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Abstract—A successful approach to image quality assessment
involves comparing the structural information between a dis-
torted and its reference image. However, extracting structural
information that is perceptually important to our visual system
is a challenging task. This paper addresses this issue by employing
a sparse representation-based approach and proposes a new
metric called the sparse representation-based quality (SPARQ)
index. The proposed method learns the inherent structures of
the reference image as a set of basis vectors, such that any
structure in the image can be represented by a linear combination
of only a few of those basis vectors. This sparse strategy is
employed because it is known to generate basis vectors that
are qualitatively similar to the receptive field of the simple
cells present in the mammalian primary visual cortex [1]. The
visual quality of the distorted image is estimated by comparing
the structures of the reference and the distorted images in
terms of the learnt basis vectors resembling cortical cells. Our
approach is evaluated on six publicly available subject-rated
image quality assessment datasets. The proposed SPARQ index
consistently exhibits high correlation with the subjective ratings
on all datasets and performs better or at par with the state-of-
the-art.

Index Terms—Dictionary learning, Image quality, sparse rep-
resentation, structural similarity.

I. INTRODUCTION

D IGITAL images incur a variety of distortions during the
process of image acquisition, compression, transmission,

storage or reconstruction. These often degrade the visual
quality of images. In order to monitor, control and improve
the quality of images produced at the various stages, it is
important to automatically quantify the image quality. Since
the end-users of the majority of image-based applications are
humans, this requires the understanding of human perception
of image quality, and mimicking it as closely as possible.

The mean squared error (MSE) and the peak signal-to-
noise ratio (PSNR) have been traditionally used to measure
the image quality degradations. These metrics, although math-
ematically convenient, fail to correlate well with human per-
ception [2]. A considerable amount of research effort has been
put towards quantifying the quality of images as perceived by
humans, and a number of objective image quality assessment
algorithms that agree with the subjective judgment of human
beings have been developed. The objective quality assessment
methods, depending on whether or not they use some or
all the information about the original undistorted image, are
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broadly classified into three categories: no-reference, reduced-
reference and full-reference [3]. This paper concentrates on the
full-reference quality estimation approach.

The earlier focus of full-reference image quality assess-
ment research has been on building a comprehensive and
accurate model of the human visual system (HVS) and its
psychophysical properties, such as the contrast sensitivity
function. In this approach, the errors between the distorted and
the reference images are quantized and pooled according to the
HVS properties [4]. These methods require precise knowledge
of the viewing conditions and are computationally demanding.
Despite this complexity, the HVS modeling-based methods can
only make linear or quasilinear approximations of the highly
non-linear HVS. Our current understanding of the HVS is also
limited in many aspects. Consequently, these methods are not
highly superior to MSE or PSNR [5].

The interest of modern image quality estimation research
lies in modeling the content of the images based on cer-
tain significant properties of the HVS. This visual fidelity-
based approach is more attractive because of its practicality
and mathematical foundation [6], [7]. The majority of these
fidelity-based methods attempt to quantify the perceptual qual-
ity either in terms of statistical information [8], [9] or in terms
of structural information of the images [5], [10]–[14]. The
statistical approaches hypothesize that the HVS has evolved
over the years to extract information from natural scenes and
therefore, use natural scene statistics to estimate the perceptual
quality of images. The structural approaches on the other hand
operate on the basis of a rather important aspect of the HVS
- its sensitivity towards the image structures for developing
cognitive understanding. In this approach, image quality is
estimated in terms of the fidelity of structures between the
reference and the distorted images.

The representative image quality metric of the class of
structural information-based metrics is the structural similarity
index (SSIM) [10]. SSIM treats the non-structural distortions
(such as, luminance and contrast change) separately from the
structural distortions. The quality of a patch in the distorted
image is measured by comparing it with the corresponding
patch in the original image in terms of three components:
luminance, contrast and structure. A global quality score
is computed by combining the effects of the three compo-
nents over all image patches. SSIM achieved much success
because of its simplicity, and its ability to tackle a wide
variety of distortions. Due to its pixel-domain implementa-
tion, SSIM is highly sensitive to geometric distortions like
scaling, translation, rotation and other misalignments [4]. To
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Fig. 1. Overview of the proposed image quality assessment approach

improve the performance of SSIM, multiscale extension [11],
wavelet transform-based modification [14], gradient-domain
implementation [12] and various pooling strategies [13], [15]
have been proposed.

The underlying assumption behind utilizing the structural
information is that the HVS uses the structures extracted from
the viewing field for its cognitive understanding. Therefore, a
high-quality image is expected to preserve all the structural
information of the reference image. From this viewpoint,
efficiently capturing the structural information of images is
the key to developing successful image quality assessment
algorithms. But extracting the structural information in a
perceptually meaningful way is a non-trivial task. A widely
used mathematical tool for analyzing image structures is the
wavelet transform. Its basis elements, being spatially localized,
oriented and of bandpass in nature, resemble the receptive field
of simple cells in the mammalian primary visual cortex (also
known as the striate cortex and V1) [1], [4]. However, the
wavelet transform uses a set of predefined, data-independent
basis functions - the success of which is often limited by the
degree as to how suitable they are in capturing the structure
of the signals under consideration.

