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Abstract— We analyze the signal to noise ratio (SNR) in a 
recently proposed lensless compressive imaging architecture. The 
architecture consists of a sensor of a single detector element and 
an aperture assembly of an array of aperture elements, each of 
which has a programmable transmittance. This lensless 
compressive imaging architecture can be used in conjunction 
with compressive sensing to capture images in a compressed form 
of compressive measurements. In this paper, we perform noise 
analysis of this lensless compressive imaging architecture and 
compare it with pinhole aperture imaging and lens aperture 
imaging. We will show that the SNR in the lensless compressive 
imaging is independent of the image resolution, while that in 
either pinhole aperture imaging or lens aperture imaging 
decreases as the image resolution increases. Consequently, the 
SNR in the lensless compressive imaging can be much higher if 
the image resolution is large enough.  
 
Index Terms— Lensless compressive imaging, signal to noise ratio, 
pinhole aperture imaging, lens aperture imaging 

I. INTRODUCTION 
ENSLESS compressive imaging (LCI) [1] is an effective 
architecture to acquire images using the compressive 

sensing technique [2][3]. It consists of a sensor of a single 
detecting element and an aperture assembly of programmable 
aperture elements, but no lens is used, as illustrated in Figure 
1. The transmittance of each aperture element is individually 
programmable. The sensor can be used to acquire compressive 
measurements which, in turn, can be used to reconstruct an 
image of the scene. By using compressive sensing, an image 
can be reconstructed using far fewer measurements than the 
number of pixels in the image, and therefore, an image is 
already compressed when it is acquired in the form of 
compressive measurements. This architecture is distinctive in 
that the images acquired are not formed by any physical 
mechanism, such as a lens [4] or a pinhole [5]-[7]. This results 
in the feature that there are no aberrations introduced by a lens, 
such as a scene being out of focus. Furthermore, the same 
architecture can be used for acquiring multimodal signals such 
as infrared, Terahertz [8] and millimeter wave images [9]. This 
architecture has application in surveillance [10]. 
 

 
Figure 1. Lensless compressive imaging (LCI) architecture 
 

Furthermore, multi-view imaging can be easily 

accommodated by placing multiple sensors in conjunction 
with one aperture assembly [11]. Compressive measurements 
from the multiple sensors can be used in a variety of ways. For 
example, they may be used to reconstruct multi-view images 
such as 3D images. Measurements from multiple sensors may 
also be used in a joint reconstruction to form a single image, 
for the purposes of 1) reducing number of measurements taken 
by each sensor, 2) enhancing quality of the reconstructed 
images by concatenating measurements from all sensors, and 
3) increasing the resolution of the image beyond the resolution 
of the aperture assembly; see [11] for details. 

A. Difference from other imaging architectures 
The LCI architecture of [1], as shown in Figure 1, is 

different from most other known imaging architectures, such 
as pinhole aperture imaging (PAI) [5], coded aperture imaging 
[6][7] or single-pixel imaging with lens aperture [4]. One 
fundamental difference is that in the LCI of [1], no physical 
images are formed, while in all other referenced imaging 
architectures, a physical image is formed either by a lens [4] or 
by a pinhole [5]-[7]. This fundamental difference underscores 
the different functionality of the apertures. Since no physical 
image is formed, the functionality of the aperture assembly in 
Figure 1 is simply to transmit or to block light, and there is 
little other constraints placed on the aperture elements; for 
example, there is no constraint on the size of the aperture 
elements, and the size of the elements does not affect the 
quality of the image. On the other hand, the functionality of 
apertures for other imaging architectures [4]-[7] is to form an 
image, and therefore, the apertures must meet certain 
restrictive requirements to provide an image of desired quality; 
for example, there are constraints on the curvature of a lens or 
the size of a pinhole in order to form a sharp image. Even the 
coded aperture [6][7] is different from the aperture assembly 
of Figure 1 because each element in the coded aperture acts as 
a pinhole to form one view of the image, and therefore, its size 
affects the quality of the reconstructed image, while the image 
quality in the LCI of Figure 1 is independent of the size of its 
aperture elements. 

Furthermore, in pinhole aperture imaging or coded aperture 
imaging [5]-[7], a large array of sensors must be used, one 
sensor for each pixel in the image, while only one sensor is 
used in LCI of Figure 1. 

B. Main contribution of this paper 
Since the LCI architecture of Figure 1 does not use a lens, 

does it suffer from the poor signal to noise ratio (SNR), and 
how does its SNR compare to that of a pinhole aperture 
imaging or to that of a traditional digital camera with a lens 
(lens aperture imaging)? 

Scene
Aperture
assembly

Sensor

L



 

2 
 

The goal of this paper is to answer this question. We will 
perform a noise analysis and compare the lensless compressive 
imaging with the pinhole aperture imaging and the lens 
aperture imaging, e.g., a traditional digital imaging with a lens.  

The LCI architecture allows an image to be acquired 
directly as compressed data, in the form of compressive 
measurements. There are two types of noises in the final 
reconstructed image: measurement noise and compression 
noise. The measurement noise is defined as the noise present 
in the process of acquiring data from the imaging device, such 
as shot noise, thermal noise and quantization noise in the 
acquired data. The compression noise is defined as noise due 
to compression, i.e., the error introduced in the reconstruction 
because not all independent compressive measurements are 
used, even if the measurements themselves are acquired 
precisely, free of any measurement noise. 

Similarly, in addition to the measurement noise, the pinhole 
aperture imaging or lens aperture imaging may also suffer 
from the compression noise, which is the error introduced 
when an image is compressed to, e.g., JPEG format.  

