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Abstract

In this paper, we study the compressed sensing reconstruction problem with
generalized elastic net prior (GENP), where a sparse signal is sampled via a
noisy underdetermined linear observation system, and an additional initial esti-
mation of the signal (the GENP) is available during the reconstruction. We first
incorporate the GENP into the LASSO and the approximate message passing
(AMP) frameworks, denoted by GENP-LASSO and GENP-AMP respectively.
We then focus on GENP-AMP and investigate its parameter selection, state
evolution, and noise-sensitivity analysis. A practical parameterless version of
the GENP-AMP is also developed, which does not need to know the sparsity of
the unknown signal and the variance of the GENP. Simulation results with 1-D
data and two different imaging applications are presented to demonstrate the
efficiency of the proposed schemes.
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1. Introduction

The problem of reconstructing a sparse signal from its noisy linear measure-
ment is crucial to many applications. In this case, the observation y ∈ Rm can
be written as

y = Ax+ w, (1)

where x ∈ Rn is a k-sparse signal, i.e., with k nonzero entries (k � n).
A ∈ Rm×n is a known linear measurement matrix, and w ∈ Rm is an addi-
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tive white Gaussian noise with variance σ2, i.e., w ∼ N (0, σ2I). In this paper,
the following ratios are frequently used:

δ = m/n, ε = k/n, ρ = ε/δ = k/m. (2)

When m < n, the problem is underdetermined and has been studied extensively
recently via the compressed sensing (CS) theory. It is shown in [1] that when A
satisfies certain condition and m is larger than some bound, `1-based algorithms
can successfully recover the sparse signal. Many reconstruction algorithms have
been developed to estimate the sparse signal x from y, including, e.g., convex
optimization [1], greedy method [2], and iterative thresholding algorithm [3].
However, precise performance analyses of these methods are not available.

Estimation theory can also be used to analyse the performance of CS. In [4],
with the help of the replica method from statistical physics, a sharp prediction is
derived for the performance of the LASSO or Basis Pursuit Denoising method
(BPDN) [5, 6], which is an `1-regularized least-square optimization problem.
However, the replica assumption is not rigorous and it cannot be checked for
specific problems.

In [7, 8, 9, 10], an approximate message passing (AMP) algorithm is de-
veloped, which reduces the complexity of classic message passing [11]. More
importantly, the AMP is rigorous and can predict the final reconstruction per-
formance accurately. Some generalizations of AMP have been developed. For
example, in [12], a generalized AMP (GAMP) is developed to handle arbitrary
noise distributions and arbitrary prior distributions. In [13], the Gaussian mix-
ture model and expectation-maximization (EM) algorithm are used to learn the
distribution of the signal’s nonzero coefficients. The AMP also offers a uni-
fied framework to exploit other prior knowledge or side information (SI) about
the signal [9, 10], e.g., non-negativity or positivity constraint [10, 14] and non-
uniformly sparsity [15]. Other forms of SI can also be incorporated in the AMP.
For example, in [16], the support of the signal is time-invariant and the signal
amplitudes are slowly varying over time. In [17], the support of the signal is
also allowed to change over time.

In this paper, we consider another kind of SI where there is an initial esti-
mation of the sparse signal x. Intuitively, this initial estimation can help the
reconstruction of x. For example, compared to the case without any side in-
formation, better reconstruction quality or faster convergence can be achieved
with the same sampling rate. This kind of SI could exist in many applications.
For example, in dense sensor networks, the sample of a sensor can be estimated
from those of its neighboring sensors. This can help the encoding of the sample,
as shown in the distributed source coding [18]. As another example, in hybrid
multiview imaging systems (as demonstrated in Sec. 7), some cameras are tradi-
tional cameras and some are CS cameras [19, 20, 21, 22, 23]. Since neighboring
cameras are very close to each other, strong correlations exist among their views.
Without losing the generality, we assume that the left and right cameras are
traditional cameras while the middle camera is a CS camera. Therefore, by
exploiting the geometric relationship between neighboring views, disparity es-
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timation and depth-based image rendering techniques can be used to obtain a
prediction of the middle view from its neighboring views. As another example,
in dynamic systems, the current state can be estimated from the previous state
through the state evolution equation [24, 25, 16, 17].

