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Abstract

The widespread use of stereovision in various application fields has led to the

constitution of very huge stereo image databases. Therefore, the design of

effective content based image retrieval system devoted to stereo pairs becomes

an issue of importance. To this end, we propose in this paper two retrieval

methods which combine the visual contents of the stereo images with their

corresponding disparity information. After modeling the distribution of their

associated wavelet coefficients by the generalized Gaussian statistical model,

the resulting distribution parameters are selected as salient features. While

the two views are processed separately through a univariate modeling in the

first method, the second one exploits the correlation between the views by

resorting to a bivariate modeling. Experimental results show the benefits

which can be drawn from the proposed retrieval approaches.
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1. Introduction

Recent developments of stereoscopic display technologies have acceler-

ated the usage of Stereo Images (SI) in various application fields such as

3DTV, telepresence in videoconferences and stereo geographical information

systems. Stereoscopic image display offers a simple way of presenting the

depth information in a real world scene. Indeed, the disparity information

which corresponds to the displacement that exists between the corresponding

pixels of the left and right images, allows to provide the 3D-depth informa-

tion of the scene. As a result, very huge stereoscopic image databases are

continuously generated. For example, a single view of a scene acquired by

the IKONOS satellite corresponds to 360 MB every 3 or 4 days. Hence, there

is a strong need for both managing and storing these large amounts of stereo

data [1].

Conventional Content-Based Image retrieval (CBIR) systems allow a conve-

nient and efficient data access by organizing images based only on their visual

contents [2]. On the other hand, in order to reduce the memory requirements,

images are saved in a compressed format. In this respect, Wavelet Trans-

forms (WT) have been found to be an efficient tool to provide very compact

representations of still images and, they have been adopted in most of the

recent image compression algorithms [3]. Therefore, it seems interesting to

design a CBIR system operating in the WT domain. Thus, the objective

will consist in defining relevant signatures from the resulting wavelet coeffi-

cients. For this purpose, different wavelet-based image retrieval approaches

have been proposed [4, 5, 6, 7]. For instance, in [5], the energy of the sub-

bands are combined with the color autocorrelogram. In [6], the authors use
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a B-spline wavelet transform and fractal signature. In [8], an edge histogram

descriptor is computed to gather the information of dominant edge orienta-

tions. Besides, another method, called wavelet correlogram, based on a fusion

of multiresolution image decomposition and color correlation histogram has

been introduced in [7]. However, it can be pointed out that most popular

techniques resort to a statistical modeling of the distribution of the wavelet

coefficients [9, 10, 11]. To this end, several models such as the generalized

Gaussian distribution [9], the Gamma distribution [12, 13], and the Weibull

one [14] have been used. It is worth pointing out that the effectiveness of

these techniques have been studied in the case of mono-view images, includ-

ing still and multicomponent images and video sequences [15]. However, to

the best of our knowledge, there is only one research work developed in the

context of SI [16]. More precisely, the reported method consists of two steps:

a conventional CBIR system is applied to only one view (for example the left

one). Then, the obtained results are refined by comparing the histograms

of the estimated disparity maps. However, such retrieval method presents a

drawback as the visual contents of the right image are not directly exploited.

To alleviate this shortcoming, we investigate in this paper different tech-

niques to improve the efficiency of a content-based stereo images retrieval

system. Our major contribution is to exploit the dependencies between the

two views thanks to the disparity information. More precisely, in order to

extract relevant features allowing an accurate SI retrieval, we propose to use

simultaneously the visual contents of the left and right images as well as their

related disparity fields. To this end, two retrieval strategies are addressed. In

the first one, the subbands of the left view, the right one and, the disparity
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map are modeled by a generalized Gaussian distribution [17]. The resulting

distribution parameters, considered as features of the SI pair, are combined

at the retrieval stage. While the two views are modeled independently by

using a univariate statistical model in the first strategy, the second one aims

to exploit the high statistical dependencies between the two views. After

defining the appropriate vectors of wavelet coefficients, extracted from the

right and left (or compensated left) subbands at the same scale and orien-

tation, we propose to resort to a bivariate modeling in order to capture the

cross-view dependencies. At this level, it is important to note that the joint

modeling of multivalued wavelet coefficients has already been investigated

in different applications involving only mono-view images such as denoising

[18, 19, 20] or retrieval of still and multicomponent images [11, 21, 22, 23],

but there is no reported work related to the context of SI.

