, ±2±11 j

43 11 ±9±7 j,±3±11 j,±13±2 j,±8±18 j,±20±17 j

47

2 ±20±20 j
3 ±6±23 j
4 ±22±9 j, ±9±22 j
6 ±16±11 j, ±11±16 j
12 ±19±4 j, ±4±19 j, ±18±10 j, ±10±18 j

127a

2 ±8±8 j
4 ±24±21 j, ±21±24 j
8 ±30±25 j, ±59±40 j

16
±29 ± 7 j, ±41 ± 15 j, ±49 ± 34 j, ±60 ± 46 j,
±67±46 j

32 ±22±5 j, ±23±19 j, ±39±2 j, ±2±39 j, ±38±
9 j, ±45±32 j

aSelected ζ values only.

2.2 TWO-DIMENSIONAL FFCT

As the kernel of FFCT is separable, it follows that the two-
dimensional FFCT can be performed by successive calls of the
one-dimensional FFCT applied to the rows of the image data;
then to the columns of the resulting intermediate calculation. In-
voking the Equation 10, the two-dimensional finite field cosine
transform can be synthesized in matrix form. Let C be the FFCT
matrix, whose elements are given by

ci,k = 2cos
(
(2i+1)k

)
, i,k = 0,1, . . . ,N−1. (13)

The two-dimensional FFCT of an N ×N image data D can be
simply written as

D̂ = C ·D ·CT , (14)

where the superscript T is the transposition operation. The ma-
trix formulation for the inverse transformation can be obtained
in a similar way:

D = C−1 · D̂ · (C−1)T , (15)

where, according to Equation 11, the elements of C−1 are given
by

c′i,k =
1

N (mod p)
ak cos

(
(2i+1)k

)
, i,k = 0,1, . . . ,N−1,

(16)
and the quantities ak are defined in Equation 12.

2.3 FINITE FIELD HARTLEY TRANSFORM

Introduced independently in [7, 11], the definition of the FFHT
resembles the formalism of the conventional discrete Hartley
transform (DHT) [37].

Definition 3 (FFHT [11]) For a given ζ ∈ GI(p) with multi-
plicative order N, the FFHT relates two N-dimensional vectors

3



v and V, according to the following expression

Vk ,
N−1

∑
i=0

vi cas(ik), k = 0,1, . . . ,N−1, (17)

where

cas(i), cos(i)+ sin(i) (18)

=
(1− j)ζ i +(1+ j)ζ−i

2
(19)

is the finite field version of the Hartley function [37]. �

Consonant with the DHT theory, apart from the scaling factor
N−1 (mod p), the FFHT is a symmetrical transformation and its
inversion formula is given by [12, 11, 2, 10]

vi =
1

N (mod p)

N−1

∑
k=0

Vk cas(ik), i = 0,1, . . . ,N−1. (20)

Similar to the FFCT, the FFHT can exhibit a complex spec-
trum. Nevertheless, a judicious choice of ζ can effectively pre-
vent this behavior, making the components of the finite field
Hartley spectrum to be real. Again, unimodular elements are
taken into consideration. Table 2 lists some unimodular ζ ele-
ments for several fields, and the associated FFHT blocklength.

The FFHT can be written in terms of matrices. Let H be the
finite field Hartley matrix, whose elements hi,k are given by

hi,k = cas(ik), i,k = 0,1, . . . ,N−1. (21)

Consequently, the forward and inverse FFHT are expressed by

V = H ·v, (22)

v =
1

N (mod p)
H ·V, (23)

respectively.

2.4 TWO-DIMENSIONAL FFHT

Since the FFHT lacks a separable kernel, the two-dimensional
FFHT cannot be performed by successive calls of the one-
dimensional FFHT applied to the rows of an image data; and
then to its columns [37]. In fact, the procedure for the calcu-
lation of the 2-D FFHT is analogous to the one utilized for the
computation of the 2-D DHT [37]. Initially, a temporary matrix
T is computed, which is given by

T = H ·D ·H, (24)

where D is an N×N image and H is the finite field Hartley trans-
form matrix.

Subsequently, the two-dimensional FFHT of D is expressed
by

D̂ =
1
2

(
T+T(c) +T(r)−T(c,r)

)
, (25)

where T(c), T(r), and T(c,r) are built from the temporary ma-
trix T. Their elements are respectively given by ti,N− j (mod N),
tN−i (mod N), j, and tN−i (mod N),N− j (mod N), where ti, j are the ele-
ments of T, for i, j = 0, . . . ,N−1.