In this paper, we model the initial estimation or SI of the signal as a noisy
version of the unknown sparse signal, and modify the LASSO and AMP frame-
works to incorporate the initial estimation. In [26], an additional `2 penalty term
is added to LASSO, and the scheme is called elastic net-regularized LASSO. In
the optimization framework derived in Sec. 3 of this paper, there is also an ad-
ditional `2 penalty term to LASSO. When the SI is zero, our scheme reduces to
that in [26]. Therefore the SI in our framework can be viewed as a generalized
elastic net prior (GENP), and we denote the GENP-aided LASSO and AMP as
GENP-LASSO and GENP-AMP respectively. Although [27] is the first to study
elastic net prior using AMP, it focuses on the binary classification problem and
there is no theoretical performance analysis.

After developing the frameworks of GENP-LASSO and GENP-AMP, we fo-
cus on the GENP-AMP, and investigate its parameter selection, state evolution,
asymptotic prediction performance, and noise-sensitivity analysis. However,
these theoretical analyses require the knowledge of the sparsity of the unknown
sparse signal and the variance of the generalized elastic net prior. In practices,
these parameters have to be estimated. In [28], a parameterless AMP is devel-
oped using Stein’s unbiased risk estimate (SURE). Inspired by [28], we apply the
SURE theory to GENP-AMP and develop a parameterless version of GENP-
AMP. Simulation results with 1-D data and two different imaging applications
are presented to demonstrate the efficiency of the proposed schemes.

1.1. Related work

There have been some efforts on exploiting various initial estimations in
CS. One example is the CS problem with partially known support [25], which
shows that by finding the signal that satisfies the measurement constraint and
is the sparsest outside the partially known support, the CS reconstruction can
be improved, and bounds on the reconstruction error are derived. However, the
method is time-consuming. Another relevant approach is to recover the estima-
tion error instead of the sparse signal [19], based on the assumption that the
prediction error between the initial estimation and the sparse signal is sparser
than the signal itself, and is thus easier to be recovered, but this method lacks
theoretical analysis. It is also possible that the prediction error is denser than
the original sparse signal, if the initial estimation has poor quality.

In [22], the belief-propagation-based CS framework (BPCS) in [29] is used to
exploit the SI from neighboring cameras in multiview imaging systems, where
the SI is used as the starting point for belief propagation. In [23], a squared-
error-constrained penalty term is added to the CS of multiview images. It also
considers a more general case, where the variances of the prediction errors are
different at different entries. A fast solution is developed based on the Gradient
Projection for Sparse Reconstruction (GPSR) algorithm [30].

3



The sparsity-constrained dynamic system estimation scheme proposed in [24]
and the dynamic compressed sensing via approximate message passing (DCS-
AMP) proposed in [16, 17] are closely related to our framework. In [24], a
prediction of the signal is obtained from the state evolution model, and the
norm of the prediction error is added as a penalty term in the objective func-
tion of LASSO or BPDN method. In [16, 17], the sparse signal is modeled
as the Bernoulli-Gaussian distribution and the correlation between the active
amplitudes in different time slots is assumed to be a stationary steady-state
Gaussian-Markov process. The EM and AMP are applied to learn the hidden
parameters and perform the inference. Although the model in [16, 17] is similar
to ours, it relies on sequential data to learn the hidden parameters, and cannot
be applied to solve the problem discussed here directly. In fact, it is not clear
how to extend the method in [16] to solve the problem in this paper.

Several papers have also studied the theoretical contribution of the prior
knowledge [25, 31]. In [25], the authors have provided some sharp bounds on
the necessary number of CS measurements to successfully reconstruct the orig-
inal sparse signal, based on nullspace property and geometry interpretations.
However, it is mainly on the noiseless case. The performance of noisy case re-
mains unknown. Kamilov et al. have taken the first step towards a theoretical
understanding of EM-based algorithms [16, 17, 31], although the complete anal-
ysis is still not available. Our method does not involve any loose constant, and
can accurately predict the performance.