The remainder of this paper is organized as follows. In Section 2, we first

give a brief description of conventional CBIR operating in the WT domain.

Then, the straightforward extension of this system to the context of SI is

discussed. In Sections 3 and 4, we describe the proposed disparity-based SI

retrieval approaches based on univarite and bivariate statistical modeling, re-

spectively. Finally, the performance of the proposed approaches is illustrated

in Section 5 and some conclusions are drawn in Section 6.

2. Conventional wavelet-based CBIR system

2.1. Wavelet-based representation

The Lifting Scheme (LS) is a flexible tool for computing the discrete WT

[24]. LS was found to be a very effective structure for encoding still and stereo
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images [25], and it has been retained in the JPEG2000 image compression

standard [3]. A generic LS is performed in three steps namely split, predict

and update. At the first step, the input 1D signal aj(k) is divided into two

subsets composed respectively of even aj(2k) and odd samples aj(2k + 1).

Then, thanks to the local correlation, the samples of one subset (say the odd

ones) are predicted from the neighboring even samples. Thus, the prediction

error, referred to as detail signal, is computed as follows:

dj+1(k) = aj(2k + 1)− p⊤
j aj(k) (1)

where pj is the prediction weighting vector and aj(k) is a reference vector

containing some even samples used in the predict step. Finally, the update

step produces the approximation signal aj+1(k) by smoothing the even sam-

ples using the detail coefficients:

aj+1(k) = aj(2k) + u⊤
j dj+1(k) (2)

where uj is the update weighting vector and dj+1(k) is a reference vector

containing the detail coefficients used in the update step. Note that, the

compactness ability of a lifting scheme is related to the choice of the predic-

tion and update weights. The extension of this 1D structure to 2D signals

is straightforward: the lifting steps are generally performed along the lines

then the columns (or inversely) of the image in a separable manner leading to

an approximation subband and three detail subbands oriented horizontally,

vertically and diagonally. This procedure is again repeated on the approxi-

mation sub-images, over J resolution levels, leading to (3J + 1) subbands.
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2.2. Feature extraction and similarity measure

In this subsection, we only focus on mono-view images. The key step in

a wavelet-based CBIR system consists of extracting salient features from the

wavelet coefficients of the images. As aforementioned, a statistical framework

could be adopted to model the wavelet coefficients of the different subbands.

For instance, the Generalized Gaussian (GG) distribution has been exten-

sively used [26]. Thus, in a given subband j, the wavelet coefficients are

modeled by a GG distribution whose probability density function (pdf) is

defined by:

∀ξ ∈ R fj(ξ) =
βj

2αjΓ(1/βj)
e−(|ξ|/αj)

βj
(3)

where Γ(z) ,
∫ +∞
0

tz−1e−tdt represents the Gamma function, αj and βj are

respectively the scale and shape parameters. The latter two parameters can

be estimated by using the Maximum Likelihood technique [9]. Following the

modeling step, the feature vector of each image of the database is composed

of the distribution parameters of all the detail subbands (αj, βj)1≤j≤3J .

Finally, for the different subbands j with j ∈ {1, . . . , 3J}, an appropriate

metric should be defined in order to measure the similarity between the pdf

fdb
j of an image in the database Idb and the pdf fq

j of the query image Iq.

Very often, the Kullback-Leibler Divergence (KLD) is retained [9, 23, 27, 28].

