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Abstract

The paper presents a novel approach to real-time event detection in sports

broadcasts. We present how the same underlying audio-visual feature extraction

algorithm based on new global image descriptors is robust across a range of

different sports alleviating the need to tailor it to a particular sport. In addition,

we propose and evaluate three different classifiers in order to detect events using

these features: a feed-forward neural network, an Elman neural network and a

decision tree. Each are investigated and evaluated in terms of their usefulness for

real-time event classification. We also propose a ground truth dataset together

with an annotation technique for performance evaluation of each classifier useful

to others interested in this problem.

Keywords: real-time sports event detection, neural networks, state machines,

field sports, sport broadcast

1. Introduction

Sport is consistently highly rated in terms of television broadcasts [1, 2]

and in some countries, sports broadcast are the most watched broadcasts. This

is true especially for significant sporting events like the Olympics or for the

national/regional finals of the most popular sport in a given country. Across5

Europe soccer usually in the center of attention. Based on publicly available
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statistics [3], one can observe that matches played in Germany’s Bundesliga, the

Premier League and Spain’s La Liga are watched by over 10 million fans each

year with a substantially larger audience watching at home on TV. However,

soccer is not the only sport that enjoys significant popularity and large viewing10

figures. In Ireland, for example, soccer is considered to be in third position

alongside rugby, after Gaelic football and hurling [4], the finals of which are

guaranteed huge audiences both in the stadium but also in front of the TV [5].

Considering other countries, we can add the following to the most popular field

sports around the world: basketball, rugby, cricket, field and ice hockey or many15

others [6]. Depending on the country, the success of the local or national team

and the time of year, sport can often be considered to be users’ most desirable

audio-visual information.

As a result, there has been significant interest in algorithms for automatic

event detection in sports broadcasts. This is motivated by potential applications20

such as automatic highlight generation for summarization and second screen ap-

plications, indexing for search and retrieval in archives, mobile content delivery

either off-line or as an added value in-stadium user experience. However, most

event detection algorithms published thus far normally focus on a particular

type of the sport (e.g., tennis, soccer, cricket, etc.) and are not robust for other25

types of sports, thereby limiting their applicability. Like for example event de-

tection systems presented in [7], [8], [9], [10], [11], [12] can work autonomously

and some have ability to turn on themself at specific time in order to analyze

broadcasted video together with web-casting text. However, this systems suffer

from the lack of flexibility that would allow it to analyze more than just one30

type of sport. This is a very good example of the state of the art in this field –

although there are plenty of examples that can be featured with high accuracy

all of them work for only one type of sport. This is caused by the fact that

different sports present different characteristics either in the rules for that sport

of the manner in which it is captured and directed for broadcast. In addition35

real-time aspect is quite often neglected whereas in most application scenarios

where a game is analyzed in order to provide rich content to the end users event
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extraction time should be one of the main parameters taken into account.

For this reason, in this paper we focus on a generic subset of all sports

that can be designated as field sports, a term introduced in [13] to refer to any40

sport played on a grass pitch (soccer, rugby, field hockey, etc.) featuring two

teams competing for territorial advantage. In this work, however, we extend this

genre to include other sports that exhibit similar characteristics but that are

not necessarily played on a grass pitch. Specifically, we extend the definition of

field sports to include sports played in a playing arena that features some kind45

of scoring posts (e.g., goal post in soccer or basket in basketball), whereby the

overall objective is territorial advancement with a view to obtaining a score.

Taking into account the diversity of the different field sports a range of event

detection algorithms were presented in recent years. Even for one kind of sport

the research can be conducted from different points of view. In [14] and [15]50

researchers pay their attention to the fact, that a low-level simple audio-visual

features are often not rich enough to represent semantically complex informa-

tion on the level appropriate to human perception. As a solution they propose a

multi-level multimodal descriptors related to the position of the camera in rela-

tion to the players and the field. The results presented by them are impressive55

(recall and precision on the level of about 90%) however they do not assume

that their system to analyze video content in the real-time. It has been shown

in [13] that about 97% of interesting moments during a game are followed by

a close-up shot presenting a player who scored or who caused some interest-

ing action. In addition, features like end of a pitch, audio activity or crowd60

shot detection have been shown to be very useful in event detection [13]. The

presented system is proven to work with different field sports such as soccer,

rugby, field hockey, hurling and Gaelic football. In this work a Support Vector

Machine (SVM) was used as a event classifier. However, mainly because of the

use of the Hough transform the implementation is very time consuming and65

inapplicable in real-time systems. A very similar approach is presented in [16].