On the other hand, the GENP considered in this paper can be incorporated
into the GAMP [12]. However, even if the GENP is known to the GAMP,
the GAMP still needs to know the exact prior distribution p(x). Therefore in
practice some learning-based methods such as the EM algorithm have to be used
to learn p(x) [13]. Our scheme does not need to know p(x), and only assumes
that x is sparse.

In Sec. 7 of this paper, we will present simulation results with 1-D data and
two different imaging applications. We will show that the overall performance of
our methods is better than the AMP, GAMP, the method in [19], the modified
CS in [25], the linear minimum mean squared error (LMMSE) method, and
direct denoising. Our parameterless method also works very well below the
phase transition boundary of AMP, although its performance still needs to be
improved above the boundary, because the estimated variance of the prior using
the method in [28] is unstable in this case.

Some preliminary results of this paper have been reported in [32]. Due to the
importance of the problem of side/prior information-based CS reconstruction,
earlier versions of this paper have received attention from other researchers
[33, 34]. In [33], only the noiseless CS sampling scenario is considered, and an `1
or `2 constraint of the prior information is added to the `1 Basis Pursuit objective
function of the unknown signal. However, only some loose bounds of different
constraints are presented in it. In [34], the classification and reconstruction of
high-dimensional signals from low-dimensional features in the presence of side
information is discussed. The high-dimensional signals are assumed to follow
Gaussian mixture model (GMM) that can be learned from training data. The
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fundamental limits are derived based on this assumption. In our paper, we do
not make any assumption about the target signal except sparsity and there is
no training data involved.

2. Background: Minimax MSE of Soft Thresholding Algorithm

In this section, we briefly review the minimax MSE of the soft thresholding
algorithm [8, 35], which plays an important role in AMP. Suppose we need to
recover a k-sparse n-vector x0 = (x0(i) : i ∈ [n]) (where [n] ≡ {1, . . . , n})
contaminated by a Gaussian white noise, i.e.,

y(i) = x0(i) + z0(i), i ∈ [n],

where z0(i) ∼ N (0, σ2) is independent and identically distributed. One way
to estimate the signal is to solve the following LASSO or `1-regularized least-
squares problem,

x̂λ = arg min
x

1

2
‖y − x‖22 + λ‖x‖1. (3)

An important fact is that the solution of this problem is equivalent to that of
the well-known soft thresholding algorithm in wavelet denoising [35],

x̂λ(i) = η(y(i);λ), i ∈ [n],

where the soft thresholding operation with threshold θ is

η(x; θ) =


x− θ if x > θ,

0 if − θ 6 x 6 θ,

x+ θ if x < −θ.
(4)

A reasonable choice of the threshold λ in (3) is a scaled version of the noise
standard deviation, i.e., λ = ασ. The MSE of the soft thresholding algorithm
can thus be written as

mse(σ2; p, α) ≡ E{[η(X + σZ;ασ)−X]2}, (5)

where the expectation is with respect to independent random variables Z ∼
N (0, 1) and X ∼ p.

The soft thresholding method is scale-invariant [8], i.e.,

mse(σ2; p, α) = σ2mse(1; p1/σ, α), (6)

where ps is a scaled version of p, ps(S) = p({x : sx ∈ S}). Therefore we only
need to focus on σ = 1, and the notation mse(1; p, α) can be simplified into
mse(p, α).

Since x0 is k-sparse, we can define the following set of probability measures
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with small non-zero probability,

Fε ≡ {p : p is a probability measure with p({0}) > 1− ε}, (7)

where ε = k/n is defined in (2).
The minimax threshold MSE is thus defined as [8]

M±(ε) = inf
α>0

sup
p∈Fε

mse(p, α), (8)

which is the minimal MSE of the worst distribution in Fε, where ± means a
nonzero estimand can take either sign.