In this paper, we only analyze the measurement noise. The 
analysis of compression noise, i.e., errors due to use of partial 
measurements in reconstruction in the lensless compressive 
imaging, can be found in general compressive sensing 
literature, e.g., [2][3]. In neglecting the compression noise, we 
assume all independent measurements are used in 
reconstruction and analyze SNR of the reconstructed image 
due to the measurement noise. Two types of noises are 
included in the measurement noise. The first type is the shot 
noise, due to statistical quantum fluctuations, which is 
modeled by a Poisson distribution. The second type is additive 
noise which includes thermal noise, quantization noise etc. and 
is modeled by a random variable of zero mean and certain 
variance. There is no assumption on the type of distribution for 
additive noise.  

Our analysis will show that the SNR of the lensless 
compressive imaging can be much better than that of pinhole 
aperture imaging, and furthermore, it can even be better than 
that of the lens aperture imaging. More specifically, how the 
SNR of the LCI compares with that of, say, the traditional 
digital imaging with a lens (lens aperture imaging), depends 
on, among other parameters, the resolution of the image. Our 
analysis will show that, when other parameters, such as noise 
characteristics of sensors, the size of lens aperture etc, are 
fixed, the LCI architecture of Figure 1 will eventually have a 
better SNR than the lens aperture imaging if the resolution, 
i.e., the number of pixels, of the image is large enough. We 
will provide insights and explanations on why this result 
makes intuitive sense. 

C. Acronym 
The following acronyms will be used extensively 

throughout the rest of the paper. 
LAI – Lens aperture imaging. This refers to the imaging 

architecture in which a lens aperture is used to form an image 
which is pixelized by an array of sensors. An example is a 
legacy digital camera with a lens. 

LCI – Lensless compressive imaging. This refers to the 
imaging architecture shown in Figure 1, which was first 
proposed in [1]. 

MN – Measurement noise. This refers to the noise in the 
data obtained from sensor or sensors, including such noises as 
shot noise, thermal noise and quantization noise. This is in 
contrast to compression noise which is the error introduced in 
the process of compressing images. We consider measurement 
noise only in this paper. 

PAI – Pinhole aperture imaging. This refers to the imaging 
architecture in which a pinhole aperture is used to form an 
image which is pixelized by an array of sensors. 

SNR – Signal to noise ratio. 

D.  Organization of the paper 
The paper is organized as follows. In Section II, we review 

the LCI architecture. Then, the SNR of the architecture is 
analyzed in Section III under the assumption of measurement 
noise only. In Section IV, comparison is made with PAI and 
LAI. Further discussions are provided in Section V to facilitate 
better understanding of the LCI architecture. Simulation 
results are reported in Section VI, which is followed by the 
Conclusion.   

II. LENSLESS COMPRESIVE IMAGING 
In this section, we provide a review of the LCI architecture 

of [1]. 
 

 
Figure 2. Illustration for the definition of virtual images in lensless 
compressive imaging. 
 

As shown in Figure 2, for each point ( , )u v  on the aperture 
assembly, there is a ray starting from a point, P , on the scene, 
passing through the point ( , )u v , and ending at the sensor. 
Denote by ( , ; )r u v t  the intensity of the unique ray associated 
with point ( , )u v  on the aperture assembly at time t . An 
image ( , )x u v  of the scene detected by the sensor is defined as 
the integration of the ray in a time interval t : 

 
0

( , ) ( , ; )
t

x u v r u v t dt


  . (1) 

The image in (1) is called a virtual image because there is 
not an actual image formed by any physical mechanism. The 
virtual image can be pixelized by the aperture assembly. Let 
an aperture element be denoted by ijE . Then the pixel value at 

the pixel ( , )i j  is given by 

 ( , ) ( , )
ijE

x i j x u v dudv  . (2) 

The image ( , )x i j  has as many pixels as the number of 
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elements in the aperture assembly. When the aperture 
assembly is programmed to implement a compressive sensing 
matrix, the transmittance of each aperture element is set to 
equal the value of the corresponding entry in the sensing 
matrix. Let the sensing matrix A  be a random matrix whose 
entries, nma , are random numbers between 0 and 1, and let 

( , )mT u v  be the transmittance programmed according to row 
m  of A . Then the compressive measurements are given by  

      
, ( , )

,

( , ) ( , ) ( , ), or

,

m

m m q i j
i j

y T u v x u v dudv a x i j

y Ax

 




 (3) 

where q  is mapping from a 2D array to a 1D vector, and y  is 
the measurement vector, A  is the sensing matrix and x  is the 
vector representation of the pixelized image ( , )x i j . 

In the rest of the paper, we will treat the image x  either as a 
2D array or as a 1D vector, interchangeably. In particular, the 
notation ( , )x i j  or ijx  refers to an element in the 2D array, 

and ( )x i  or ix  refers to an element in 1D vector.  

III. SIGNAL TO NOISE RATIO 
In this section, we perform SNR analysis for the LCI. As 

noted in the Introduction, we will only consider the 
measurement noise, the noise that is introduced into the 
measurements while they are acquired. The compression 
noise, the error due to reconstruction by using only portion of 
measurements, is not considered in this paper, and its analysis 
has been performed extensively in the compressive sensing 
literature such as [2][3]. Therefore, in this paper, we will 
assume that the sensing matrix is a square matrix, i.e., there 
are as many measurements as the number of pixels in an 
image, and all measurements are used in the reconstruction of 
the image. 

A.  Sensing matrix and measurements 
To make measurements, the transmittance of the aperture 

elements in Figure 1 is programmed according to a sensing 
matrix. In theory, a sensing matrix needs to have the restricted 
isometry property (RIP) [3][12], but in practice, a randomly 
permutated, modified, Hadamard matrix is usually used with 
satisfactory result [1][10][11][13]. Since the random 
permutation does not change the noise analysis, we will use a 
modified Hadamard matrix as the sensing matrix. We need to 
modify the Hadamard matrix, which has entries of -1s and 1s, 
because the transmittance is not defined for -1. 