In order to detect an event the authors declare so called “plays” where mainly

a color histogram is calculated plus some heuristics are applied about the re-
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gions of histogram detection. An event is categorized using Bayesian Network

based on the sequence of camera shots. In this work events were detected in70

baseball, American football and Japanese sumo wrestling. Another example

of work that belongs to this group is presented in [17] where, based on simple

visual features like pitch orientation and close-up detection, the authors achieve

good accuracy. However, again no time performance is given in the paper and

there is a big drop in accuracy when the SVM is trained on the samples that do75

not belong to the same game. It is worth noting that the three approaches de-

scribed above [13, 16, 17] are capable of extracting not only goals but also other

exciting moments like penalties or close misses. In [18], very simple features

like pixel/histogram change ratio between two consecutive frames, grass ratio

and background mean and variation in addition to time and frequency domain80

audio features were used in order to detect events in soccer games. Although

reporting high accuracy of the system using simple features the authors do not

mention its time performance. Although the acceptance of the MPEG-7 stan-

dard in the community has been rather low, there are still approaches based

on MPEG-7 descriptors. In [? ] an event detection and tactics analysis is pro-85

posed. This kind of approach could be really useful for coaches and trainers for

soccer game analysis after the game but from real-time analysis perspective it

is not significantly interesting.

Taking the real-time approach for a given task into consideration the amount

of the work is significantly lower. However, there are works worth recommend-90

ing. In [19] authors use audio-visual features (Scale Invariant Feature Trans-

form, Spatial-Temporal Interest Points, Mel frequency cepstrum coefficients,

color moments, etc.) to detect events in Internet videos. The system is capa-

ble of working in real-time under an assumption that the interval between the

frames for calculation is greater than 2 seconds. The drawback of the approach95

is in the precision which is on the level of about 50% for all the videos. A

very interesting work is presented in [20] where authors present real-time video

classification based on dense Histograms of Oriented Gradients/Optical Flow.

Based on the results presented there the proposed system is capable of working
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at speed of almost 13 fps. The results however are presented only for 320× 240100

resolution short (70-200 frames) videos presenting only human actions. This

assumptions are quite unrealistic for wide range of different shots of the sport

field, poses and numbers of the players in the shot.

Finally, there have been approaches significantly different from the ”stan-

dard” low level feature-based systems. In [21] and [22] a very different ap-105

proaches are taken. Both utilize the information produced by people during

a game and tweeted by the popular Twitter website to detect events in differ-

ent games (soccer and rugby were tested). They are, at first sight, universal

approaches, however they can suffer from quite large false positive detection

rates, need constant connection to the Internet and introduce some ambiguity110

in the form of delay between detected and real events making the detection of

event boundaries more difficult. The [23] approach uses knowledge-discounted

approach to detect events. By introducing a hybrid approach which integrates

statistics into logical rule-based models during event detection. It seems to be

applicable for not only one type of sport but time performance of the system is115

not given in the paper.

Our contribution in this paper is to present a novel pseudo-generic real-

time system for event detection that addresses many of the limitations of the

techniques outlined above. Section 2 presents the scene classification technique

itself and a high level architecture of our proposed approach. In the following120

section we present the core event classification algorithm and three appropri-

ate classifiers that can be used. Section 4 presents the event detection results

across a large set of sports genres. This section also shows how we tested our

implementation and what dataset we have chosen for this purpose. The arti-

cle is concluded in section 5 where we present its main advantages and a time125

performance analysis.
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2. The concept of the annotation system

2.1. The idea

In live broadcasts, a key challenge for a sports director is to convey to the

viewer what is happening during a sporting event. This is achieved by the130

director switching between a variety of camera views that help describe what

is happening. So for example, this could include showing a long distance shots

that show a zoomed out view of the field of play, followed by a closer focus on

the scoring area, followed by a close-up of the player involved, a reaction shot

of the crowd or manager, etc. Whilst there is no de-facto ”script” for how to135

present these shots, or in what order, these are the tools that a director has

at his/her disposal in order to convey excitement and capture an important

event. As a result, scene recognition, by which we mean recognizing what kind

of camera shot is being used by a sports director at any given moment, is useful

input for event detection. Although previous works [13, 16, 17, 24] are mainly140

based on the analysis of very simple audio- visual features like color histograms,

pixel differences or audio intensities in order to detect different types of a shot

in sports broadcasts we employ more powerful detection techniques. Say, for

example we have to deal with videos that contain soccer and basketball games.