In the case of the GG distribution, the KLD, denoted by D̃GG, is expressed

as:

D̃GG(α
db
j , βdb

j ∥ αq
j , β

q
j )

△
= log

(
βdb
j αq

jΓ(1/β
q
j )

βq
j α

db
j Γ(1/βdb

j )

)
− 1

βdb
j

+

(
αdb
j

αq
j

)βq
j Γ((βq

j + 1)/βdb
j )

Γ(1/βdb
j )

(4)

where (αdb
j , βdb

j ) and (αq
j , β

q
j ) represent the distribution parameters of fdb

j

and fq
j , respectively. Thus, the resulting similarity measure DGG between
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the two images Idb and Iq is deduced as follows:

DGG(I
db, Iq) =

3J∑
j=1

D̃GG(α
db
j , βdb

j ∥ αq
j , β

q
j ). (5)

2.3. A straightforward extension to SI

Let us now proceed to the retrieval problem in the case of database com-

posed of stereo images. A straightforward solution consists in separately

applying the aforementioned conventional CBIR system to each view. More

precisely, the retrieval procedure aims at comparing the left and right images

of the query stereo pair (I(l,q), I(r,q)) to those of the database (I(l,db), I(r,db)).

Thus, after extracting their corresponding feature vectors (α
(l,q)
j , β

(l,q)
j )1≤j≤3J ,

(α
(r,q)
j , β

(r,q)
j )1≤j≤3J , (α

(l,db)
j , β

(l,db)
j )1≤j≤3J and (α

(r,db)
j , β

(r,db)
j )1≤j≤3J , the simi-

larity criterionD
(r,l)
GG can be simply obtained by computing the KL divergences

defined on the right and left images:

D
(r,l)
GG = DGG(I

(r,db), I(r,q)) +DGG(I
(l,db), I(l,q)). (6)

3. Proposed disparity-based retrieval approaches through univari-

ate model

3.1. Motivation

The aforementioned intuitive strategy for indexing a SI pair is not so

efficient since only the left and right images are used during the comparison

process. Indeed, an important feature of the stereoscopic system, which

corresponds to the estimated disparity map, has not been taken into account.

This kind of information is inversely proportional to the depth of the objects

in the scene [29] and, hence, it is expected to provide salient features. From
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this point of view, a more efficient retrieval method could be designed by

incorporating the disparity information in the feature vector. In what follows,

and before describing our disparity-based retrieval approaches, we present the

disparity estimation issue.

3.2. Disparity estimation

The principle of the disparity estimation is to find for a given pixel in the

right image the best corresponding one in the left image. When the stereo

images are rectified, the disparity field is limited to a horizontal component

that will be denoted by u. Several methods have been proposed to solve the

stereo matching problem [30, 31]. For instance, global methods have been ex-

tensively employed. They consist in minimizing a global energy function over

the entire image based on some specific algorithms, such as the graph-cuts

[30] and variational methods [31]. While most of the existing methods oper-

ate in the spatial domain, some wavelet-based disparity estimation methods

have been recently attracted much attention thanks to the hierarchical and

scale-space localization properties of the wavelets [32, 33].

With the ultimate goal of generating a dense and smooth disparity map

while preserving the depth discontinuities, we have resorted to the estima-

tion method presented recently in [34] to compute the disparity maps of

stereo image database. We should note that, among the developed disparity

estimation techniques, it is important to employ an efficient method that

guarantees the smoothness property of the produced disparity map. Indeed,

such property allows us to interpret this map as an image, and therefore can

undergo a wavelet decomposition in order to be efficiently exploited in the

retrieval process of the stereo images.

8



3.3. Disparity-based retrieval strategies

Once the disparity maps are available, two approaches could be consid-

ered in order to exploit the disparity information.