We consider a more generalized approach to analyzing
signal structures. This involves learning a set of basis elements
that are adapted to represent the inherent structures of the
signal in question. These learnt basis elements are collectively
known as a dictionary. Such learning can be accomplished by
fitting a set of basis vectors to a collection of training samples.
As each basis vector is tailored to represent a significant part
of the structures present in the given data, a learnt dictionary is
more efficient in capturing the structural information compared
to a predefined set of bases.

More importantly, this approach empowers us to build a
cortex-like representation of an image. In 1996, Olshausen
and Field have shown that basis elements that resemble the
properties of the receptive field of simple cells in the primary

visual cortex can be learnt from the input images [1]. They
showed that the keys to building such a cortex-like dictionary
are: (i) a sparsity prior - an assumption that it is possible
to describe the input image using a small number of basis
elements, and (ii) overcompleteness - the number of basis
elements in the dictionary is greater than the vector space
spanned by the input. Until recently, this important result was
not exploited to its full strength in the field of signal or image
processing. In the last few years, several practical dictionary
learning algorithms have been developed [16], [17]. It has been
shown that the data-dependent, learnt dictionaries, due to their
superior ability to model the inherent structures in the data,
can outperform predefined dictionaries like wavelets in several
image processing tasks [16], [18], [19].

In this paper, we develop a full-reference image quality
assessment metric which we name the sparse representation-
based quality (SPARQ) index. The metric relies on capturing
the inherent structures of the reference image in a perceptually
meaningful way. To achieve this, an overcomplete dictionary
and its corresponding sparse representation are learnt from
local patches of the image. The local structures in the distorted
image are decomposed using the basis vectors of the learnt
dictionary and the resulting sparse coefficients are used to
quantify the perceptual quality of the distorted image with
respect to the reference image. As our method analyzes the
image structures by building a cortex-like model of the stim-
uli, the extracted information is expected to be perceptually
meaningful. This is much different from existing structural
information-based methods which, although successful, pro-
vide no evidence on the perceptual importance of the structural
information they extract from images. To evaluate the efficacy
of the proposed metric, we perform various experiments on
six publicly available, subject-rated image quality assessment
datasets: LIVE [20], A57 [21], CSIQ [22], MICT [23] and
WIQ [24]. The proposed SPARQ index consistently exhibits
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high correlation with the subjective scores and often outper-
forms its competitors.

The rest of the paper is organized as follows. Section II
describes the proposed quality estimation approach, followed
by the experimental results and discussions in Section III. Sec-
tion IV concludes the article and suggests possible directions
to future work.

II. THE PROPOSED APPROACH

Our image quality assessment method is divided into two
phases: a training phase and a quality estimation phase. The
goal of the training phase is to model the inherent structures
of the reference image in a perceptually meaningful way. This
is achieved by learning an overcomplete dictionary from the
reference image. In the quality estimation phase, a quality
score, namely the SPARQ index, is computed by comparing
the information in selected regions of the reference image with
those in the distorted image. Figure 1 presents an overview of
the proposed method, and the steps are described below in
detail.

A. Training Phase

This step involves learning (i) a dictionary i.e. set of basis
vectors whose properties resemble those of the receptive field
of simple cells in primary visual cortex, and (ii) the weights
by which these basis elements are mixed together.

1) Motivation behind learning a cortex-like dictionary: The
motivation of this approach comes from the very process of
image formation and how is it perceived by the HVS. The nat-
ural viewing field is highly structured and spatially correlated.
The light rays that reflect off various structures in the viewing
field, get focused onto an array of photoreceptors present
in the retina. The information is then encoded in the form
of complex statistical dependencies among the photoreceptor
activities [25]. The goal of primary visual cortex, as indicated
in several seminal studies [1], [25], is to reduce these statistical
dependencies in order to discover the intrinsic structures that
gave rise to the image.

A reasonable strategy towards mimicking this phenomena
is to describe an image in terms of a linear superposition of
a few basis vectors. These basis vectors form a subset of an
overcomplete set of basis vectors (dictionary) that are adapted
to the given image so as to best represent the structures in the
images [1], [25]. It has been shown that on employment of
this strategy, the basis elements that emerge are qualitatively
similar to the receptive field of the cortical simple cells [1].
The conjecture that sparsity is an important prior is based on
the observation that natural images contain sparse structures
and can be described by a small number of structural primitives
like lines and edges [25], [26]. Due to overcompleteness, the
basis vectors are also non-orthogonal and the input-output
relationship deviates from being purely linear. The justification
of deviating from a strictly linear approach is to account for
a weak form of nonlinearity exhibited by the simple cells
themselves [25].