Detecting long distance shots (i.e., shots that present the field of a game) based145

on the color of the pitch/court regarding the diversity of colors of the fields (e.g.,

muddy grass, wet grass, different colors of the court in the dead-zone region)

will not be an efficient solution in practice. For this reason, in order to detect an

event based on the sequence of shots we defined fourteen different scene types

typically used by a director, which covered about 99% of the video footage in150

our database. The proposed classes are as follows:

1. close up shot head (simple background);

2. close up shot head (complex background);

3. close up shot head (mixture background);

4. close up shot waist up (simple background);155

5. close up shot waist up (complex background);
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Figure 1: Visualization of an example trace of the visual features for a basketball game where

the interesting moments are indicated

6. close up shot waist up (mixture background);

7. short distance shot presenting player(s) (simple background);

8. short distance shot presenting player(s) (complex background);

9. short distance shot presenting player(s) (mixture background);160

10. short distance shot presenting spectators;

11. long distance shot presenting center of the field;

12. long distance shot presenting right side of the field;

13. long distance shot presenting left side of the field;

14. long distance shot presenting spectators;165

In addition we have proven that these classes appear in all different genres

of field sports ranging from Gaelic football to soccer.

Figure 1 presents a stacked bar graph of descriptors for an example field

sport game for illustration purposes (in this particular case it is basketball).

Since we described our investigation of the choice of the scene/shot detection170

and recognition algorithms in another paper [25] we do not repeat this here.

However, we do note here that, based on our experiments the covariance of

some of the descriptors is sufficiently high to omit or merge them together in

order to form new ones. To this end, from the original proposed complete set

of fourteen, the following 8 scene classes have been chosen along with an audio175

energy descriptor:
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1. maximum of long distance shot presenting left/right side of the field;

2. long distance shot presenting center of the field;

3. short distance shot presenting spectators;

4. short distance shot presenting player(s) (mixture background);180

5. long distance shot presenting spectators;

6. close up shot head (simple background);

7. close up shot head (complex background);

8. close up shot head (mixture background).

Each descriptor produces an output normalized to the range [0, 1] that we treat185

as a confidence associated with that descriptor. The audio energy descriptor is

simply an adaptive moving window average filter (1) over the audio intensity

samples synchronized with the video stream:

aoutk =
1

N

N∑
i=1

aini (1)

where N is the width of the moving window and k is a position of the filter in

the audio stream.190

Taking into account the characteristics of the interesting moment in any type

of the field sport game we can distinguish three higher level phases of camera

activity, where the director uses the various camera shots available (figure 1):

1. Center/side of the field shot;

2. Zoom-in on the player who has possession of the ball/puck (optional);195

3. Close-up on the player who scored/caused interesting action.

Our proposed descriptors effectively continually monitor different aspects of

these three phases of camera activity in terms of the different kinds of shots

being used. The various descriptors are ”triggered” by different aspects of the

three phases, allowing us to build classifiers to differentiate the different phases200

and on this basis recognize events. In the first phase, a camera usually pictures

a large part of the pitch (descriptors marked in dark blue in figure 1) or court

with multiple players on it but then pans to one of the sides of the arena where
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Figure 2: The block architecture of the proposed system

the event is taking place. Since in these types of shots feature spectators sitting

on the sides of the pitch descriptors responsible for audience detection become205

dominant (colors: light blue and green in figure 1). In some sports with very

high pace this could be a very quick transition (e.g., basketball) whereas in

others it may take a longer (e.g., soccer). Since the data shown in the figure

is from a basketball game, this transition is almost immediate (the long center

shot descriptor – medium blue color – is visible only at the beginning of the210

magnified area). This specific action the camera is zoomed on the players at

the end of the field, the short shot descriptor (cyan color) becomes more active

too. The interesting moment itself ends up in the the final phase where three

descriptors responsible for close-up detection (colors: orange, red and brown)

are triggered since the camera focuses on the player who scored. Also, one215

can easily noticed that during a break usually camera focuses on players and

spectators. Utilizing this structured appearance of data as the basis of an event

means that we can build a classifier which is able to detect these events based

on these audiovisual descriptors that differentiate these phases.