In the first one, the disparity is implicitly taken into account by computing

the compensated left image in the wavelet domain I
(c)
j from the multiresolu-

tion representation of the left image I
(l)
j as follows:

I
(c)
j (x, y) = I

(l)
j (x+ uj(x, y), y) (7)

where the disparity uj is obtained by sampling and dividing by 2j the initial

disparity field u:

uj(x, y) =
1

2j
u(2jx, 2jy). (8)

Then, the GG distribution parameters of the different detail subbands of the

right image (α
(r)
j , β

(r)
j )1≤j≤3J and the compensated left one (α

(c)
j , β

(c)
j )1≤j≤3J

are extracted. Finally, the retrieval procedure for a given query stereo pair

(I(l,q), I(r,q)) aims at finding the best stereo pairs (I(l,db), I(r,db)) that minimize

the KL divergences, D
(r,c)
GG , defined on the right image and the compensated

left one:

D
(r,c)
GG = DGG(I

(r,db), I(r,q)) +DGG(I
(c,db), I(c,q)) (9)

where I(c,q) and I(c,db) represent respectively the compensated left images of

the query and candidate stereo pairs.

Unlike the first approach, the second one aims to exploit explicitly the dis-

parity information by extracting a relevant signature from the disparity map

and, combining it with the features defined previously on the SI pair. To this
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end, since a smooth disparity map is produced while preserving the depth

discontinuities, we propose to apply a wavelet transform to the estimated

disparity field. After performing an intensive experiments on a large data

set of the estimated disparity maps, we have noticed that their wavelet co-

efficients can also be successfully modeled by a GG distribution. Indeed, to

objectively assess the appropriateness of the GG model, we have applied the

Kolmogorov-Smirnov (KS) goodness-of-fit test [35, 36]. Note that the KS

test is based on comparing the cumulative distribution functions. As an ex-

ample, by taking three disparity maps and considering their horizontal detail

coefficients, Fig. 1 shows the histograms of these coefficients (in blue) and

the fitted GG distributions (in red) as well as their resulting KS measures.

By performing this test on all the disparity maps of the data set, the average

of the KS values is equal to 0.1 which is very small. This confirms that the

GG distribution is well-suited for modeling the disparity maps.

Based on these observations, we select the distribution parameters of all the

resulting detail subbands (α
(u)
j , β

(u)
j )1≤j≤3J to characterize the disparity map

u. Therefore, at the retrieval step, the candidate stereo pairs of the database

(I(r,db), I(l,db)) that are similar to the query one (I(r,q), I(l,q)) are determined

by comparing the right and left images as well as their associated dispar-

ity maps u(db) and u(q). More precisely, we propose to define the similarity
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Figure 1: Modeling the distribution of the horizontal detail subband at the second

resolution level for three examples of disparity maps using the GG model.

measure as follows:

D
(r,l,u)
GG = a ·DGG(I

(r,db), I(r,q)) + b ·DGG(I
(l,db), I(l,q)) + c ·DGG(u

(db), u(q))

=
∑3J

j=1

(
a · D̃GG(α

(r,db)
j , β

(r,db)
j ∥ α

(r,q)
j , β

(r,q)
j )

+b · D̃GG(α
(l,db)
j , β

(l,db)
j ∥ α

(l,q)
j , β

(l,q)
j )

+c · D̃GG(α
(u,db)
j , β

(u,db)
j ∥ α

(u,q)
j , β

(u,q)
j )

)
(10)

where a, b and c are three positive weights.

To conclude this part, we should note that this first category of SI retrieval
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approaches are based on univariate model since, up to now, the right and

left images are modeled separately without taking into account the cross-view

dependencies.

4. Proposed disparity-based retrieval approaches through bivariate

model

4.1. Strategy

In the previous section, the SI retrieval techniques have been developed

through univariate statistical approach by modeling the right image indepen-

dently of the left one. Since the left and right views correspond to the same

scene, and so have similar contents, the wavelet coefficients of both images

could present strong statistical dependencies. For example, such dependen-

cies between the two images have already been successfully exploited for SI

compression purposes [25, 37]. Therefore, a suitable statistical model should

be employed to capture the dependencies across the wavelet coefficients of

the left and right images.