2) Learning a dictionary: Given a reference image, Iref ∈
RN , we intend to learn an overcomplete dictionary. This can
be achieved by fitting the basis vectors in the dictionary to
represent the local structures of the image.

To account for the local structures in an image, a large
number of distinct, possibly overlapping patches of dimension√
n×
√
n are extracted randomly from Iref . Ideally, one patch

centerd at every pixel should be extracted; but in practice,
extracting any large number of patches is sufficient for learning
a good dictionary. After extracting a large number of random
patches, the patches with low or no structural information
i.e. the homogeneous patches are discarded. This is done
by removing the patches whose variance is zero or close to
zero after mean removal. A number of k patches are then
selected from the set of the informative patches. Each image
patch is converted to a vector of length n. These patches are
concatenated to form a matrix P ∈ Rn×k where k is the
number of patches extracted from Iref and the columns of
P are the patch vectors. From these patches, a dictionary
Φ = {φi}mi=1, φi ∈ Rn is learnt. We are interested in the
overcomplete case where n < m i.e. when Φ has more basis
vectors than the dimensionality of the input. An overcomplete
dictionary offers greater flexibility in representing the essential
structures in a signal. It is also robust to additive noise,
occlusion and small translation [27].

However, greater difficulties arise with overcompleteness,
because a full-rank, overcomplete Φ creates an underdeter-
mined system of linear equations having an infinite number
of solutions. To narrow down the choice to one well-defined
solution, an additional constraint of sparsity is enforced. Let,
the sparse representation of P over the dictionary Φ be
denoted by X = {xi}ki=1, xi ∈ Rm where any patch vector
in P can be represented by a linear superposition of no more
than τ dictionary columns where τ << m. This is formally
written as the following optimization problem:

min
{Φ,X}

{
‖P−ΦX‖2F

}
subject to ‖x‖0 ≤ τ (1)

where ‖.‖F is the Frobenius norm (square root of the sum of
the squared values of all elements in a matrix) and ‖.‖0 is the
`0 semi-norm that counts the number of non-zero elements in a
vector. Although the `0 norm provides a straightforward notion
of sparsity, it renders the problem non-convex. Thus obtaining
an accurate solution of (1) is NP hard. Nevertheless, in the last
few years researchers have found practical and stable ways to
solve such underdetermined systems via convex optimization
[28] and greedy pursuit algorithms [29].

To solve (1), a recently developed learning algorithm,
known as the K-SVD [16] is employed. K-SVD iteratively
solves (1) by performing two steps at each iteration: (i) sparse
coding and (ii) dictionary update. In the sparse coding step,
Φ is kept fixed and the coefficients in X are computed by
a greedy algorithm called the orthogonal matching pursuit
(OMP) [29].

min
X

{
‖P−ΦX‖2F

}
subject to ‖x‖0 ≤ τ (2)

In the dictionary update step, each basis element φi ∈ Φ is
updated sequentially, allowing the corresponding coefficients
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in X to change as well. Updating an element φi involves
computing a rank-one approximation of a residual matrix Ei.

Ei = Ỹi − Φ̃iX̃i (3)

where Φ̃i and X̃i are formed by removing the i-th column
from Φ and the i-th row from X, and Ỹi contains only those
columns of Y that use φi for their approximation. The rank-
one approximation is computed by subjecting Ei to a Singular
Value Decomposition (SVD). For the details of this learning
algorithm, please refer to the original K-SVD paper [16].

B. The Quality Estimation Phase

This part of our method first compares the reference and
the distorted images locally, and then yields a global value as
the measure of perceptual quality of the distorted image. This
is accomplished through the following steps:

1) Detection of salient patches: It is well-known that not
every pixel (or region) in an image receives the same level
of visual attention. Several studies have shown that significant
improvement in performance of the quality metrics can be
achieved by incorporating information about visual attention
i.e. by detecting perceptually important regions [30]–[32].

A common hypothesis is that the HVS is an efficient extrac-
tor of information, and therefore the image regions that contain
high information attract more visual attention [13], [15]. Based
on this hypothesis, we take an information theoretic approach
towards detecting the visually important regions or patches.
One way to quantify the local information content of an image
is by computing the Shannon’s entropy of each patch. The
information content or entropy of a discrete random variable
z with probability distribution Pz = {p1, p2, ..., pJ} is defined
as

H (z) = H (Pz) = −
J∑

j=1

pj log2 pj (4)

Similarly, an image patch can also be analyzed as a random
variable. Let us consider an image patch z of dimension√
n×
√
n where each pixel in z is independent and identically

distributed. If z contains J distinct intensity values, its proba-
bility distribution, Pz , is given by Pz = {p1, p2, ..., pJ}, where
J ≤ 28 for an 8-bit grayscale image; pj is the probability of
the pixel intensity value j. The probability pj is defined as
pj = fj/n, where fj is the number of pixels (frequency) with
intensity value j occurs in the image patch z and n is the total
number of pixels in z. The entropy of every

√
n×
√
n patch (a

patch around every pixel) in the reference image Iref ∈ RN

is computed as

H (z) = −
J∑

j=1

pj log2 pj = −
1

n

J∑
j=1

fj log2 (fj/n) (5)

The larger the value of H , the higher is the information content
of a patch.