2.2. Architecture220

The general architecture of our approach is presented in figure 2. It can be

seen that the video decoding process is independent from the video annotation

procedure thus, enabling the display of the decoded video frames on the user

screen but also allowing storage of every kth frame (every 5th frame in our

implementation) in the buffer for further annotation analysis. At the bottom of225

the figure one can observe an analysis pipeline responsible for feature extraction,

scene recognition [25] and finally classification of events potentially interesting
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for the user. This modular architecture makes the system applicable for mobile

devices and embedded systems (such as set-top boxes) where, for example, the

decoding process usually takes place in a separate hardware acceleration unit230

because of CPU limitations. This way both processes can work in parallel

without introducing any additional delays. Thanks to the modular approach

taken in the system design process it is also possible to replace any of the

existing modules with new, improved versions that for example utilize additional

hardware external to the CPU (e.g., Graphics Processing Unit on dedicated235

extension card). For example, in our implementation we were able to replace

some parts of the algorithm with their CUDA implementation improving the

overall performance by 5-7%.

3. Feature extraction & Scene recognition

To solve a problem of efficient description of the video scene sequence we240

used a technique based on global image description with use of Fast Fourier

Transform (FFT). Since in our case we do not have to deal with scene rotation or

scale invariance global description based on color distribution provide sufficiently

high precision. Our work in [25] shows that non-binary local feature detection

algorithms like Scale Invariant Feature Transform (SIFT) [26] and Histogram245

of Oriented Gradients (HoG) [27] algorithms, that are characterized with the

highest efficiency of scene recognition are too slow to be part of a system that

has to work under real-time constraints. This work was a precedence to look for

less sophisticated, but still of high efficiency algorithms for image description.

We analyzed most state-of-the-art key-point extraction algorithms suitable for250

real time applications like Features from Accelerated Segment Test (FAST) and

Features from Accelerated Segment Test – Enhanced Repeatability (FAST-ER)

[28] also binary local description algorithms like: Binary Robust Independent

Elementary Features (BRIEF) [29], Fast Retina Keypoint (FREAK) [30], Binary

Robust Invariant Scalable Keypoints (BRISK) [31], all available in OpenCV255

library [32]. In our task of field sport scene recognition all of them respond
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with very similar effectiveness (less than 2% of difference in accuracy between

the least and the most efficient). The technique proposed in [25] has one major

advantage comparing to the local image descriptors which is robustness to the

compression artifacts and video/image quality in general. The underlying idea260

of the algorithm is to treat the color in the image as it had meaningful of

layout. Then particular range of colors is extracted and the very well-known

Fourier transformation is used to describe this layout characteristics. Let I be

the input image where colors are coded in HSV color space. We convert each

pixel to its address representation where each pixel is represented as a single265

10-bit value according to the following formula:

IAx,y = 64Hx,y + 16Sx,y + Vx,y + 1 (2)

where x and y are the Cartesian coordinates of the given pixel, Hx,y, Sx,y and

Vx,y are quantized H, S, V coefficients to 16 (4 bits), 4 (2 bits) and 16 (4 bits)

levels respectively. Therefore the resulting histogram has 1024 bins (10 bits).

It has been called an address representation since the calculated value points to270

the respective bin of the histogram (i.e., it is an address of the histogram bin).

Note that histogram calculated in this way group similar colors with respect to

their hue coefficient since H goes to the most significant bits of the address.

Now, let g be a radial basis function (RBF) that traverses the above his-

togram, so that in a single step i the processed address image (i.e., the image275

with pixel values converted according to the equation (2)):

Igi = exp

[
−
(
IA −Ai

)2
σ2
G

]
(3)

where Ai is the address at a given algorithm iteration and σG is chosen experi-

mentally [25]. Note, that in a particular iteration Ai the resulting image Igi will

have nonzero values only in the pixels which values fall into the span of the RBF