4.2. Bivariate generalized Gaussian model

First, we should recall that recent works on color image retrieval [11, 21,

22, 23] have shown that the distribution of the wavelet coefficients could be

modeled by some specific multivariate models. The latter outperform the

conventional univariate approach in terms of accuracy since they account for

both the spatial and the cross-channel dependencies. Motivated by these

reasons, we propose in this work to resort to a bivariate model to further

exploit the dependencies between the wavelet coefficients of the left and right
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images. Generally, the choice of the appropriate model should fulfill the

following constraints:

• The retained model should reflect accurately the sparsity of the wavelet

coefficients of each view and also the cross-view dependencies.

• The model structure should enable a straightforward estimation of the

parameters from the coefficients in each subband.

• The bivariate model should allow an easy computation of a meaning-

ful similarity measure. For example, knowing that the KLD has been

widely used in mono-view image retrieval [9, 23, 27, 28], it would be

interesting to select a bivariate model from which a closed form ex-

pression of the KLD could be derived in order to facilitate the retrieval

stage by avoiding Monte-Carlo estimation procedures.

Based on the previous points, we find that using the well-known Bivariate

Generalized Gaussian (BGG) distribution could be an appropriate way for

characterizing the dependencies between the wavelet coefficients of the left

and right images.

To introduce this model, let us denote by wj the bivariate vector composed

of the wavelet coefficients of two correlated components, for each subband j.

We assume that the set of coefficient vectors wj in each subband constitutes

an independent identical distributed sample of a random vector Wj. Under

the hypothesis of a zero-mean vector, the generic expression of the probability

density function fWj
of the BGG distribution is given by:

∀w ∈ R2, fWj
(w; βj,Σj) =

2

πΓ(1 + 1
βj
)2

1+ 1
βj

| Σj |−1/2 exp

(
−1

2
(wTΣ−1

j w)βj

)
.

(11)
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where βj > 0 denotes the shape parameter and, Σj is a symmetric positive-

definite matrix of size 2×2 (the scaling matrix). Note that these parameters

can be estimated using the moment method [38] or the maximum likelihood

criterion [22].

In order to validate the appropriateness of the BGG model, we have con-

ducted the multivariate Kolmogorov-Smirnov (KS) test [36] on the stereo

images database. Indeed, by taking the horizontal detail subbands of the

left and right images of four stereo pairs, Fig. 2 illustrates the empirical

bivariate histograms (in blue) fitted with the BGG distribution (in red), and

provides their associated KS measures. By repeating the same test on the

whole set of stereo images in the database, an average KS value of about 0.09

is obtained. These results corroborate also that stereo wavelet subbands can

be well modeled by a BGG distribution.

It is important to note that a closed form expression of the KLD is available

for such BGG model. Indeed, for two BGG distributions with parameters

(βq
j ,Σ

q
j ) and (βdb

j ,Σdb
j ), the KLD is given by [22, 39]:

D̃BGG(β
db
j ,Σdb

j ∥βq
j ,Σ

q
j ) = ln

 Γ
(

1
βq
j

)
Γ
(

1
βdb
j

)2
(

1

β
q
j
− 1

βdb
j

)(
|Σq

j |
|Σdb

j |

) 1
2 βdb

j

βq
j

− 1

βdb
j

+

2
(

β
q
j

βdb
j

−1

)
Γ
(

βq
j+1

βdb
j

)
Γ
(

1
βdb
j

) ×
(
µ1 + µ2

2

)βq
j

× 2F1

(
1− βq

j

2
,
−βq

j

2
; 1;

(
µ1 − µ2

µ1 + µ2

)2
)]

(12)
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Figure 2: Empirical bivariate histogram of the horizontal wavelet coefficients of the left

and right images (denoted here by w(l) and w(r))(in blue) fitted with a BGG density (in

red) for four different stereo images as well as their resulting KS measures.

where µ1 and µ2 are the inverse of the eigenvalues of (Σdb
j )−1Σq

j and 2F1

represents the Gauss hypergeometric function [40].
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4.3. An improved disparity-based retrieval strategies

Now, we will describe three retrieval strategies based on the selected BGG

distribution.