A number of q patches having the highest entropy values
are selected as the salient patches in Iref . These patches are
vectorized and arranged as columns of a matrix Pr ∈ Rn×q .
The locations of these q patches are used to extract the
corresponding patches from the distorted image Idis ∈ RN .

The matrix containing the patches from the distorted image is
denoted as Pd ∈ Rn×q . An example of this process is provided
in Fig. 2 which shows a reference image, its local entropy
map, the salient patches selected in the reference image and
the corresponding patches selected in the distorted image.

2) Computation of the SPARQ index: At this point, we
have two sets of corresponding salient patches Pr and Pd

extracted from the same locations of the reference and the
distorted images. The next task is to analyze and compare
these structures (patches) w.r.t. the previously learnt dictionary
Φ.

Let us consider a patch vector pr ∈ Pr from Iref and its
corresponding patch vector pd ∈ Pd from Idis. The patches
pr and pd are decomposed using Φ to obtain their respective
sparse coefficients xr and xd.

min
xr

{
‖pr −Φxr‖22

}
subject to ‖xr‖0 ≤ τ (6)

min
xd

{
‖pd −Φxd‖22

}
subject to ‖xd‖0 ≤ τ (7)

Note that, each of xr and xd contains only τ non-zero
elements. The locations (indices) of these non-zero coefficients
indicate those specific basis vectors in Φ which actually
contribute to the approximation of the input patch. These
active basis vectors are called the support of the input. The
amplitudes of these non-zero coefficients are the weights by
which these support vectors are combined. The support vectors
and their weights together are indicative of the structural
and non-structural distortions between the two input patches.
Ideally, these two patches would have different sets of support
vectors whenever there exist any structural distortions between
them. Otherwise, if the two patches undergo purely non-
structural distortions, the supports would remain the same but
their weights may change.

In order to quantify the perceptual quality of pd w.r.t. pr,
we compare their sparse representations xd and xr. A simple
but effective way to compare two vectors is to compute their
normalized correlation coefficient. A parameter α is computed
based on the correlation coefficient between xr and xd as
follows:

α(pr,pd) =

∣∣xT
r xd

∣∣+ c

‖xr‖2 ‖xd‖2 + c
(8)

where c is a small positive constant added to avoid instability
when the denominator is close to zero. Clearly, 0 < α ≤ 1.
When xr and xd are orthogonal,

∣∣xT
r xd

∣∣ = 0; but due to the
presence of c, the parameter α is slightly greater than zero.
Due to normalization, α is unaffected by the lengths of xr and
xd. Thus α is not be able to measure non-structural distortions
caused by multiplying the patch elements by a constant.

To account for these types of distortions as well, we intro-
duce another parameter. An important measure of similarity (or
difference) between two vectors is their pointwise difference.
Hence, we compute another quantity β which uses the length
of the vector (xr − xd).

β(pr,pd) = 1−
‖xr − xd‖2 + c

‖xr‖2 + ‖xd‖2 + c
(9)
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(a) (b) (c) (d)

Fig. 2. Detection of salient regions: (a) Reference image, (b) Local entropy map of the reference image (brighter pixel value indicates higher entropy), (c)
Salient patches detected in the reference image based on the entropy map, and (d) Corresponding patches in the distorted image. The images are cropped at
the middle for display (best viewed in color).

where c is the same positive constant used in (8) . It is easy
to see that 0 < β < 1.

We propose a function S(pr,pd) that measures the percep-
tual quality of pd w.r.t pr as follows:

S(pr,pd) = α(pr,pd)β(pr,pd) (10)

Let S(pi
r,p

i
d) be the quality measure between the ith pair

of salient patches i.e. (pi
r,p

i
d). The proposed global image

quality SPARQ(Iref , Idis) is computed by averaging over all
q salient patches.

SPARQ(Iref , Idis) =
1

q

q∑
i=1

S(pi
r,p

i
d) (11)

Remarks:
• The SPARQ index is bounded: 0 < SPARQ < 1; it is

always non-negative since each of its components is non-
negative.

• The highest value of SPARQ is attained when Iref =
Idis.

• The index is not symmetric i.e. SPARQ(Iref , Idis) 6=
SPARQ(Idis, Iref ). This is because the dictionary Φ is
trained on the reference image only. For the purpose
of full-reference image quality assessment, where clear
information about the reference image is available, this
is not an issue. Nevertheless, symmetry can be easily
achieved by repeating the quality estimation stage with a
dictionary trained on the distorted image and averaging
the resulting quality scores obtained using the two dictio-
naries. Our experiments show that this step has little or
no significance on the performance of the SPARQ index.