Let N  be the total number of aperture elements, which is 
also the total number of pixels in the reconstructed image. Let 

 ijA a  be an N N  matrix created by Hadamard matrix  

 ijH h  with 1 s replaced by 0 s, i.e., the entries of A  are 
given by  

          
1, 1

0, 1
ij

ij

ij

h
a

h




 





. (4) 

Let x  be the vector of length N  whose component ix  is 
the light intensity from pixel i  of the object plane. Then the 
measurement vector, in the absence of measurement noise is 
given by 

     y Ax . (5) 

Each measurement iy  in the vector y  is the light intensity 
measured by the sensor, in the absence of measurement noise, 
when the transmittance of the aperture elements are 
programmed according to , 1,...,ija j N , that is, the 

transmittance of aperture element j  is equal to ija . 

B.  Measurement noise 
The measurement vector y  in Eq (5) is subject to 

measurement noise. We denote the vector of acquired values 
from the sensor in presence of measurement noise by z  and 
will establish a relationship between z  and y  by making 
some assumptions on the noise. We assume that two types of 
noise are present in the measurement vector y . 
Shot Noise:  

The shot noise is caused by statistical quantum fluctuations 
in the number of photons collected by the sensor, and it is 
modeled by the Poisson distribution. With the shot noise, the 
actual acquired value from the sensor for measurement iy  is a 

random variable ˆ
iy  given by  

   ˆ
i iy P y , (6) 

where  iP y  denotes the Poisson distribution with the mean 

iy . We further assume that ˆ , 1, ...,iy i N  are independent 
random variables. By the definition of Poisson distribution, we 
have 
        ˆ ˆ( ) var( ) , 1, ...,i i iE y y y i N   . (7) 
In Eq (7), ( )E   and var( )  denote the expected value and the 
variance, respectively. 
Additive Noise:  

This type of noise has a fixed variance independent of light 
intensity. This noise includes thermal noise and quantization 
noise in the measurements, and is modeled by a random 
variable i  for measurement iy . We further assume that 

, 1, ...,i i N   are independent and identically distributed 

random variables with zero mean and a variance of 2 , i.e., 
        20, var , 1,...,i iE i N     . (8) 

We only need to make assumptions in Eq (8), because the 
distribution of the additive noise itself is not important in our 
analysis. 

Therefore, under the assumption of the above two types of 
noises, the actual acquired value for iy , read from the sensor 
in the presence of the measurement noise, can be written as 

  ˆ ˆ, 1, ..., ,  or i i iz y i N z y      . (9) 
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The vector z  of Eq (9) is the actual acquired data of the 
measurement vector y  from the sensor in the presence of 
measurement noise. 

Although it can easily shown that the SNR of the 
measurement vector z  is quite high, much higher than the 
SNR of the pinhole aperture imaging, we are not interested in 
the SNR of the measurement vector z  itself, because the 
measurements are only intermediate values, and it is in the 
SNR of the final image reconstructed from the measurements 
that we are interested.  

C.  Reconstructed image 
The virtual image of a scene is defined by x  in equations 

(1) and (2). In LCI, x  is not acquired directly, so that it must 
be reconstructed from the acquired measurement vector z . 
Reconstruction algorithms are well known in compressive 
sensing literature, see for example [1] [13], but in the context 
of this paper, since our sensing matrix is a square, invertible 
matrix, the reconstruction can be performed simply by solving 
Eq (5) for x , with y  replaced by z .  

Let x  be the image reconstructed from the acquired 
measurement vector z , i.e., 

 1x A z . (10) 
Then the goal is to find the SNR of the reconstructed image x . 

D.  Signal to noise ratio 
First we define the SNR for a pixel value ix . The signal 

power at the pixel is ix   and the power of the measurement 

noise at the pixel is var( )ix . Therefore the SNR at the pixel 
is defined to be 

 
 

SNR
var

LCI

MNi

i

ix

x



. (11) 

Next, we consider the total signal power and total noise 
power in the entire image x . The total signal power is the 
integration of all light rays from the scene to the sensor when 
all aperture elements are opened (having transmittance of 1), 
referred to Figure 1, and it is therefore given by 

 0

1

N

i
i

X x


 . (12) 

The value 0X  defined in Eq (12) can be considered to be 
the brightness of the scene as seen by the sensor, and it is only 
a function of the lighting of the scene and the field of view of 
the LCI architecture, in particular, it is independent of the 
number of pixels in the image. 

The total SNR of LCI due to measurement noise is defined 
as 

    
 

0

1

SNR
var

LCI

MN N

ii

X

x




 
. (13) 

In Eq (13), the numerator is the total signal power in the image 
and the denominator is total noise power in the image.  

The following is the main result of this paper, and its proof 
is given in Appendix. 
 

Proposition 1.  
If the sensing matrix is the modified Hadamard matrix given 

in Eq (4), then the following expressions hold for the SNR of 
the reconstructed image x : 

 
   0 2

0 2

SNR
4 42 4

2 4

LCI

MNi
i

i

N x

XN N

N x

X






  




 (14) 

 
   

0

0 2

0

0 2

SNR
4 42 4

2 4

LCI

MN

X

XN N

X

X






  




 (15) 

where 2  is the variance of the additive noise given in Eq (8). 
 
The lower bound for the total SNR in Eq (15) is only a 

function of the brightness 0X  and the power of the additive 

noise, 2 . In the denominator, the value 0X  represents the 
total power of shot noise, and   represents the power of 
additive noise when the sensor acquires each measurement. 

An important observation from Proposition 1 is that the 
lower bound in Eq (15) is independent of the image resolution, 
i.e., the number of pixels, N . The total SNR of LCI due to 
measurement noise is bounded below by a constant with 
respect to the image resolution. In particular, it does not reduce 
when the image resolution N  increases.  