Table 2: Suitable values of ζ and the associated transform block-
length N for the FFHT over several finite fields GF(p)

p N ζ

3 2 2
4 j, 2 j

7
2 6
4 ± j
8 ±2±2 j

11

2 10
3 5±3 j
4 ± j
6 6±3 j
12 ±3±5 j

19

2 18
4 ± j
5 2±4 j, 7±3 j
10 12±3 j, 17±4 j
20 ±3±7 j, ±4±2 j

23

2 22
3 11±8 j
4 ± j
6 12±8 j
8 ±9±9 j
12 ±8±11 j
24 ±4±10 j, ±10±4 j

31

2 30
4 ± j
8 ±4±4 j
16 ±7±13 j, ±13±7 j
32 ±2±11 j, ±5±10 j, ±10±5 j, ±11±2 j

43

2 42
4 ± j
11 2±13 j, 7±9 j, 11±3 j, 18±8 j, 26±20 j
22 17±20 j, 25±8 j, 32±3 j, 36±9 j, 41±13 j

44 3±11 j, ±8±18 j, ±9±7 j, ±13±2 j, ±20±17 j,
40±11 j

47

2 46
3 23±6 j
4 ± j
6 24±6 j
8 20±20 j
12 6±23 j
16 ±22±9 j, ±9±22 j
24 ±16±11 j
48 ±19±4 j, ±4±19 j, ±18±10 j, ±10±18 j

127a

2 126
4 ± j
8 ±8±8 j
16 ±24±21 j, ±21±24 j
32 ±30±25 j, ±59±40 j

64
±29 ± 7 j, ±41 ± 15 j, ±49 ± 34 j, ±60 ± 46 j,
±67±46 j

128 ±22±5 j, ±23±19 j, ±39±2 j, ±38±9 j, ±45±
32 j

aSelected ζ values only.
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2.5 REVISITING THE FFFT

In the light of the finite field trigonometry, the classic finite field
Fourier transform [3] can be re-examined. Mimicking the defini-
tion of the standard discrete Fourier transform, one may consider
a Fourier-like finite field transform equipped with a kernel given
by cos(i)+ j sin(i), i ∈ GF(p). This kernel suggests the follow-
ing expression

Vk ,
N−1

∑
i=0

vi
(

cos(ik)+ j sin(ik)
)

(26)

=
N−1

∑
i=0

vi

(
ζ ik +ζ−ik

2
+ j

ζ ik−ζ−ik

2 j

)
(27)

=
N−1

∑
i=0

viζ
ik, k = 0,1, . . . ,N−1. (28)

Because ζ is an element of GI(p) ∼= GF(p2), the above deriva-
tion is a simplified construction of Pollard’s FFFT [3]. The orig-
inal FFFT definition considers a more general field, GF(qm),
where q = pr and m,r are positive integers [38]. Observe that the
Fourier kernel degenerates the finite field trigonometrical func-
tions into the powers of ζ . Therefore, if ζ ∈ GF(p), then the
FFFT can always act as an NTT. Otherwise, if ζ ∈ GI(p), then a
possibly complex spectrum can be obtained [14]. The inversion
formula is given by

vi =
1

N (mod p)

N−1

∑
i=0

Vkζ
−ik, i = 0,1, . . . ,N−1. (29)

A proof of the inversion formula can be found in [38].

3 FRAGILE WATERMARKING OVER FINITE FIELDS

In this section, a generalization of the Tamori-Aoki-Yamamoto
methodology is presented. In this derivation, instead of using
the Fourier-based NTT, as suggested in [25], a general number
theoretic transform is employed.

3.1 WATERMARK EMBEDDING

Let D be an image data to be watermarked. By means of mod-
ular arithmetic with respect to p, the image data can furnish its
residue part DR. Therefore, D can be written as

D = DR +DM, (30)

where DR≡D (mod p) and DM is an image containing elements
that are multiples of p.

The method consists of the insertion of a watermark image W
into the NTT spectrum of the residue of D. Let D̂R be the
2-D NTT of DR. Consequently, it follows that

D̂′R = D̂R +W (mod p), (31)

where D̂′R is the watermarked spectral contents of DR. Perform-
ing the inverse 2-D NTT on D̂′R results in a watermarked spatial
domain image D′R associated to the residue of the host image.