III. EXPERIMENTAL VALIDATION

This section presents a critical evaluation of the proposed
metric on six publicly available image databases whose sub-
jective quality ratings are available. These databases exhibit a
variety of distortions such as compression artifacts, blurring,
flicker noise, wireless artifacts, etc. The performance of an
objective quality assessment metric is evaluated by comparing
its results to the subjective scores. Following an evaluation
methodology suggested by the video quality expert group
(VQEG) [33], this comparison is made by computing corre-
lation coefficients and differences between the subjective and

the objective scores. The objective scores of the SPARQ index
and those of six existing image quality assessment metrics
are compared to the subjective ratings on each dataset. The
six image quality assessment metrics are: PSNR, SSIM [10],
PHVS-M [34], IFC [8], VIF [9], and VSNR [6]. The existing
quality metrics are compared to the SPARQ index on the
basis of their closeness to the subjective scores. The SPARQ
index consistently exhibits high correlation with the subjective
ratings on all datasets and performs better or at par with the
state-of-the-art.

A. The databases

A brief description of each of the six datasets used in this
work is provided below.

The LIVE database [10], [20] contains 779 distorted images
created from 29 original color images. Each distorted image
exhibits one of the five types of distortions: JPEG2000 com-
pression (JP2K), JPEG compression (JPEG), additive white
gaussian noise (AWGN), Gaussian blur and fastfading channel
distortion of JPEG2000 compressed bitstreams.

The Cornell-A57 dataset [6], [21] consists of 54 distorted
images created from 3 original grayscale images. The im-
ages are subject to the following 6 types of distortions:
JPEG compression, JP2K compression, AWGN, Gaussian blur,
JPEG2000 compression with dynamic contrast-based quanti-
zation algorithm, and uniform quantization of LH subbands of
a 5-level discrete wavelet transform at all scales.

The CSIQ database [22] has 30 original images which were
used to create 866 distorted images. The 6 distortion types
(at four to five distortion levels) include JPEG compression,
JP2K compression, global contrast decrements, AWGN, and
Gaussian blurring.

The TID database [35] is so far the largest subject-rated
image dataset for quality evaluation. It has 1700 images gener-
ated from 25 reference images with 17 distortion types at four
distortion levels. The distortion types are: AWGN, additive
noise in color components, spatially correlated noise, masked
noise, high frequency noise, impulse noise, quantization noise,
Gaussian blur, image denoising, JPEG compression, JP2K
compression, JPEG transmission errors, JP2K transmission
errors, non-eccentricity pattern noise, local block-wise distor-
tions of different intensity, mean shift, and contrast change.
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Fig. 3. Performance of the SPARQ index (correlation with subjective scores
measured in terms of SROCC) varies with the percentage of high-entropy
patches used in the quality estimation process.

The MICT-Toyoma database [23] contains 168 distorted
images created from 14 reference images. The images exhibit
2 types of distortions: JPEG and JP2K compression.

The WIQ database [24], [36] consists of 80 distorted im-
ages generated from 7 reference images. The images exhibit
wireless imaging artifacts which are not considered in other
datasets. Due to the complex nature of a wireless communi-
cation channel, the images contain more than one artifacts.

B. Parameter settings

Before computing the SPARQ index, two preprocessing
steps are executed: (1) every color image in each dataset is
converted to grayscale image, and (2) each image is downsam-
pled by a factor F so as to account for the viewing condition.
The value of F is obtained by using the following empirical
formula [10].

F = max(1, round(g/256)) (12)

where g = min (#rows in Iref ,#columns in Iref ).
The computation of the SPARQ index is divided into a

training phase and a quality estimation phase. In the training
phase, there are 4 parameters to be set:
•
√
n : the patch size

• k : the number of patches to be extracted from a reference
image for training the dictionary

• m : the number of basis vectors in the dictionary
• τ : the sparsity constraint

Unfortunately, there is no theoretical guidelines to determine
the values of these parameter, so we rely on previous work
and empirical methods. A patch size of

√
n×
√
n = 11× 11

is used following the patch-size specification of SSIM [10].
A collection of as large as k = 3000 patches are extracted
randomly from every reference image to train its correspond-
ing dictionary. We set the overcompleteness factor (m/n) to
2 which yields m = 242. It has been shown that for low
overcompleteness factor, sparse representations are stable in

the presence of noise [37]. The value of τ is set to 12 which is
approximately 10% of the dimensionality of the input vectors.

In the quality estimation phase, we need 2 additional
parameters:
• c : the stabilizing constant in (8) and (9)
• q : the number of salient patches

The constant c is chosen to have a very small value, c = 0.01,
so as to have minimal influence on the quality score.