On the other hand, even though the factor N  appears in 
the numerator of (14), it does not necessarily imply that 
SNRLCI

MNi  increases with the resolution of the image. This is 

because for a given scene, even though the brightness 0X  is 
independent of image resolution, the pixel value ix  itself may 
be a function of the image resolution. Therefore, the numerator 

of (14), iN x , may increase, remain constant or decrease as 

N  increases.  However, if a pixel ix  represents a point 
source, such as a distant star, it is independent of the 
resolution, and the SNR at that pixel increases with the 
resolution.  

IV. COMPARISON 
In this section, we present the SNR results for two other 

imaging architectures: digital camera with the pinhole aperture 
imaging (PAI), and the digital camera with lens aperture 
imaging (LAI).  

We assume that images in all architectures have the same 
resolution, i.e., the same number of pixels, N , which means 
that the number of aperture elements in LCI is the same as the 
number of sensors in PAI and LAI. We further assume that the 
scene and the field of view of the images are the same in all 
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architectures to be compared, and the field of view does not 
change with the resolution N . A corollary of these 
assumptions is that the brightness of the scene, 0X  defined in 
Eq (12), is independent of resolution N . 

We will compare the SNR of LCI due to measurement noise 
with each of the PAI and LAI and show that the former 
outperforms both the PAI and LAI if the image resolution is 
high enough, i.e., if N  is large enough. 

A. Measurement noise 
Similar to the previous section, two types of noises are 

modeled in PAI and LAI. What is different in this section is 
that here, the image is acquired as pixels by an array of 
sensors. For pixel i , the acquired pixel value by the 
corresponding sensor is ix , which is different from the true 

pixel value ix  due to the measurement noise. Using the same 

treatment as Eq (9), the acquired, noisy pixel value ix  is given 
by 

 ˆ ˆ, 1, ..., ,  or i i ix x i N x x       , (16) 

where ˆ , 1, ...,ix i N  are independent random variables with 
Poisson distribution, with the property 
    ˆ ˆ( ) var( ) , 1, ...,i i iE x x x i N   , (17) 

and , 1, ...,i i N   are independent and identically distributed 
random variables, with  

        20, var , 1, ...,i iE i N     . (18) 
In Eq (18), we allow the additive noise to have a different 
power than that in (8) because the sensors may have different 
operating dynamic ranges in different architectures. 

In the following, we will find the SNR in the acquired 
image x . 

B.  Comparison with pinhole aperture imaging 
The LCI of Figure 1 is closely related to the PAI as 

illustrated in Figure 3.  
 

 
Figure 3. Relationship between lensless compressive imaging (LCI) 
and pinhole aperture imaging (PAI). 

 
Let us consider the special case where the sensing matrix 

used in the LCI is the identity matrix. In other words, each 
measurement from the sensor of Figure 1 is made when only 
one of the aperture elements is open and all others are closed. 
Then a measurement is equivalent to a pixel value in the PAI 
when the pinhole is placed at the location of sensor, see Figure 
3. In this case, the noise characteristics in LCI and PAI are 

exactly the same. That is, if the sensor in the LCI is the same 
as the sensors in the PAI, and if the identity matrix is used as 
the sensing matrix in LCI, then the two architectures have the 
same SNR. However, the result of Proposition 1 is obtained 
because the modified Hadamard matrix is used as sensing 
matrix instead of the identity matrix. 

For the pinhole aperture imaging, we have the following 
result on the SNR of the image due to measurement noise. The 
proof is given in Appendix. 
 
Proposition 2.  

The SNR of the image x  in pinhole aperture imaging is 
given by 

 
2

SNR PAI

MNi
i

i

x

x 



, (19)   

 
0

0 2
SNR PAI

MN

X

X N



 (20) 

where 0X  is the total signal power given in Eq (12), and 2  is 
the variance of the additive noise given in Eq (18). 

Furthermore, the following estimate holds for the ratio of 
SNRLCI

MN  over  SNRPAI

MN  

 
2

0 2

0 2 0
1

SNR 1
.

SNR 22 4

LCI

MN

PAI

MN

X N N

X X

 









 
  

 
 (21) 

 An important observation from Proposition 2 is that the 
total SNR in PAI, SNRPAI

MN , is not only a function of 0X  and 
2 , like Proposition 1, but also a function of the image 

resolution N , unlike Proposition 1. The significance of the 
Proposition 2 is that the SNR of PAI decreases as the image 
resolution increases.  

It is more revealing if we consider the ratio of the SNRs for 
LCI and PAI, as given in Eq (21), which shows that the SNR 

of the LCI is higher than that of the PAI by an order of N . 
One corollary is that no matter what sensors and quantization 
levels are used in two architectures (which determine the 
relative sizes of   and  ), the LCI will always outperform 
the PAI if the image resolution is high enough, i.e., if N  is 
large enough. 

Although Eq (21) shows that SNRLCI

MN  can be arbitrarily 

better than SNRPAI

MN  as N  increases, in reality, there is a 
practical limit on the size of N . Therefore, in addition to the 
discussion of the asymptotical behavior of Eq (21) as N  
approaches to infinity, we also consider the general case of 
any given N . In the numerator in the last fraction of Eq (21), 

N  is the power of the total additive noise in the PAI, and 

in the denominator, 0X  is the power of the total shot noise 
in PAI. Eq (21) shows that if the total additive noise in the PAI 
image is higher than the total shot noise, then LCI has a better 
SNR than PAI. The SNRs of the two architectures are the 
same if the total shot noise is equal to the total additive noise 
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in the PAI. Therefore, whether LCI or PAI has higher SNR 
depends on whether the total additive noise or the total shot 
noise is higher in PAI. This is shown in Figure 4.  