For a given α, the worst case MSE in (8) is given by [8]

sup
p∈Fε

mse(p, α) = ε(1 + α2) + (1− ε)[2(1 + α2)Φ(−α)− 2αφ(α)], (9)

with φ(z) = exp(−z2/2)/
√

2π being the standard normal density, and Φ(z) =∫ z
−∞ φ(x)dx the Gaussian cumulative distribution function. Moreover, the supre-

mum can be achieved by the following three-point probability distribution on
the extended real line R ∪ {−∞,∞}

p∗ε = (1− ε)δ0 +
ε

2
δ∞ +

ε

2
δ−∞,

where δt is a Dirac delta function at t. In practice, we are more interested in
the near-worse-case signals with finite values. It is known that the following
c-least-favorable distribution can achieve a MSE that is a fraction of (1− c) of
the worst case,

pε,c = (1− ε)δ0 +
ε

2
δh±(ε,c) +

ε

2
δ−h±(ε,c), (10)

where h±(ε, c) ∼
√

2log(ε−1) as ε→ 0.

3. GENP-aided LASSO

In this paper, we study the generalized elastic net prior (GENP)-aided CS
reconstruction, where in addition to the CS sampling as in (1), an initial esti-
mation of x, denoted by x̃, is available during reconstruction, which can be seen
as a noisy version of x. The error of this estimation, e = x̃ − x, is assumed to
be i.i.d. additive white Gaussian with variance σ2

s , i.e., e ∼ N (0, σ2
sI). This

Gaussian noise model is decently accurate in applications such as image acqui-
sition with poor illumination, high temperature, or transmission error, and has
been widely used in image denoising [36]. The ratio between the noise variance
of x̃ and that of the compressed sampling noise in Eq. (1) will be used later for
noise sensitivity analysis.

γ2
s = σ2

s/σ
2. (11)
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To exploit the x̃ in the CS reconstruction, we propose the following opti-
mization formula,

x̂(λ, τs) = arg min
z∈Rn

(
1

2
‖y −Az‖22

+λ‖z‖1 +
τs
2
‖x̃− z‖22

)
,

(12)

which is a generalized version of the LASSO in (3) with an additional `2 penalty
term caused by the initial estimation x̃ to ensure the solution close to this initial
estimation. When x̃ = 0, the problem reduces to the elastic net-regularized
LASSO in [26]. Therefore we call x̃ generalized elastic net prior (GENP), and
the problem in Eq. (12) generalized elastic net prior-aided LASSO (GENP-
LASSO).

A special case of our framework is that when p(x) follows the Laplacian
distribution, the result of Eq. (12) is equivalent to the maximum a posteriori
(MAP) solution. However, our framework in Eq. (12) is more general than this
special case because we do not rely on any assumption about p(x), except that x
should be sparse as defined in Eq. (7). In the following theoretical analysis, we
will apply the minimax estimator introduced in Sec. 2 to study the parameter
selection, state evolution and MSE performance of the optimization problem in
Eq. (12).

Similarly, although the GENP in our framework can also be incorporated
into the GAMP scheme in [12], it should be noted that GAMP also needs to
know the exact prior distribution p(x). Therefore learning algorithms such as
the EM have to be used to learn the prior distribution [13]. In Sec. 7, we will
compare our method to the EMGMAMP in [13] and a modified EMGMAMP
that incorporates the GENP, and show that our method has better overall per-
formance.

In LASSO, the ratio ρ in Eq. (2) cannot be larger than 1, i.e., the number
of selected atoms is bounded by the number of samples, whereas it is shown
in [26] that in the elastic net-regularized LASSO, the quadratic penalty term
removes this limitation. Our noise sensitivity analysis in Sec. 5 will show that
ρ < 1 is also not necessary in the GENP-LASSO.

The parameters λ and τs in Eq. (12) are closely related to σ2
s , the noise vari-

ance of the GENP. How to tune the two parameters λ and τs will be addressed
later in the paper.

The proposed GENP-LASSO in (12) is a convex optimization problem and
can be solved by, e.g., the interior point methods (as used in the CVX package
[37]) and the gradient methods. For example, to incorporate the GENP into
the Orthant-Wise Limited-memory Quasi-Newton (OWLQN) algorithm [38],
which is a popular gradient-based method for large-scale LASSO problems, we
can replace the `2 regularization term ‖z‖22 in it by the quadratic penalty term

‖x̃− z‖22. However, both interior point and gradient methods are quite slow for
large-scale problems.