(i.e., since hue component is the most significant – the pixels with similar hue280

value). This idea has been visualized in the figure 3. Note, that for field sports

we usually deal with very convenient situation where the object and background

are very contrastive and are composed of limited number of colors. Thanks to
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Figure 3: The idea of filtering the image with the address approach

this method we can capture layout of the colors in the image and then analyze

it in further processing.285

The image address representation is then transformed with a 2-D Fourier

transform which gives us a result – the frequency representation of the particular

color distribution in the image (i.e., the filtered address image represents a part

of an object/background texture in the image). The next step is filtering the

Fourier representation with a set of Gabor filters [33]:290

GK,L (ω, θ) = exp

[
− (ω − ωK)

2

2σ2
ωK

]
exp

[
− (θ − θL)

2

2σ2
θL

]
(4)

where K and L are radial and angular indexes respectively, ωK and θL are the

polar coordinates of the filter center. The setup of σω,θ values is the same as

in in [33]. This results in 30 Gabor filters that span the Fourier space and give

higher granularity for low frequencies.

The last step is a composition of the Gabor filter responses for every iteration295

of the Igi function in order to receive the overall information about the scene.

This can be seen as a composition of partial informations about the layouts

of the particular colors. Thanks to this composing this method works even

for images with complex backgrounds. Based on the linearity of the Fourier

transform we can add all the results of single step calculations for the same300

value of σ2
G into one result matrix by simply summing them and performing

Gabor filtering only once at the end. So the resulting equation becomes (M is
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the number of steps chosen experimentally [25]):

F =
1

M

M∑
i=1

F {Ii} (5)

Thanks to performing the filtering step only once we can achieve a very

quick feature extraction method (i.e., less than 40ms). In addition, calculations305

for different sizes of the σ2
RBF factor can be done independently, thus we can

combine the results in order to train and evaluate a set of SVMs for every given

class. This technique allows us to choose the best performing combination of

features and SVMs for every class. Results presented in this paper show that

the proposed algorithm provides the same accuracy as sophisticated and slow310

feature extraction algorithms like SIFT [26] or HoG [27].

4. Event classification

The event classification system comprises of a main module which is a classier

and a submodule which gathers the responses of the previous one and makes

the final decision about the detection of the event. The latter one is described315

in the section 4.2.

4.1. Event recognizer

4.1.1. Decision tree

Natural thing was to look for a classifier among deterministic methods of

classification. One of the simplest seems to be the state machine, but creating320

it manually turns out to be impossible while there is too much data to process.

That is why we focused on decision trees, which find their implementations in

many computable environments (e.g. MATLAB).

Decision tree is built from the following components:

• – internal node - represents a test on an attribute,325

• – nodes - where the decision is made which path will be followed,

• – leafs (branches) - which represent options of these decisions.
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In our case we naturally examined two different structures, in first one we

adopted 9 decision variables for 9 descriptors, while in the second - 18 decision

variables, while we took into account the following moment of time. The results330

obtained with the first structure were not satisfying enough, hence we tried to

use the bigger structure, like in the case of neural networks. Depending on the

structure decision tree contains around 2 500 or 5 200 nodes.

4.1.2. Feed-forward neural network

Figure 4: The architecture of the feed-forward neural network used for event detection

An intuitive choice for a neural network is the very well known feed-forward335

multi-layer perceptron neural network (MLP) shown in the figure 4. This was

our initial choice since this kind of network facilitates a good trade-off between

its generalization capabilities and complexity of the architecture [34]. The fol-

lowing structure for the network appeared to be the most efficient:

• eighteen inputs related with nine given descriptors and nine descriptors340

from the previous frame;

• ten neurons with linear activation function in the hidden layer;

• one output that refers to the attraction of the current scene of the game

using the sigmoidal activation function.

In the learning process we used around 20 000 samples from six different345

games (chosen randomly), which gives approximately one hour and six minutes

of a match. We used the Levenberg-Marquardt algorithm [35, 36] for training.

The neural network reaches the minimum of the gradient after around 10 itera-

tions, which, due to fast convergence of the training process, confirms that the

network was able to learn the classification task. In order to avoid over-fitting350
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Figure 5: The architecture of the Elman neural network used for event classification

of the network to the training data we used an early stopping technique as part

of the training process. Strikingly, the network seems to reach saturation for

event detection since larger number of neurons in the hidden layer followed by

more training samples do not increase the overall accuracy, which reached 65%

in the best case. This accuracy relates to event detection in all kind of sports in355

our dataset. Since all the simulations of our network led to the conclusion that

we had reached a saturation point in recognition capabilities, our next choice

was a network which not only analyzes the current state of the game but also

utilized information about previous values of descriptors. We investigated re-

current neural networks with the Elman network as a representative example of360

this class [37].