 
Figure 4. SNRLCI

MN / SNRPAI

MN  as a function of N / 0X , the 
total additive noise over the total shot noise in the PAI image. 

 
A few remarks are in order. First, note that while the total 

shot noise is a constant, the total additive noise in PAI is an 
increasing function of N , and therefore, an increase the image 
resolution increases performs of LCI as compared to PAI.  

Secondly, as shown in Eq (21) and Figure 4, in the worst 
case scenario, the SNR of LCI can only be lower than that of 

PAI by a factor of 2 , which is about 1.5 dB. That is, the 
total SNR of LCI can be no more than 1.5dB worse than that 
of PAI under any circumstance.  

Third, the SNR of LCI is much better than PAI if the total 
shot noise is low, which happens if the scene is faint. This 
shows that LCI can have much better performance in low 
lighting environment, such as in surveillance or astronomy. In 
other words, LCI outperforms PAI in cases where SNR is 
concerned most, which is when the shot noise is low. When 
the shot noise is high, the SNR is high also, causing very little 
concern about it. 

C.  Pixel signal to noise ratio 
We now consider pixel level SNR and compare the pixel 

SNRs of LCI and PAI, SNRLCI

MNi  and SNRPAI

MNi  given by Eq (14) 
and Eq (19), respectively.  

First, in LCI, the noise in each pixel, the denominator in 
(14), is independent of the pixel value ix , i.e., all pixels have 
the same amount of noise in the reconstructed image, even 
though the shot noise is included in the calculation. In other 
words, the total noise in the reconstructed image is evenly 
spread out among all pixels. This feature is useful in an 
application where the scene is dim, and only the details of a 
few small, relatively brighter, regions are of interest, such as 
imaging of distant stars in the sky, because the higher shot 
noise in a brighter region of interest (ROI) will be distributed 
to other darker areas of no interest, resulting a better SNR in 
the ROI. 

Next, let us examine what happens at the pixels if the total 
SNR of LCI is less than that of PAI. Since the total SNR of 
LCI becomes the lowest if the additive noise in PAI is zero, 
i.e., when only shot noise is present, we compare the pixel 
SNRs under the assumption that there is no additive noise, i.e.,  

 0   . (22) 
Under this assumption, the following equation can be easily 

derived from Propositions 1 and 2.  

 
0

SNR

SNR 2

LCI

MNi i

PAI

MNi

x

X N
 . (23) 

The numerator in (23) is the pixel value, and the denominator 
is twice of the average pixel value which is 0X N . This 
shows that even if the total SNR of LCI is lower, a pixel in the 
LCI image can still have higher SNR if the pixel value is 
higher than twice of the average pixel value, i.e.,  

 0SNR SNR , if 2LCI PAI

MNi MNi ix X N  . (24) 
Eq (24) confirms the earlier assertion that the brighter pixels in 
the LCI image have higher SNR that those in the PAI.  

D.  Comparison with lens aperture imaging 
To compare the LCI with the LAI, we need to overcome one 

technical hurdle that so far, we have been assuming the sensor 
in LCI of Figure 1 has an infinitesimal size, while a lens has a 
finite, nonzero, size. In order to do the comparison, we need to 
assume that the sensor in the LCI has a finite, nonzero, size 
too. 

A nonzero size sensor in LCI will introduce blurring into the 
image, but the blurring can be removed or reduced during 
reconstruction [14]. Nevertheless, it is out of scope of this 
paper to consider the blurring or how to reduce the blurring. 
We will simply consider the blurred image as the desired 
image that we want to acquire, and there is no loss of rigor in 
doing so. This is because in the LAI, a perfectly non-blurred 
image is obtained only when the image plane, i.e., the plane of 
sensors, is placed exactly at the focal plane of the lens. In 
reality, this would never be possible, because just like we can 
never make an infinitesimal sensor in realty, we can never 
place an image plane at the exactly location of the focal plane 
in reality. Therefore, in LAI there is always a blurring in the 
image due to the imaging plane not exactly being at the focal 
plane, even if we assume that the lens itself is perfectly made, 
which is also never be possible in realty.  

Therefore, in this subsection, when comparing with LAI, we 
assume the sensor in LCI has a nonzero size, and we compare 
it with an LAI in which the image plane is not placed at the 
focal plane so that the images in both architectures have 
exactly the same amount of blurring. This is illustrated in 
Figure 5. 

As shown in Figure 5 (a), we assume that the sensor in LCI 
has a nonzero size, and its area is given by sensorS . The area of 

the lens in LAI is given by  lensS  as shown in Figure 5 (b). The 

areas sensorS  and lensS  may be very different, but for the two 
architectures to have the same amount of blurring, the point 
spread functions, as illustrated in Figure 5, are assumed to be 
the same. In other words, we assume the imaging plane of LAI 
is placed appropriately away from the focal plane so that the 
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point spread function matches that of LCI due to non-zero size 
sensor. 

 

 
Figure 5. Blurred images in LCI and LAI. (a) Blurring due to 
nonzero size sensor in LCI. (b) Blurring due to displacement of image 
plane away from the focal plane in LAI. 
 

When comparing with PAI, we also assume that the size of 
the pinhole is nonzero, and the area of the hole is same as the 
area of the sensor in LCI, which is sensorS . Note that sensorS  is 
area of the sensor in LCI, or the area of pinhole in PAI, it is 
not the area of the sensors in PAI or LAI. 

We define the gain of lens as 
              lens sensorg S S . (25) 

In comparing the images in LAI and PAI, we find that they are 
the same, with the exception that the scene appears g  times 
brighter in LAI due to the gain of lens. This is because the 
amount of light rays arriving at the image plane when a lens is 
used is g  times more than that when a pinhole is used since 
the area of the lens is g  times larger than the pinhole. 
Consequently, a scene which is found to have the brightness of 

0X  in PAI will be found to have the brightness of 0gX  in 
LAI. Therefore, the following Proposition follows directly 
from Proposition 2 by replacing 0X  by 0gX , and ix  by igx . 
 