The value of q is determined empirically. For each database,
the number of salient patches, q, is varied and the performance
of SPARQ is measured in terms of the correlation between its
scores and the subjective scores. This is presented in Fig. 3
where the Spearman’s Rank Correlation Coefficient (SROCC)
is plotted against q. The value of q is varied from 2% to 100%
of N where N is the total number of patches (one around
each pixel) in Iref or Idis. In five out of the six datasets,
the best performance of the SPARQ index is observed when
q = 0.15N i.e. 15% of N . Also notice that, when all patches in
Iref are used, the performance of the SPARQ index degrades.
This confirms our assumption that only the visually important
areas are useful for quality assessment. For all datasets, we
use the same parameter values.

C. Evaluation methodology

The results of an objective image quality assessment metric
is compared with the subjective scores using a set of evaluation
measures suggested by the video quality expert group (VQEG)
[33]. These evaluation measures are - the Spearman’s rank
order correlation coefficient (SROCC), the Kendall’s rank
order correlation coefficient (KROCC), the Pearson linear
correlation coefficient (CC), mean absolute error (MAE) and
root mean squared error (RMS). The SROCC and KROCC are
used to measure the prediction monotonicity, while CC, MAE
and RMS measure the prediction accuracy of the objective
scores. In order to compute CC, MAE and RMS, a five-
parameter logistic function (refer to (13) and (14)) is fitted to
the objective scores. A particular objective score, s, is mapped
to a new score, Q(s) using a non-linear mapping function Q(·)
which is defined as follows.

Q(s) = γ1logistic(γ2, (s− γ3)) + sγ4 + γ5 (13)

logistic(σ, s) =
1

2
− 1

1 + exp(σ, s)
(14)

A MATLAB function called fminunc is used for fitting. CC,
MAE and RMS values are computed after the above non-linear
mapping between the subjective and objective scores. Note
that, SROCC and KROCC are non-parametric rank correla-
tion metrics and are independent of any nonlinear mapping
between the subjective and the objective scores. For details
of the evaluation methodology please see [9], [13], [33]. A
good image quality assessment metric is expected to have high
SROCC, KROCC and CC scores, and low MAE and RMS
values.

The performance of SPARQ is compared with those of
PSNR, SSIM, PHVS-M, IFC, VIF and VSNR on the basis of
their correlation and differences with the subjective ratings.
PSNR is used as a baseline method. PHVS-M and VSNR
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TABLE I
PERFORMANCE OF SPARQ INDEX ON VARIOUS DATASETS FOR

DIFFERENT DISTORTION TYPES

LIVE database
SROCC KROCC CC MAE RMS

JPEG 0.967 0.844 0.974 5.504 7.207
JP2K 0.939 0.781 0.946 6.201 8.164

AWGN 0.975 0.864 0.979 4.498 5.632
Blurring 0.932 0.775 0.927 5.123 6.923

Fastfading 0.904 0.747 0.905 9.129 12.134
A57 database

SROCC KROCC CC MAE RMS
JPEG 0.968 0.894 0.968 0.054 0.064
JP2K 0.973 0.917 0.943 0.069 0.074

AWGN 0.967 0.889 0.965 0.029 0.034
Blurring 0.912 0.772 0.953 0.046 0.060

Quantized 0.983 0.944 0.977 0.042 0.051
JP2K-DCQ 0.955 0.878 0.984 0.029 0.038

CSIQ database
SROCC KROCC CC MAE RMS

JPEG 0.972 0.858 0.986 0.041 0.054
JP2K 0.974 0.872 0.979 0.051 0.065

AWGN 0.952 0.811 0.939 0.045 0.058
Blurring 0.975 0.865 0.978 0.048 0.060
Contrast 0.911 0.761 0.916 0.050 0.067

Pink noise 0.947 0.794 0.946 0.060 0.073
TID database

SROCC KROCC CC MAE RMS
JPEG 0.917 0.7268 0.951 0.403 0.526
JP2K 0.963 0.8323 0.970 0.367 0.470

AWGN 0.756 0.5461 0.740 0.316 0.410
Blurring 0.946 0.7981 0.940 0.301 0.401
Contrast 0.375 0.2311 0.441 0.986 1.100

JPEG trans 0.820 0.6102 0.838 0.580 0.711
JP2K trans 0.807 0.6089 0.809 0.378 0.473
Color noise 0.788 0.5923 0.787 0.240 0.315
Corr noise 0.768 0.5758 0.760 0.309 0.406
Mask noise 0.856 0.6601 0.877 0.231 0.286
Hi frq noise 0.890 0.6889 0.901 0.297 0.404

Impluse 0.789 0.5918 0.769 0.257 0.327
Quantization 0.814 0.6275 0.811 0.374 0.481

Denoising 0.928 0.7702 0.939 0.429 0.549
Pattern noise 0.724 0.5287 0.705 0.538 0.740
Block wise 0.724 0.5321 0.755 0.350 0.434
Mean shift 0.591 0.4147 0.653 0.358 0.436

MICT database
SROCC KROCC CC MAE RMS

JPEG 0.877 0.691 0.883 0.462 0.580
JP2K 0.928 0.766 0.931 0.364 0.461

WIQ database
SROCC KROCC CC MAE RMS

Artifacts 1 0.822 0.640 0.823 10.899 12.929
Artifacts 2 0.836 0.688 0.894 7.437 10.291

are the HVS-based IQA metrics while SSIM, IFC, VIF and
SPARQ are visual fidelity-based metrics. For the implemen-
tation of SSIM, PHVS-M, IFC, VIF and VSNR, we have
used the original MATLAB codes provided by the respective
authors. The parameters of each of these methods are set to
their default values as suggested in the original references.