Intuitively, in the first one, the bivariate vector, defined byw
(r,l)
j =

(
w

(r)
j , w

(l)
j

)⊤
is composed of the wavelet coefficients in the right and left images for each

subband j. Let us denote by
(
Σ

(r,l)
j , β

(r,l)
j

)
the distribution parameters of vec-

tor w
(r,l)
j . Thus, in the indexing step, the comparison between the stereo pair

in the database, characterized by its feature vector
(
β
(r,l,db)
j ,Σ

(r,l,db)
j

)
1≤j≤3J

and the query one parameterized by the feature
(
β
(r,l,q)
j ,Σ

(r,l,q)
j

)
1≤j≤3J

is

achieved by computing the global KLD:

D
(r,l)
BGG =

3J∑
j=1

D̃BGG(β
(r,l,db)
j ,Σ

(r,l,db)
j ∥ β

(r,l,q)
j ,Σ

(r,l,q)
j ). (13)

Since the highly similar pixels of the left and right images are located at

different spatial positions identified by the disparity information, it would

be more interesting to focus on the right image I(r) and the compensated

left one I(c) by using their wavelet coefficients to build the bivariate vector

w
(r,c)
j =

(
w

(r)
j , w

(c)
j

)⊤
, for each subband j. Thus, in this second retrieval

strategy, the feature vectors deduced from the right and compensated left

images of the query stereo data
(
β
(r,c,q)
j ,Σ

(r,c,q)
j

)
1≤j≤3J

will be compared to

those of the database stereo pair
(
β
(r,c,db)
j ,Σ

(r,c,db)
j

)
1≤j≤3J

by computing the

following measure:

D
(r,c)
BGG =

3J∑
j=1

D̃BGG(β
(r,c,db)
j ,Σ

(r,c,db)
j ∥ β

(r,c,q)
j ,Σ

(r,c,q)
j ). (14)

Although it is clear that stereo images contain nearly similar contents since

they correspond to the same scene, there are some areas in one image that are
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absent in the other one, referred to as occluded areas. This occlusion effect

is well known in stereovision problems and is due to the different viewpoints

of the cameras and the presence of discontinuities in the scene. Generally,

increasing the dependencies between the two components of the bivariate

vector leads to an efficient retrieval procedure. For this reason, we propose

in the third strategy to improve the previous one by taking into account

the effect of the occlusion. Note that the occluded areas are mainly lo-

cated at the boundaries of the SI. Let us denote by w
(rocl)
j and w

(cocl)
j the

wavelet coefficients of the right and compensated left images resulting from

the removal of the occluded regions. These coefficients will constitute the

components of the bivariate vector w
(rocl,cocl)
j =

(
w

(rocl)
j , w

(cocl)
j

)⊤
. After esti-

mating their associated model parameters and building the feature vectors

for the query stereo pair
(
β
(rocl,cocl,q)
j ,Σ

(rocl,cocl,q)
j

)
1≤j≤3J

and the candidate

one
(
β
(rocl,cocl,db)
j ,Σ

(rocl,cocl,db)
j

)
1≤j≤3J

, the global KLD is therefore obtained:

D
(rocl,cocl)
BGG =

3J∑
j=1

D̃BGG(β
(rocl,cocl,db)
j ,Σ

(rocl,cocl,db)
j ∥ β

(rocl,cocl,q)
j ,Σ

(rocl,cocl,q)
j ).

(15)

Finally, as it was performed with disparity-based retrieval approaches through

univariate model, these three strategies should further incorporate the dis-

parity information into their feature vector. In other words, in addition to the

BGG distribution parameters of the right and left (or compensated left) im-

ages, it would be interesting to consider also the GG distribution parameters

of the disparity maps u(db) and u(q) respectively associated to the database

and query SI. Consequently, during the comparison process between a query

and a candidate stereo pair, we should add the measure DGG(u
(db), u(q)) to
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each of the KL divergences given by Eq. (13), (14) and (15).