4.1.3. Elman neural network

The fixed back connections in the Elman network result in the context units

always maintaining a copy of the previous values of the hidden units (since

they propagate over the connections before the learning rule is applied). Thus,365

the network can maintain a sort of state, allowing it to perform such tasks as

sequence-prediction that are beyond the power of a standard multilayer percep-

tron and this is clearly desirable in our case. On the other hand, the Elman

neural network has been proven to be unpredictable in terms of the general-

ization of any function [38] (or in other words the generalization of the Elman370

neural network cannot be guaranteed). However, [38] also shows that any ar-

bitrary information, due to the existence of a hidden layer, can be encoded

in the inputs since the length of the input vector is not restricted. Providing

additional information about previous state of the scene description and using
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feedback from the hidden layer of the network any dichotomy can be stored as375

an input and easily used for event categorization [38]. In addition, we also know

that any finite automaton can be represented by a recurrent neural network

[37] making our choice a natural extension of the state machine idea. Of course

the more complex architecture of the network results in higher computational

complexity thus increasing its execution time [39, 40] so that the number of neu-380

rons and their activation functions must be carefully chosen in order to achieve

real-time operation.

The input layer of the network was constructed in two different ways. The

very first and natural choice was to use nine inputs that refer to nine descriptors,

but after a number of simulations we decided to improve its construction so that385

the information about previous scene description serve as additional inputs to

the network. This way we have a network with eighteen neurons in the input

layer (nine descriptors of the current state, nine descriptors of the previous

state).

In the training process we used the Levenberg-Marquardt algorithm, as the390

most effective one (we compared the results with the simple gradient descent

method which did not give satisfactory results). After only around 30 iterations

the neural network reached the minimum of the gradient. This result allows us

to state that despite its complexity and the unpredictability of its generalization

behavior, the Elman neural network, can be trained very fast for the same task395

allowing even better classification results.

4.2. Final event classification

The scene recognition algorithm works in a binary fashion, so that only the

0-1 information about the scene classification is available after this phase. After

this stage we applied a sliding window approach that measures the responsive-400

ness (i.e., number of responses in the window) in order to classify the event.

The approach is depicted on the figure 6. Note, that in order to capture the

idea of the sequence of the shots we applied two sliding windows that are mov-

ing synchronously with constant width W and gap S between them. The event
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Figure 6: The visualization of the matching windows for event classification

is detected when the number of ones within the windows is equal or greater405

that given threshold T . The influence of the mentioned parameters for different

sports and types of the events is presented in the next subsection.

5. Results

5.1. Dataset

In our experiments we used a manually annotated ground-truth dataset of410

sport videos. The dataset comprises of about 50 hours of sports including

hurling, Gaelic football, basketball, rugby, soccer and cricket. In order to create

the ground-truth our annotators analyzed the footage marking the following

features:

• the time stamp of the beginning of the interesting action;415

• the interesting point (if applicable) such as a goal between the beginning

and end of the interesting action;

• the time stamp of the end of the interesting action;

• the information if the action included a score;

• the binary information about the level of excitement or importance of the420

event e.g., a goal/try vs a point/penalty in sports with different scoring

mechanisms.

5.2. Classification results

Event detection and recognition is quite subjective task. This is true in

particular for non-goal events where sometimes it is hard to determine if the425

captured moment is of high value for the viewer (especially when they are not
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interested in a player/team that caused the event) or sometimes simple the game

does not contain many events. In this case we would have plenty non-event

moments that is obviously not desirable for training the classifier since it may

produce offset in the solution. This situation would affect the event standard430

effectiveness measuring factors like accuracy, precision and recall and make them

inadequate for this task. On the other hand the factors that stand for accuracy

of the system should give undoubtful information about the accuracy of the

event detector. For this reason in our work we introduce different than standard

accuracy measures that are focused on around the event detector performance435

(6)-(8):

MA =
|DE−DTE|

NE (6)

P = DTE
DE (7)

MP = DTE
NE (8)

where NE refers to number of events in a match, DE to number of detected

events by the classifier and DTE to number of detected true events (i.e., the

ground-truth size). Note, that modified accuracy (MA) tends to be close to

zero for the systems that are characterized with high effectiveness and its not440

restricted to one for the low-performance systems. Precision (P) and modified

precision (MP) were introduced in order to provide additional information about

the effectiveness. They are useful in the situation where there are not many

events in a analyzed game (i.e., when DTE is close to NE).