Proposition 3.  

The SNR of the image x  in lens aperture imaging is given 
by 

    
0

2 0 2
SNR , SNRLAI LAI

MNi MN
i

i

gx gX

gx gX N 
 

 
. (26) 

Further, the following estimate holds for the ratio of 
SNRLCI

MN  over  SNR LAI

MN  

  

2
0 2

0 2 0
1

SNR 1

SNR 22 4

LCI

MN

LAI

MN

gX N N

gg X gX

 





 



 
  
 

.   (27) 

 

Comparing Propositions 2 and 3, we find that the SNR in 
LAI is higher than that in PAI because of the gain of the lens, 
g . Despite having a higher value, the SNR of LAI exhibits a 

same characteristic as that of PAI, namely, the SNR decreases 
as the image resolution N  increases. 

Equation (27) shows that for given configurations of the two 
architectures, the LCI can have a higher SNR than the LAI if 
the image resolution is high enough, or if the scene is dim 
enough. Specifically, LCI has a higher SNR if the total 

additive noise N  in LAI, which is an increasing function 
of the image resolution N , is higher than the total shot noise 

0gX  in LAI, which is a constant independent of image 
resolution.  

V. DISCUSSION 
In this section, we provide discussions and explanations to 

shed more insight into the understanding of the LCI. 

A.  SNR and image resolution 
The key result from the analysis of the previous sections is 

that the total SNR in LCI is not a function of the image 
resolution, or the number of pixels in the image, while that in 
PAI or LAI is. To better understand the reason behind this, let 
us first review the noise behavior in PAI. 

In PAI, the number of sensors in the image plane determines 
the image resolution, one sensor for each pixel. Each sensor 
introduces an additive noise of power   into the image, and 
since the noise from the sensors are independent random 
variables, the total power of noise in the image is therefore 

N  with N  sensors. Same is true for LAI. 
Lensless compressive imaging works differently. While the 

sensor in LCI also introduces an additive noise of power   
when making each measurement, the measurements 
themselves are not uncorrelated. In the reconstruction process, 
the additive noise from all measurements contributes to a total 

noise of power N , similar to PAI or LAI, but the signal 
itself, being present in each measurement, also adds up 
coherently if an appropriate sensing matrix, such as the 

modified Hadamard matrix, is used, resulting in a gain of N  
in the signal power. The gain in the signal cancels out the gain 
in the additive noise, and hence, the total noise is independent 
of the image resolution. This advantage only comes with a 
correctly chosen sense matrix. For example, there is no signal 
gain if the identity matrix is used as the sensing matrix, which 
comes with no surprise because the SNR in this case is 
equivalent to the PAI, as previously noted. 

B.  Sensor-time constant 
There is also a justification from physics on why LCI can 

have a higher SNR. To acquire the image in LCI, the sensor 
needs to make a series of snapshots, each taking a unit amount 
of time t  as defined in Eq (1). For an image of resolution N
, the total time duration it takes to acquire all independent 
measurements in LCI is N t . On the other hand, the time 
duration for acquiring an image in LAI or PAI is only t .  

Sensor

Scene 
Plane

Aperture
assembly

Focal 
PlaneDefocused 

image 
plane

Lens

Point spread 
function

Point spread 
function

sensorS

lensS

(a)

(b)
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Therefore, the SNR gain of LCI over PAI or LAI is realized 
by taking the advantage of longer exposure time. But does the 
longer exposure time create an unfair advantage for LCI over 
PAI or LAI? The answer is no. Even though LCI takes longer 
time, it uses fewer sensors: only one sensor in LCI as opposed 
to N  sensors in LAI or PAI. Although the exposure time is 
N  times longer, the number of sensors is N  times smaller in 
LCI than in LAI or PAI. Therefore, all three architectures 
share the same constant which is the number of sensors 
multiplied the exposure time, i.e., the following holds in all 
three architectures: 

    number of sensors exposure time N t   . (28) 
 Because of the sensor-time constant, it would be misleading 

to make a general statement about which architecture is 
preferable simply on the basis of the amount of exposure time; 
whether a shorter exposure time or fewer sensors is more 
desired depends on the application. For example, the LCI is 
more advantageous in applications where sensors are very 
expensive, but the scene does not change rapidly, such as in 
astronomy.  

Furthermore, in LAI or PAI, even though the exposure time 
is t , the pixel values must be read out from the N  sensors 
sequentially, and the overhead for reading out the large 
number of the pixel values sequentially may consume a 
substantial amount of time too.  

C.  Relation with coded aperture 
The coded aperture architecture has a higher SNR than the 

PAI by coherently adding signals resulted from the coded 
pinhole apertures. However, the coded aperture architecture is 
a special case of LCI with multiple sensors [11]. When 
multiple sensors are used in LCI, and when only one 
measurement from each sensor is used in the reconstruction, 
the resulting image is the same as that from the coded aperture. 
We refer to [11] for more details on the reconstruction of an 
image using measurements from multiple sensors. 

VI. SIMULATION 
We present some simulation results in this section.  

A. Total SNR as a function of image resolution 
In the first simulation, we demonstrate the behavior of the 

total SNRs of LCI and PAI, SNRLCI

MN  and SNRPAI

MN , as a 
function of image resolution  N .  

First, we assume a scene has a fixed brightness 0X , in terms 
of number of photons. Then these photons are randomly 
assigned to the N  pixels of the image x  with a uniform 
distribution, so that the total number of photons in the image is 

0X . The Poisson distribution is used to create shot noise, and 
the Gaussian distribution of variance 2 2   is used to create 
additive noise. In LCI, the noise is added to the measurements, 
and the reconstructed image x  is obtained from the 
contaminated measurements by inverting the sensing matrix. 
In PAI, the noise is added to the pixels of x  to obtain the 
contaminated image x . We then compute the total SNR of the 
entire image x  for different values of image resolution N , 
and plot the results, together with the values obtained from 

theoretical analysis of previous sections. The results are 
presented in Figure 6. 