In this paper, we will solve the GENP-LASSO problem by modifying the

7



fast AMP algorithm, which enjoys several advantages, e.g., low complexity and
the capability of predicting the final performance accurately.

Note that we can also combine y and x̃ as follows.[
y

x̃

]
=

[
A

I

]
x+

[
w

e

]
. (13)

This is an overdetermined system of x with (m + n) equations. Therefore x
can be solved directly using the least-squares (LS) or the linear minimum mean
squared error (LMMSE) method. However, we will show in Sec. 7 that the
performance of the LMMSE method is not as good as the proposed method
(the LS solution is even worse than that of the LMMSE, and is not included
due to space limitation). Note that the LMMSE solution also requires the
knowledge of p(x).

4. GENP-aided Approximate Message Passing

In this section, we present the formulae of GENP-AMP. We then study its
connections with the GENP-LASSO, and derive its corresponding parameter
selections and state evolution.

4.1. The Formula of GENP-AMP

In [9], the following iterative formulas of AMP are obtained after simplifying
the traditional min-sum-based message passing algorithm using the quadratic
approximation.

x̂t0 = xt +AT rt,

xt+1 = η(x̂t0; θt),
(14)

bt =
1

m

∥∥xt∥∥
0
, (15)

rt = y −Axt + btr
t−1. (16)

Each iteration of AMP only needs to update the estimate xt in (14) and
the residual rt in (16), which have only m + n entries. The complexity is thus
much lower than traditional message passing methods that need 2mn updates.
Note that the AMP is parameterized by two sequences of scalar parameters: the
thresholds {θt}t≥0 and the factors {bt}t≥0.

To incorporate the GENP into AMP, we modify the local message of each
AMP variable node from λ‖z‖1 to λ‖z‖1 + τs

2 ‖x̃− z‖
2
2. By the same simplifi-

cations and derivations in [9], we can get the following iterative estimate of the
n-vector signal x. The details are skipped due to space limitation.

x̂t0 =
ut

1 + ut
x̃+

1

1 + ut
(xt +AT rt), (17)

xt+1 = η(x̂t0; θt), (18)
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bt =
1

1 + ut−1

‖xt‖0
m

, (19)

rt = y −Axt + btr
t−1. (20)

Compared to AMP, x̂t0 in our scheme is a linear combination of xt+AT rt and the
GENP, adaptively controlled by a new sequence of scalar parameters, {ut}t≥0.
The factor bt is also affected by ut−1. When ut = 0, x̃ has no contribution,
and the proposed framework reduces to the standard AMP in [7, 8, 9, 10]. The
iteration is applied to each entry. Hence, if the variances of different x̃i are
different, the method can still be applied by changing the scalar ut to vector
ut = [ut,1, ut,2, ..., ut,n] and the scalar θt to its vector case.

4.2. Connections to GENP-LASSO

As shown in [9], the parameters {θt}t>0 and {bt}t>0 are constrained by its
connection with the min-sum algorithm. This is also true for the new parameter
{ut}t>0. However, the following proposition shows that GENP-AMP provides
a very general solution for the GENP-LASSO problem in Eq. (12). When there
is no GENP (ut = 0), the proposition reduces to Prop. 5.1 in [9] for LASSO.

Proposition 4.1. Let (x∗, r∗) be the fixed point of the GENP-AMP algorithm
given by (17) and (20) for fixed θt = θ, ut = u, and bt = b. Then x∗ is also a
minimum of the GENP-LASSO problem in (12) with

λ = (1 + u)θ(1− b), (21)

τs = u(1− b). (22)

Proof. The fixed-point condition of Eq. (17) is

x∗ =
u

1 + u
x̃+

1

1 + u
(x∗ +AT r∗)− θv∗, (23)

where v∗i = sign(x∗i ) if x∗i 6= 0 and v∗i ∈ [−1,+1] otherwise. Similarly, from
(20), we get (1− b)r∗ = y −Ax∗, or r∗ = (y −Ax∗)/(1− b). Plugging into the
equation above, we get

(1 + u)θ(1− b)v∗ + u(1− b)(x∗ − x̃) = AT (y −Ax∗).