The same number of tests were performed for all three proposed classifiers.445

In order to verify the generalization of the proposed classifiers used data taken

randomly from all the games for training. For each considered scenario we

used around 20000 data samples for training classification tree and both neural

networks respectively. For all experiments we used tree created and optimized

with [41] algorithm available in Matlab, shown in 4.1.1 section, feed-forward and450

Elman neural networks with nineteen neurons in the input layer. For each game

we calculated the factors presented above (6)-(8). For the event scenario we take
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Fig. 7: Modified accuracy (MA) for different sizes of window
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Fig. 8: Modified accuracy (MA) for different delays

all the entries in the dataset and we check the event recognition system output at

every time stamp in order to calculate the measures. Tests of the system were

performed on six different games: rugby, football, basketball, cricket, gaelic455

football and hurling.

Figures 7 to 9 show the influence of the sliding window solution to the

accuracy of the event recognition system. As it can be seen the bigger the

window size and the higher the number of positive classifier responses the better

the effectiveness of the system (figure 7 and 9). This can be explained by the fact460

that the wider windows capture more temporal information about the sequence

of the shots and event in general. The gap between the two windows (the S
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Fig. 10: Modified accuracy (MA) for different number of considered descriptors

factor) does not introduce any improvements – figure 8. Note, that we chose

reasonable range of S values (10 shifts stand for 5 seconds of the video).

A natural question in the case of the classification based on any kind of465

features is what is the robustness of the classifier to the limited number of the

features that describe the scene. Figure 10 shows the MA distribution with

respect to the number of features in the vector describing the scene. The right

most graph is the one for all the descriptors mentioned in 2.1 section. The each

following to the left bar graph has limited number of features by one as follows:470

1. audio descriptor;

2. short distance shot presenting player(s) (mixture background);

3. long distance shot presenting spectators;

4. close up shot head (complex background);
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Tab. 1: True and detected events by Elman neural network set together with MA, P and MP

and corresponding window size and positive probes within

ENET

W WP NE DE DTE MA P MP

rugby 25 15 49 47 45 0.04 0.96 0.92

basketball 10 4 188 183 182 0.01 0.99 0.97

soccer 35 31 213 199 199 0 1 0.93

cricket 35 27 81 79 78 0.01 0.99 0.96

G. football 35 23 54 52 54 0.04 1.04 1

hurling 30 18 59 59 59 0 1 1

5. close up shot head (mixture background).475

For most of the sports the limitation in the number of descriptors is barely

noticeable, except rugby where the event classifier seems to be correlated with

the long distance shot descriptor that presents spectators. Indeed, in the footage

we covered almost every event is followed by the shot that presents cheering

spectators. This feature makes the rugby footage very characteristic.480

Since, as we mentioned the MA factor is vulnerable to the number of the

events (i.e., the same accuracy can be achieved for different number of events in

the game) we would also like to present the results for the remaining proposed

factors. Tables 1-3 show that for all the classifiers presented in this paper the

proposed event recognition method gives very good results (i.e., all the factors485

that stand for the broadly defined accuracy give almost ideal results). Note,

that the precision factor is sometimes bigger than one. This is due to the fact,

that the two events in the video footage are very close to each other and, since

the width of the sliding window covers few seconds, were classified as one event.

This is correct since all this events separated by the ground truth making users490

consist of the genuine event and its replay (especially in soccer).

As the subject of the event recognition and classification is very popular

among the academia environment we’d like also to include comparison results
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Tab. 2: Example numbers of true and detected events set together with MA, P and MP and

corresponding window size and positive probes within

MLP

W WP NE DE DTE MA P MP

rugby 25 15 49 44 45 0.02 1.02 0.92

basketball 25 23 188 177 175 0.01 0.99 0.93

soccer 30 26 213 203 202 0.01 0.99 0.95

cricket 40 32 81 77 79 0.02 1.03 0.98

G. football 25 15 54 53 54 0.0185 1.02 1

hurling 20 10 59 71 59 0.20 0.83 1

Tab. 3: Example numbers of true and detected events set together with MA, P and MP and