In the simulation of Figure 6, the following parameters are 
used 

 0 710 , 5X     . (29) 
It can be observed that the SNR in LCI is a constant with 
respect to the image resolution N , while SNR in PAI 
decreases as the image resolution increases. Furthermore, the 
simulation results match very well with the theoretical analysis 
of the previous sections. 

 
Figure 6. SNR of LCI and PAI as functions of image resolution 

(number of pixels). The lower bound for SNRLCI

MN  is given by (15) 

and the theoretical result for SNRPAI

MN  is given by  (20). 

B. Shot noise only  
Since the worst performance of LCI as compared to PAI is 

when the additive noise is absent, i.e., there is only shot noise, 
we next perform simulations under the assumption that no 
additive noise is present, i.e.,   

 0   . (30) 
The simulation is performed for five images: Earth, Sun, 

Parking Lot, Predator and Highway. These images were 
downloaded from publicly available website pages, found 
through Google image search. 

For first two images, Earth and Sun, the pixel values of the 
original images are modified to yield a given amount of 
average photons per pixels. The Poisson distribution is used to 
introduce shot noise to the measurements for LCI and to the 
pixels for PAI. 

For each of the two images, we define a region of interest 
(ROI). We will show the image of ROI and present the SNRs 
in the ROI for LCI and PAI, SNR , SNRLCI PAI

ROI ROI , respectively. 
Earth 

The simulation result for Earth is shown in Figure 7. The 
original image is shown on top, and the bottom shows the ROI 
for the reconstructed image in LCI, the original image and the 
noisy image in PAI, respectively from left to right. The 
parameters used in, and the results from, the simulation are 
summarized in the following: 

 0 0.2, SNR 35.0 , SNR 30.7LCI PAI

ROI ROIX N dB dB   . (31) 
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 This simulation demonstrates that in the absence of the 
additive noise, which is the worst case for the SNR of LCI as 
compared to PAI, the SNR of LCI is more than 4dB better 
than that of PAI in the ROI. 
 

 

 
Figure 7. Earth. Top: the original image. Bottom: details of the 
region of interest (ROI). Bottom left: reconstructed image from LCI, 
bottom middle: original, bottom right: noisy image in PAI. Average 
number of photons: 0.2 photons/pixel.  SNR of ROI in LCI=35.0dB 
(bottom left). SNR of ROI in PAI=30.7dB (bottom right) 
 

 

 
Figure 8. Sun. Top: the original image. Bottom: details of the region 
of interest (ROI). Bottom left: reconstructed image from LCI, bottom 
middle: original, bottom right: noisy image in PAI. Average number 
of photons: 5 photons/pixel. SNR of ROI for LCI=40.6dB (bottom 
left).  SNR of ROI for PAI=35.7dB (bottom right) 
 

Sun 
The simulation result for Sun is shown in Figure 8. The 

original image is shown on top, and the bottom shows the ROI 
for the original image, and the reconstructed image in LCI and 
contaminated image in PAI. The following summarizes the 
assumptions and results 

 0 5, SNR 40.6 , SNR 35.7LCI PAI

ROI ROIX N dB dB   . (32) 
 The results show that SNR of LCI is about 5dB better than 
that of PAI in the ROI. 

In the next group of simulations, for each image, we 
examine each pixel in the image and compare its value with 
the value that is twice of the average pixel value of the image, 
i.e., 02 /X N . This provides a metric of how the pixel SNR of 
LCI compares with that of PAI given by Eqs (23) and (24). 

For each pixel in an image, we compute the ratio of the 
pixel value, ix , over the twice average pixel value, 02 /X N , 
and express it in dB. Then the dB values are treated as pixel 
values of an image to be displayed in grayscale. 

The results for the images, Parking Lot, Predator and 
Highway are presented below. 
Parking Lot 

Figure 9 is the result for a night surveillance image of a 
parking lot. The result shows that in the ROI, the person’s 
body, the SNR of LCI can be up to 6dB higher than that of 
PAI, even though no additive noise is present. 
 

 
Figure 9. Parking Lot. Left: the original image. Middle: dB value of 
how much higher the pixel value is compared with 02 /X N ,  twice 
of average pixel value. Right: the grayscale of the dB values in the 
middle image. For example, the darkest pixel represents values of less 
than or equal to 0dB and the brightest pixel represents value of about 
6dB.  
Predator  

Figure 10 shows the result for a night vision of a predator 
drone. The result shows that the pixels on the drone have up to 
5 or 6dB higher SNR in LCI than in PAI. 
 

 
Figure 10. Predator. Left: the original image. Middle: dB value of 
how much higher the pixel value is compared with 02 /X N ,  twice 
of average pixel value. Right: the grayscale of the dB values in the 
middle image. For example, the darkest pixel represents values of less 
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than or equal to 0dB and the brightest pixel represents value of about 
7dB.  
Highway 

Figure 11 shows the result for a scene of highway accident. 
The result shows that in the most important areas, the road 
sign and the police car license plate, the pixels have up to 7dB 
higher SNR in LCI than in PAI. 
 

 
Figure 11. Highway. Left: the original image. Middle: dB value of 
how much higher the pixel value is compared with 02 /X N ,  twice 
of average pixel value. Right: the grayscale of the dB values in the 
middle image. For example, the darkest pixel represents values less 
than or equal to 0dB and the brightest pixel represents value of about 
6.5dB.  
 