In view of that, the resulting final watermarked image D′ can
be derived as follows

D′ = D′R +DM. (32)

3.2 WATERMARK EXTRACTION

The inverse operation, watermarking extraction, can be imple-
mented in a similar way. First, one may compute the modular
residue of the original and the watermarked images:

DR = D (mod p), (33)
D′R = D′ (mod p). (34)

Both resulting residue images are submitted to an NTT appli-
cation. Afterwards, the watermark can be recovered from the
difference of the obtained NTT spectra:

W = D̂′R− D̂R (mod p), (35)

where D̂′R and D̂R are the number theoretic transform of D′R and
DR, respectively.

3.3 PRIVATE WATERMARKING OPERATION

The above described watermarking scheme is intended to be uti-
lized as a private watermarking technique for tampering detec-
tion and location, in which the receiver must have the original
image [25]. This is often the case in which the authority who
marks the data is also the interested party in verifying its in-
tegrity [26]. Therefore, an original image D is watermarked to
provide another image D′, which is transmitted. The genuineness
of D′ is confirmed when extracting an unaltered watermark.

Equation 32 reveals that, to produce watermarked images that
are perceptually transparent, the dynamic range of the elements
of D′R must not be excessively large. Otherwise, watermarked
images can present significant distortions. To illustrate this be-
havior, the originally proposed scheme was employed to em-
bed a given watermark (Figure 1(b)) into standard Lena por-
trait (Figure 1(a)) using two finite fields of different character-
istics: GF(13) and GF(73). The obtained watermarked images
are shown in Figure 1(c–d), respectively. The calculation over
GF(73) furnished an image whose degradation is visually per-
ceptible.

Indeed, the described experiment qualitatively demonstrates a
limitation in Tamori-Aoki-Yamamoto scheme. Because visually
transparent watermarked images are not always achievable, the
choice of finite fields becomes restricted to small values of p.

4 A SIGNATURE SYSTEM

Apart from the private watermarking mode of operating, the de-
scribed scheme can be interpreted from a different, new perspec-
tive. The present study proposes that the same system can be
also considered as a method for signature data generation.

The watermark embedding process is now understood as a sig-
nature generation operation. The output signature S is simply
defined as

S, D′, (36)

where the image D′ is obtained according to Equation 32. Once
obtained, the signature data can be made publicly available.

In this context, the original watermark extraction method be-
comes an authentication operation performed on raw data D. The

5



(a) 512×512 (b) 64×64

(c) 512×512 (d) 512×512

Figure 1: Private Watermarking using the FFFT. (a) Original im-
age, (b) watermark, (c) watermarked image in GF(13), (d) wa-
termarked image in GF(73).

input data to be verified is D, which is owned by the user. There-
fore, the associated signature data, which can be retrieved from
a trusted source, and the raw image can be submitted to the dis-
cussed method. An unaltered extracted watermark is an evidence
of the integrity and authenticity of D. In the case of a tampering
attack, either on D or on S, the extracted watermark can indicate
the data corruption location.

It is worthwhile to emphasize that the aim is not to produce
perceptually transparent watermarked images. Therefore, this
approach completely diminishes the sensitivity to the value of the
field characteristic, as experienced in the original methodology.

Again because the NTT transform domain lacks a physical
meaning, even an alteration in the least significant bit of a signal
can render a totally different NTT spectrum. This is a desirable
property. No matter how subtle, tampering can produce strik-
ingly noticeable differences in the recovered watermark. Con-
sequently, this approach can verify the authenticity and integrity
of raw digital data, providing means to spatially locate alteration
regions.

5 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, some computational experiments are performed
to validate the proposed methods. Selected standard images
available at the University of Southern California Signal and Im-
age Processing Institute (USC-SIPI) Image Database [39] were
submitted to the suggested watermarking scheme. Private water-
marking and signature generation functionalities of the method
were explored, with the application of the two-dimensional finite
field cosine and Hartley transforms.