corresponding window size and positive probes within

TREE

W WP NE DE DTE MA P MP

rugby 50 24 49 47 47 0 1 0.96

basketball 40 28 188 137 152 0.08 1.12 0.81

soccer 35 29 213 133 134 0.01 1.01 0.63

cricket 50 24 81 80 79 0.01 0.99 0.98

G. football 50 46 54 17 15 0.0370 0.88 0.28

hurling 50 44 59 65 57 0.14 0.88 0.97
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Tab. 4: Precision comparison with other works

other works

[42] [43] [44] [45] [46] [47]

this work 0.96 0.81 0.83 0.51 0.62 0.93 0.74

between out work and the chosen works from around the world. Table 4 presents

the mentioned comparison. Note, that in this section we proposed different than495

standard retrieval quality factors. The only standard one is the precision which

we’ll compare. Also, note that the table presents the mean values of the final

precision results for all the sports presented in the respective paper.

5.3. Time performance

Since we claim that our system is capable of working in a real-time environ-500

ment is is crucial to investigate also the time performance of all the classifiers we

proposed in this paper. In general the complexity of all the solutions is linear

O(w), where w is the number of parameters. For the proposed decision tree

classifier this investigation is really straightforward - the tree has at maximum

eighteen decision levels. This kind of operation can be done in microseconds505

without any sophisticated implementations. For artificial neural networks used

the overall cost/time can be calculated based on the equation (9).

T = cA+ (n− ni)G (9)

Where c is the number of connections, n is the total number of neurons, ni is

the number of input and bias neurons, A is the cost of multiplying the weight

with the input and adding it to the sum, G is the cost of the activation function510

and T is the total cost. Since in both proposed networks, neurons in the hidden

layers have linear activation function and we have only one neuron on the output

of the network ni = n− 1. This reduces the (9) equation to:

T = cA+G

leaving the total cost depending only on the number of connections and param-

eters of the processor (i.e., clock frequency and number of clock cycles needed515
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for multiplication and addition operations). In the case of feed-forward ANN

and Elman ANN we have cFF = 180 and cElm = 800 respectively. For modern

processors, multiplication and addition operations are pipelined and do not take

more than a few clock cycles. In our implementation the execution time of the

Elman neural network was less than 1ms leaving plenty of time for the preceding520

scene analysis algorithm.

6. Conclusion

The paper presents a real-time event classification solution for broadcast

sports videos. There are two main novelties presented: it is the first approach

(to our knowledge) that explicitly deals with the problem of sports event clas-525

sification from a real-time perspective; the range of the sports that can be

annotated by the system is extremely broad.

Whilst the state of the art solutions very often obtain good accuracy they

do not consider time performance as an important issue despite the fact that it

could be highly desirable in a range of applications (e.g., in the scenario when530

this kind of system works on an embedded platform like a set-top box preparing

feeds for the second screen application). For this reason, the classifiers we choose

have linear transfer function in all neurons from the hidden layer allowing faster

execution times (i.e., the cost related to calculation of the transfer function is

eliminated). We have proved that our classification is not only as good as state535

of the art algorithms but also takes no longer than a few milliseconds to classify

whether the particular part of a game could be interesting to the user. Having

well designed ground truth dataset we can distinguish not only potentially inter-

esting content but also classify it as a goal or highly interesting/exciting event.

This enables placing specific markers in a video file in future applications. As540

previously mentioned, apart from the other presented algorithms, the system

works not only for a particular type of the sport like soccer or basketball but

can be thought of as a universal platform for so called field sports.

As it can be seen all the system is designed by be capable of working in real
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time. All the solutions assure the optimal flow of the information with regard to545

the processing time. This involves the use of parallel and pipelined processing

which were extensively used in the project. A good example of this is an event

classification system that is based on the sliding window. In other words it is

just a shift buffer (pipeline) with a simple counter on the top of it. For this

reason event classification engine was not designed as a standard classification550

vector machine like SVM, neural network or decision tree. The use of these

techniques would require much more complex and slower solutions (e.g., in the

case of a tree we would have 900 levels – 50 samples times two windows times

nine scene descriptors). That’s simply not realistic in a system that has to work

under real-time regime.555

To conclude the time performance of the event classification module, all the

classification methods presented herein do not affect or do not redistribute in

any way the main computational burden of the processing flow. That means

that in comparison to the time performance of the feature extraction and scene

classification engine the time needed for event classification can be in fact dis-560

regarded.
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