D. Performance comparison

Table I lists the performance of SPARQ when compared
to the subjective ratings on each database, for each distortion
type separately. The high correlation values obtained in most
of the cases show that SPARQ works well for a variety of
distortion types.

Table II compares the overall performance of SPARQ
with the state-of-the-art image quality assessment metrics
in terms of SROCC, CC and RMS. KROCC and MAE
are left out since they reflect the same performance trend
as SROCC and RMS, respectively. In order to provide the
big picture, the average SROCC, CC and RMS values are
computed over all six datasets. The average values are
computed for two cases: in the first case the (SROCC or
CC or RMS) values are directly averaged and in the second
case the values are weighted by the size of the databases.
The weight for a particular database is the number of
distorted images it contains, e.g. 779 for LIVE and 54 for
A57. In each case, the best two results are printed in boldface.
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TABLE II
OVERALL PERFORMANCE COMPARISON OF IQA ALGORITHMS

SROCC-based comparison
Dataset PSNR SSIM [10] PHVSM [34] IFC [8] VIF [9] VSNR [6] SPARQ
LIVE 0.875 0.947 0.922 0.926 0.963 0.912 0.930
A57 0.598 0.806 0.896 0.318 0.622 0.935 0.931

CSIQ 0.800 0.858 0.822 0.767 0.919 0.809 0.951
TID 0.552 0.773 0.561 0.622 0.749 0.704 0.759

MICT 0.613 0.875 0.848 0.835 0.907 0.860 0.879
WIQ 0.626 0.758 0.757 0.716 0.692 0.656 0.822

performance over all datasets
Direct average 0.677 0.837 0.801 0.697 0.809 0.813 0.878

Weighted average 0.685 0.838 0.722 0.729 0.839 0.783 0.851
CC-based comparison

Dataset PSNR SSIM [10] PHVSM [34] IFC [8] VIF [9] VSNR [6] SPARQ
LIVE 0.860 0.941 0.917 0.853 0.944 0.917 0.929
A57 0.628 0.802 0.875 0.372 0.614 0.914 0.936

CSIQ 0.746 0.758 0.772 0.821 0.927 0.735 0.947
TID 0.519 0.727 0.552 0.660 0.809 0.682 0.788

MICT 0.632 0.705 0.839 0.833 0.902 0.855 0.883
WIQ 0.639 0.640 0.749 0.705 0.730 0.763 0.794

performance over all datasets
Direct average 0.687 0.762 0.784 0.707 0.821 0.811 0.879

Weighted average 0.657 0.778 0.704 0.744 0.865 0.758 0.862
RMS-based comparison

Dataset PSNR SSIM [10] PHVSM [34] IFC [8] VIF [9] VSNR [6] SPARQ
LIVE 13.990 9.985 10.892 14.263 9.240 10.772 10.118
A57 0.191 0.147 0.119 0.223 0.194 0.099 0.086

CSIQ 0.175 0.171 0.167 0.150 0.098 0.178 0.084
TID 1.147 0.921 1.119 1.008 0.789 0.981 0.805

MICT 0.969 0.887 0.680 0.692 0.540 0.648 0.588
WIQ 15.426 17.595 15.185 16.252 15.653 14.809 13.906

performance over all datasets
Direct average 5.316 4.951 4.694 5.431 4.419 4.581 4.264

Weighted average 3.950 3.035 3.254 3.944 2.736 3.156 2.889

From Table II, we see that VIF is the closest competitor of
SPARQ. Hence we performed a detailed comparison between
SPARQ and VIF by comparing their performances for each
distortion types separately. This comparison is presented in
Table III.
Remarks:
• SPARQ clearly outperforms PSNR, PHVS-M and IFC on

all datasets.
• SPARQ outperforms VSNR on 5 out of 6 datasets. On

the A57 dataset, SPARQ’s performances is comparable
to VSNR in terms of SROCC, but it is better than VSNR
in terms of CC and RMS values. (see Table II)

• In terms of overall performance, SPARQ is better or
comparable to VIF. However, the performance of VIF
varies much (e.g. SROCC = 0.963 on LIVE but SROCC
= 0.622 on A57) over the datasets, while SPARQ’s
performance is more consistent.