5. Experimental results

5.1. Experimental setup

Since there are no SI databases publicly available to evaluate the perfor-

mance of SI retrieval methods, we have built a database which can be down-

loaded from 1. This database is composed of real SI pairs of size 248 × 248

taken from various sources. The images correspond to a variety of contents

including natural scenes 2, 3 and 4, man-made objects available at the Middle-

bury stereo vision website5, and SPOT5 scenes. According to their texture,

these stereo images have been divided into 17 classes, with 40 pairs per class,

such as wooded area, tree, bushes, mountains, urban area. Note that SI of

the same class are taken from the same scene. An example of some right

images of different classes in the database is shown in Fig. 3.

As explained in Section 3.2, the method developed in [34] has been used to

generate the disparity maps. The retrieval performance is evaluated in terms

of precision PR = Rr

R
and recall RC = Rr

Rt , where R
r is the number of output

pairs considered as relevant, Rt is the total number of relevant pairs in the

database and R denotes the number of returned pairs. A retrieved pair is

considered as relevant if it belongs to the same category of the query pair.

Note that the query images are taken from the database.

1http://www-l2ti.univ-paris13.fr/~kaaniche/Download.html
2http://www.mi.auckland.ac.nz/EISATS/
3http://vasc.ri.cmu.edu/idb/html/stereo/index.html
4http://vasc.ri.cmu.edu/idb/html/jisct/
5http://vision.middlebury.edu/stereo/
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Figure 3: Some samples of right images for different classes in the database. From top to

bottom: pentagon, urban area, flowerpots, mountains, pyramid, buildings and tree.

In order to show the benefits of using the disparity map in a SI retrieval

system, two rounds of experiments are performed. The first one aims at il-
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lustrating the behavior of the univariate modeling-based retrieval approaches

described in Section 3. The objective of the second one is to validate the in-

terest of the bivariate modeling presented in Section 4. In what follows, we

describe and discuss these experimental tests.

5.2. Univariate modeling-based retrieval approaches

In this part, we are interested in evaluating the methods related to the

univariate model. The first one corresponds to the straightforward approach,

presented in Subsection 2.3, where the GG distribution parameters of only

the right and left images are compared. This method will be designated

by GG-RL. The second one takes into account the disparity information in

an implicit manner by computing features of the right view and the dispar-

ity compensated left view. This method will be denoted by GG-RDCL. The

third one, designated by GG-RL-GG-D, is the second version of the proposed

univariate model-based method where a new feature vector is defined by in-

corporating simultaneously the visual contents of the left and right images as

well as the disparity information. We have also tested for comparison the re-

cent state-of-the-art approach [16]. Recall that its basic idea consists in using

the disparity to refine the results provided by a conventional CBIR system.

More precisely, the MPEG-7 edge histogram descriptor is employed for the

left images and the diffusion distance is used to measure the similarity be-

tween the histograms of the disparity maps during the refinement step. Here-

after, this method will be designated by State-of-the-art [16]. Moreover, since

the developed approaches operate in the wavelet transform domain, we have

also proposed to apply the state-of-the-art method in the same domain. It is

important to note here that designing a CBIR system operating in the wavelet
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domain may constitute an interesting feature in practice in the sense that

the decoding procedure at the retrieval step becomes unnecessary when the

images are saved in a compressed format. To this end, the first step consists

of comparing the feature vector of the query left image (α
(l,q)
j , β

(l,q)
j )1≤j≤3J to

the database left images (α
(l,db)
j , β

(l,db)
j )1≤j≤3J using the KLD as a similarity

measure. Then, the disparity features (α
(u,db)
j , β

(u,db)
j )1≤j≤3J are used in the

re-ranking step which is applied to the first 10% of the returned images and

the retrieval results are re-ordered. In what follows, this modified version of

the state-of-the-art method, applied in the WT domain, will be designated

by Mod-state-of-the-art-WT.