On the other hand, in Eq. (12), by setting the derivative of the GENP-
LASSO objective function with respect to z to zero, we get the stationary con-
dition

λv∗ + τs(x
∗ − x̃) = AT (y −Ax∗). (24)

Comparing the two equations above leads to the conclusion.

4.3. GENP-AMP State Evolution and Parameter Selection

In this part, we derive the state evolution of GENP-AMP and investigate
its parameter selection. The state evolution was first developed to describe the
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asymptotic limit of the AMP estimates as m,n → ∞ for any fixed t, but with
the same sample ratio δ = m/n, as defined in (2) [9]. It enables the accurate
prediction of the MSE of AMP by solving a fixed-point equation. This part is
based on Sec. IV of [8].

First, we define the MSE map Ψ as

Ψ(q2, u, δ, σ, σs, α, p) ≡ mse(npi(q2, u; δ, σ, σs); p, α),

which is the MSE of the soft thresholding as defined in (5) with npi (noise-plus
interference) as the noise variance, where q2 is the variance of the thresholded
estimator, and npi is the variance of the un-thresholded estimator in (17), which
can be written as (see Appendix A for the derivation)

npi(q2, u; δ, σ, σs) = (
u

1 + u
)2σ2

s + (
1

1 + u
)2(σ2 +

q2

δ
). (25)

As pointed out in [9], the choice of the AMP parameter θt can be quite
flexible. A good option is θt = αξt, where α > 0, and ξt is the root MSE of the
un-thresholded estimation x̂t0 in (17). From this, based on the i.i.d. normalized
distribution of A and the large system limit [8], it can be shown that

ξ2
t = npi(q2

t , u
2
t ; δ, σ, σs) ≈

(
ut

1 + ut

)2

σ2
s +

(
1

1 + ut

)2 ‖rt‖22
m

. (26)

Besides, we have ‖xt‖0/n ≈ E{η′(x0 + σtZ;ασt)}. According to Eq. (19,
21, 22), Prop. 4.1 can be rewritten as

λ = (1 + u∗)αξ∗

[
1− 1

1 + u∗

E{η′(x0 + ξ∗Z;αξ∗)}
δ

]
,

τs = u∗

[
1− 1

1 + u∗

E{η′(x0 + ξ∗Z;αξ∗)}
δ

]
,

(27)

where ξ∗ = limt→∞ξt. Since the computation of q2 is nontrivial, Eq. (26) is
useful for practical algorithm design, whereas Eq. (25) is mainly for theoretical
analysis.

The state of GENP-AMP is defined as a 7-tuple (q2, u; δ, σ, σs, α, p). The
state evolution follows the rule

(q2
t , ut; δ, σ, σs, α, p) 7→ (Ψ(q2

t , ut),Υ(q2
t , ut); δ, σ, σs, α, p),

t 7→ t+ 1,

where q2
t and ut are the MSE and the weighting parameter in the t-th itera-

tion, and Ψ and Υ are the evolution functions of q2
t and ut, respectively. As

(δ, σ, σs, α, υ) are fixed during the evolution, we only need the following state
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evolutions of q2
t and ut (See Appendix Appendix A for the derivation).

q2
t 7→ q2

t+1 ≡ Ψ(q2
t ,
σ2 + q2

t /δ

σ2
s

),

ut 7→ ut+1 = Υ(q2
t , ut) =

σ2 + Ψ(q2
t , (σ

2 + q2
t /δ)/σ

2
s)/δ

σ2
s

,

(28)

where the formula for ut is the result of the following proposition.

Proposition 4.2. The optimal weighting parameter ut that combines the GENP
x̃ and the previous iteration result in the GENP-AMP is given by

ut =
σ2 + q2

t /δ

σ2
s

. (29)

Proof. The optimal ut should minimize the MSE between the original sparse
signal and the un-thresholded estimation x̂t0 in (17), which can be obtained by

minimizing ( ut
1+ut

)2σ2
s + ( 1

1+ut
)2(σ2 +

q2t
δ ) over ut.