• The distortion-specific performance comparison in Table
III shows that SPARQ performs better than VIF.

• The WIQ dataset is the only dataset that contains more
than one artifacts due to the nature of wireless imaging.
Notice that, SPARQ handles such complex artifacts much
better than any other metric. This indicates the potential
of SPARQ index to be used in complex practical systems
where degradation of images is likely to be caused by
more than one factors.

1) Computational complexity: In order to compute the
SPARQ index, the two steps that require the bulk of compu-

tation are (i) the dictionary learning step in the training phase
and (ii) the sparse coding step in the quality estimation phase.
The computational load of the dictionary learning step in turn
is dominated by the sparse coding step performed as part of
the learning process. Hence, it is the sparse coding step that
we should be concerned with.

Our implementation uses an efficient sparse coding algo-
rithm called the Batch-OMP [38]. Its computational com-
plexity is O(nmτ) per training signal, where the dictionary
dimension is n × m and τ is the sparsity constraint and
τ << m [38].

To give an idea of the computation time, a basic Matlab
implementation (using a computer with Intel Q9400 processor
at 2.66 GHz) takes about 3.4 seconds to learn a dictionary
of size 121 × 242 with τ = 12 using k = 3000 training
samples extracted from an image of dimension 256×256. The
quality estimation takes about 0.9 sec. The total time required
to perform quality evaluation on the LIVE dataset is 779.7
secs (learning: 29 × 3.4 secs + quality estimation: 779 × 0.9
secs) i.e. ∼ 1 sec processing time per distorted image. Like
any method involving training, the dictionary learning step can
be performed offline and the dictionaries can be precomputed.

2) Limitations of SPARQ: Due to its dependence on sparse
coding, SPARQ is computationally demanding. We are hopeful
that with further progress in this area faster algorithms will be
available in near future.

The SPARQ index works on grayscale images and thus is
blind to the degradations in the color components. Like most of
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TABLE III
DISTORTION-SPECIFIC PERFORMANCE COMPARISON BETWEEN VIF AND SPARQ IN TERMS OF CC

Distortion Database SPARQ VIF [9] Distortion Database SPARQ VIF [9]
JPEG LIVE 0.974 0.987 JP2K LIVE 0.946 0.977

A57 0.968 0.950 A57 0.943 0.865
CSIQ 0.986 0.985 CSIQ 0.979 0.982
TID 0.951 0.911 TID 0.970 0.976

MICT 0.883 0.892 MICT 0.931 0.949
AWGN LIVE 0.979 0.990 Blur LIVE 0.927 0.974

A57 0.965 0.881 A57 0.953 0.945
CSIQ 0.939 0.952 CSIQ 0.978 0.966
TID 0.740 0.686 TID 0.940 0.952

Quantization A57 0.977 0.842 Contrast change CSIQ 0.916 0.915
TID 0.811 0.374 TID 0.441 0.945

Fastfading LIVE 0.905 0.956 JP2K-DCQ A57 0.984 0.967
Pink noise CSIQ 0.946 0.959 JPEG transmission TID 0.838 0.873

JP2K transmission TID 0.809 0.770 Color noise TID 0.787 0.618
Correlated noise TID 0.760 0.147 Mask noise TID 0.877 0.685

Hi Frequency noise TID 0.901 0.885 Impulse noise TID 0.769 0.831
Denoising TID 0.939 0.973 Pattern noise TID 0.705 0.686

Blockwise distortion TID 0.755 0.828 Mean shift TID 0.653 0.540
Wireless artifact 1 WIQ 0.823 0.762 Wireless artifact 2 WIQ 0.894 0.729

SPARQ is better in 21 cases while VIF is better in 17 cases

the existing IQA metrics, SPARQ relies on fidelity to quantify
perceptual quality where fidelity is one of the several factors
in determining the perceptual quality [39].

IV. CONCLUSION

In this paper, we develop a new full-reference image quality
assessment metric, namely the SPARQ index. This metric re-
lies on learning an overcomplete dictionary from the reference
image. The basis elements of this dictionary are learnt using a
sparse optimization approach and they resemble the receptive
field of simple cells in the primary visual cortex. The SPARQ
index measures the structural fidelity between the reference
and the distorted image in order to quantify the visual quality
of the distorted image.

The SPARQ index is shown to be consistently performing
better or comparable to the state-of-the-art. The success of
SPARQ can be attributed to the new framework that can extract
perceptually meaningful structural information by modeling
the response of the primary visual cortex to the stimuli.

The SPARQ index can be easily applied to other problems
involving similarity measurement such as clustering. Because
of its generic data-dependent approach, SPARQ is also suit-
able (may require minor modifications) for various datatypes
including images, videos and audio signals.

The SPARQ index can be improved in several ways. Possi-
ble directions include combining SPARQ with various pooling
strategies, learning multiscale dictionaries, using more efficient
sparse solvers and extending it to work for color images and
videos.
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