Generally the dimensions of a practical number theoretic

Original Image Blockwise Transformed

Image

2−D NTT
N

Figure 2: A blockwise two-dimensional transform application.
The size of the the dashed blocks matches the two-dimensional
transform blocksize N×N.

transformation matrix N×N are smaller than usual image sizes.
Typical values of the transform size N are given in Table 1 and 2.
Therefore, the required two-dimensional transforms are obtained
conforming to a blockwise computation. This approach simply
consists of decomposing a given host image into adjacent, equal
sized, nonoverlapping blocks. These constituent blocks must
match the dimensions of the considered two-dimensional trans-
formation matrix. After that, each block is transformed and the
resulting 2-D spectral blocks are reassembled, which results in
a blockwise transformed image. Figure 2 illustrates the process.
Accordingly, the discussed watermarking schemes are applied
blockwise as well.

Considering the FFCT, a raw image (Figure 3(a)) was pro-
cessed and furnished the watermarked data displayed in Fig-
ure 3(c). Figure 3(d) shows the original image after the intro-
duction of random artifacts on its pixel values. The modification
consisted of incrementing the image pixels by one with proba-
bility 10−2. A wavy pattern was selected as the watermark (Fig-
ure 3(b)) and an FFCT over GF(7) with blocksize of two was
chosen. Over GF(7), a possible choice is ζ = 2+2 j, which in-
duces an NTT of length equal to 2. This small blocksize was able
to sharply indicate tampering locations (Figure 3(e)).

Similar results were obtained with the aid of the FFHT. Using
an 8-point 2-D FFHT over GF(31) (ζ = 4+4 j), a modification
introduced into a raw image (Figure 4(a)) could be detected and
assessed. Differently from the previous experiment, a smaller
watermark was utilized (Figure 4(b)). After the calculations, the
recovered watermark image (Figure 4(e)) clearly discloses the
tampering and shows the interfered regions. Actually, the use
of a small transform blocklength made possible to provide infor-
mation on the nature of the modification. In this case, a small
text had been written on the original image. If a larger transform
were employed, this capability would be reduced, because the
recovered watermark would present the tampered areas in larger
blocks. Ultimately the accuracy of the tampering location would
be mitigated.

Figures 5 and 6 illustrate the signature operation proposed in
the current work. An original image (Figure 5(a)) was processed
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with the inclusion of a watermark (Figure 5(b)). Consequently,
the signature image data depicted in Figure 5(c) was obtained.
Being the calculations over GF(127), a visually low-quality im-
age was attained. However, this is not important, because the
Figure 5(c) is only intended to be used as signature data. Only
its mathematical properties are relevant. A tampering consisting
of incrementing a single pixel at position (100,100) was applied
to the original image, and Figure 5(d) was derived. The output
of the authentication system is shown in Figure 5(e). As the cho-
sen ζ for this calculations was 2+ 39 j, the transform blocksize
was 32. Therefore, the precision of tampering positioning is re-
stricted to 32×32 pixel regions.

For an improved tampering location accuracy, one may con-
sider shorter transforms, as in the experiment depicted in Fig-
ure 6. After signature generation in GF(251) using the FFHT
with ζ = j (Figure 6(c)), the host data (Figure 6(a)) was ma-
liciously tampered. Figure 6(d) shows that a forged image is
introduced. This specific ζ implies a 4-point transform, which
provides a potentially adequate tampering location accuracy. The
recovered watermark clearly discriminates the modification site
(Figure 6(e)).

Given a fixed subject image (Lena portrait), water-
marked/signature images were generated via the method dis-
cussed herein, for all possible finite fields with characteristic
ranging from 3 to 251. Both FFCT and FFHT were considered
and ζ was chosen in such a way that 4-point 2-D transforma-
tions were guaranteed. Subsequently, the peak signal-to-noise
ratio (PSNR) was adopted as a measure of the image deterio-
ration after the watermarking process. For small values of p,
visually imperceptible watermarks can be produced, since the
resulting images present high PSNR values. However, for large
values of p, the image quality becomes unacceptable for invis-
ible watermarking purposes. Despite of that, for signature data
generation, obtaining low PSNR values becomes less relevant.
Quantitative data concerning the image degradation are summa-
rized in Figure 7.

6 CONCLUSION

The utilization of finite fields as an avenue for fragile watermark-
ing was explored. The watermarking scheme suggested in [25]
was amplified and generalized by the introduction of finite field
trigonometrical transforms, such as the finite field cosine and
Hartley transforms. The new proposed methodology generates
signature data that can provide image authentication as well as
tampering location capability.
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