Percentage of pixels that have higher SNR in LCI 

Finally, we present an overview of the amount of pixels 
with different values of SNR in the images in LCI and PAI. 
The result is summarized in Figure 12. 

 
Figure 12. Percentage of pixels for which the pixel SNR of LCI is 
better than that of PAI by a given amount under the assumption that 
there is no additive noise.  
 

The result in Figure 12 is obtained by computing the ratio, 
in dB, that is given in Eq (23) at each pixel. The ratio of (23) is 
the metric of comparison between the pixel SNR of LCI and 
PAI. After the ratios are computed for all pixels of an image, 
they are sorted in descending order, and plotted against the 
position index normalized by the total number of pixels N . 
One curve is presented for each of the five images.  

 For each point on a curve, the y-coordinate is the dB by 
which the pixel SNR is higher in LCI than in PAI. A negative 
dB means the SNR in PAI is higher than in LCI. The x-
coordinate represents the percentage of pixels in the image 
whose SNR in LCI is higher than that of PAI by that dB 
amount. For example, in the image of Predator, shown by the 

dotted line in Figure 12, there are more than 25% pixels that 
have higher SNR in LCI than in PAI (the curve is above 0dB 
for all x-values below 25), while in Earth image, shown by a 
solid curve, there are only about 5% of pixels have higher 
SNR in LCI, but some pixels have close to 15dB better SNR in 
LCI than in PAI. 

VII. CONCLUSION 
We performed SNR analysis for the lensless compressive 

imaging (LCI) under presence of the measurement noise, and 
compare it with that of pinhole aperture imaging (PAI) and 
lens aperture imaging (LAI).  The main result is that the SNR 
in the LCI is independent of the resolution of the image, while 
that for either PAI or the LAI decreases as the number of 
pixels increases. Consequently, LCI can have a better SNR 
performance than either PAI or LAI when the image resolution 
is high enough. 

For any given image resolution, whether the LCI or PAI has 
a better SNR depends on whether the total additive noise or 
shot noise dominates. The LCI has a better SNR than PAI if 
the additive noise is higher than shot noise, which is of more 
interest, because SNR is of most concern when the shot noise 
is low due to the fact that low shot noise also means low SNR. 

 APPENDIX 

A. Proof of Proposition 1 
Let the sensing matrix A  be defined as the modified 

Hadamard matrix given in (4). Then the inverse of A  is given 
by 

  1
1, 12

, ,
0, otherwiseij ij

i j
A H O O o o

N


 
   





 (33) 

In above H  is the Hadamard matrix. 
We now proceed to compute the variance of x  given in (10)

. From (10) and (9), we have 
 1 1 1ˆx A z A y A      . (34) 

Since ŷ  and   are independent, we have 

   1 1ˆvar( ) var( ) var( )x A y A    . (35) 
The acquired measurement vector z  is given by (9). The 

Hadamard matrix H  has the property that the entries in the 
first row all have value 1, and therefore, the first measurement 

1z  is the sum of all pixels in the object plane. 1z  has statistics 

different from other measurements iz  which unnecessarily 
complicates the analysis. We therefore will remove the 
measurement 1z  from both the acquisition and the 
reconstruction. We are now left with 1N   equations, and to 
invert the matrix, we impose the condition that 1 0x  , which 
can be accomplished, for example, by always blocking the first 
aperture element in the aperture assembly, or by not assigning 
the transmittance 1ia  (the first column of A ) to any aperture 
element. This arrangement leads to the following conditions 
on the values of the first component of each of the vectors:  
         1 1 1ˆvar( ) var( ) 0y x   . (36) 
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Alternatively, the effect of (36) can be achieved by using a 
different sensing matrix RA , of dimension ( 1) ( 1)N N   , 
which is obtained from A  by removing the first row and the 
first column1. 

By using the expression of 1A  from (33), and the 
assumption (36), the first term in (35) can be calculated as 
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 
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2

2 2
1

0

2 2

2 4
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4 4
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4 2 1 2 4

i ij j
i i j
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j
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N N
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N N

N N
x X

N N
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
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 

 
 

 
 
 

  
      
   

     

 



1 1

1 1

 

 

(37) 

In Eq (37), 1


 denotes the vector of length N  with each of its 
component is equal to 1. Also in (37), we have used the 
property 

 
1

1, 2,...,
2ij

i

N
a j N



    (38) 

Similarly, the second term in (35) is found to be 
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 (39) 

From (37) and (39), we have 

  0 2

2 2

4 12 4
var( ) , 1, ...,i

NN
x X i N

N N
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which leads to   
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    (41) 

By using definition of SNRLCI

MN  from Eqs (13) and (41), we 
have  
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 (42) 

which completes the proof of Proposition 1. 

B.  Proof of Proposition 2 
The image with measurement noise in PAI is given by (16), 

from which we can find the variance of ix  to be 

 

1 It can be shown that  1 2 4

2
R R R

n
A A A

n n
 
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

  
 

, where 

  is the ( 1) ( 1)N N    matrix whose every element is equal to 1. 

 ˆvar( ) var( ) var( )ii ix x   , (43) 

because ˆ
ix  and i  independent random variables. From (17) 

and (18), we have 
 2var( )i ix x   , (44) 

which leads to 

 
 

0 0

0 2
SNR

var

PAI

MN

ii

X X

x X N
 

 
, (45) 

and the proof of Proposition 2. 
Further, in combining (42) and (45), we have 

 
2 00 2

0 2 2 0

1SNR

SNR 2 4 2 1 2

LCI

MN

PAI

MN

N XX N

X X



 


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 
. (46) 

The last term in the denominator 2 02 X  is very small 

because 0X  is the total brightness, or the square of power of 
the total shot noise in the entire image, while 2  is the power 
of the additive noise in one measurement. Eq (21) results from 
neglecting the last term in the denominator of (46). 
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