Fig. 4 provides the precision-recall plots of the various approaches. It indi-

cates that using implicitly the disparity map by comparing the right image

and the disparity compensated left one of the stereo pair outperforms the

straightforward approach. Moreover, thanks to the second version of the

proposed method where the disparity information is explicitly added to the

feature vector, we achieve further improvements. Our approach becomes

more performant than the other methods, and achieves a gain of about 1-

12% in precision compared to the state-of-the-art method [16].

We should note here that different tests have been carried out to study the

impact of the weights assigned to the disparity map and to both images on

the retrieval performance of the GG-RL-GG-D approach. Since the left and

right images correspond to the same scene and present very similar contents,

we assume that the weights associated to these views are identical (i.e. a = b).

Fig. 5 shows the precision-recall curves for different weight parameters.

Thus, it can be observed that selecting a very low or a high value of c leads to
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Figure 4: Retrieval performance in terms of precision and recall of the univariate ap-

proaches.
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Figure 5: Impact of the weight values on the retrieval performances of the GG-RL-GG-D

approach.
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worse results. More generally, we conclude that weighting alike the features

of the left, right and disparity images, by taking a value of c around 1
3
, allows

to achieve good retrieval performance.

Therefore, these results corroborate that disparity gives additional cues for

SI retrieval when it is combined with the visual contents of the two views.

5.3. Bivariate modeling-based retrieval approaches

The second series of experiments is dedicated to the study of the effect of

using a bivariate statistical model to capture the dependencies between the

wavelet coefficients of a stereo pair and, to the illustration of the benefits of

incorporating simultaneously the disparity features and the visual ones com-

puted through the bivariate model. To this end, we have also conducted the

three following experiments related to the three retrieval strategies discussed

in Subsection 4.3.

The first one, where the bivariate vector is constructed from the wavelet co-

efficients of the right and left images, is designated by BGG-RL. The second

one, where the bivariate vector is defined by using the wavelet coefficients of

the right image and the disparity compensated left one, is denoted by BGG-

RDCL-1. The third approach, corresponding to the improved version of the

previous one by taking into account the occlusion effect, is denoted by BGG-

RDCL-2. By further adding the GG distribution parameters of the disparity

map during the indexing step, these three methods will be respectively desig-

nated by BGG-RL-GG-D, BGG-RDCL-GG-D-1 and BGG-RDCL-GG-D-2.

Fig. 6 depicts the precision versus recall curves for these approaches.

It can also be noticed that adding disparity improves the different bivariate

modeling-based retrieval strategies. Moreover, these results show that tak-
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Figure 6: Retrieval performance in terms of precision and recall of the bivariate approaches.

ing into account the occlusion effect allows us to achieve the best retrieval

performance.

Finally, we focus on comparing the performance of the proposed retrieval ap-

proaches based on bivariate and univariate models. It can be seen from Fig. 7

that the joint modeling of wavelet subbands BGG-RDCL-GG-D-1 achieves

better retrieval performance compared to the univariate model-based ap-

proach. Further improvements are achieved when the bivariate model-based

approach deals with the occlusion effect. Thus, compared to the state-of-the-

art method [16], the resulting gain reaches 15% in terms of precision-recall.

All these results confirm the effectiveness of incorporating the disparity in-

formation for stereo image retrieval purpose.
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Figure 7: Retrieval performance in terms of precision and recall of the univariate and the

bivariate approaches.

6. Conclusion

In this paper, we have addressed the problem of indexing and retrieval of

stereo images in the wavelet-transform domain. Our first contribution con-

sists in employing dense disparity maps either implicitly or explicitly during

the feature extraction step. The parameters of the generalized Gaussian dis-

tribution that model the detail subbands of each view are combined with

those of the disparity map to build a salient feature of the stereo pair con-

tent. Our second contribution aims at resorting to an appropriate bivariate

model that accounts for the cross-view dependencies. Experimental results

indicate the good performance of the bivariate approaches. In future work,

it would be interesting to study the effect of quantizing the stereo images at

different qualities as performed in [41].
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