Replacing u in Eq. (25) by Eq. (29), npi(q2, u; δ, σ, σs) can be simplified into

npi(q2) =
σ2
s(σ2 + q2/δ)

σ2
s + σ2 + q2/δ

. (30)

The fixed point condition of the state evolution is

q2
∗ = Ψ(q2

∗,
σ2 + q2

∗/δ

σ2
s

) = mse(npi(q2
∗); p, α). (31)

If we treat ξ2 = npi(q2
∗) as an unknown variable, plugging (31) into (30)

yields a fixed-point equation for ξ2,

ξ2 =
σ2
s(σ2 + mse(ξ2; p, α)/δ)

σ2
s + σ2 + mse(ξ2; p, α)/δ

≡ F (ξ2, α). (32)

The following result shows that with an appropriate choice of α, the fixed-
point equation has a unique solution, from which we can predict the final MSE
performance of the GENP-AMP algorithm.

Proposition 4.3. Let αmin = αmin(δ, γs) be the unique non-negative solution
of the equation

(1 + α2)Φ(−α)− αφ(α) =
δ

2

(γ2
s + 1)

2

γ4
s

, (33)

where φ(z) and Φ(z) are defined after Eq. (9), and γ2
s is defined in Eq. (11).

Then for any α > αmin(δ, γs), the fixed-point equation ξ2 = F (ξ2, α) in (32)
admits a unique solution ξ∗ = ξ∗(α), and limt→∞ξt = ξ∗(α).
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Proof. This proof is an extension of Case χ = ± in Appendix C of [7]. It is
easy to find that if γ2

s goes to ∞, the whole equation is exactly the one in [9].
Since we want to have F < ξ2, following the same setup as the one in Case

χ = ± in Appendix C of [7], we need to consider the boundary point, which
can be found by solving the boundary condition dF

dξ2 |ξ2=0 = 1. This leads to
σ4
sd(Ψ/δ)/dξ2

(σ2
s+σ2+Ψ/δ)2

|ξ2=0 = 1. If ξ2 → 0, we know that q2/δ = 0, and the expression

of d(q2/δ)
dξ2 can be obtained as in [7]. Then the problem is transformed into

d(q2/δ)

dξ2
|ξ2=0 =

(1 + γ2
s )

2

γ4
s

. (34)

The numerator of Eq. (34) becomes
(1+γ2

s )
2

γ4
s

(1− γ4
s

(1+γ2
s )2

2
δ [(1+α2)Φ(−α)−αφ(α)])

instead of 1− 2
δ [(1 + α2)Φ(−α)− αφ(α)] as in the classical case in Eq. (6.6) of

[9]. Comparing these two expressions, from Proposition 6.2 in [9], we can reach
the conclusion.

If the threshold α and the distribution p0 of X0 are given, we can obtain
the fixed point ξ∗ by solving Eq. (32). Therefore, the MSE performance of the
GENP-AMP algorithm can be predicted.

Based on Prop. 4.1, λ and τs can be determined if the necessary parameters
are known. Conversely, if either λ or τs is given, combining Eq. (33) with Eq.
(27), we can get the corresponding α and ξ∗. Thus the other parameter can be
uniquely determined.

5. Noise Sensitivity Analysis of GENP-AMP

The noise sensitivity phase transition is a curve in the (δ, ρ) plane [8], where
ρ = k/m and δ = m/n, as defined in (2). For many classical compressed
sensing algorithms, the MSE is bounded below the phase transition curve, and
unbounded above the curve. It is known that the optimal phase transition
can be achieved by methods such as the AMP [8]. `1-based methods (such as
the CVX package [37]) can also have good phase transition performance. For
large-scale problems, the OWLQN algorithm in [38] has similar empirical phase
transition boundary to `1 methods, but its complexity is higher.

In this section, we show that there is no phase transition boundary for
GENP-AMP, i.e., its MSE is bounded in the entire plane, thanks to the GENP.
We also prove that ρ < 1 is no longer needed, which agrees with Lemma 1 in
[26] for the elastic net-regularized LASSO.

First, for the GENP-LASSO problem in (12), we define the MSE per entry
when the empirical distribution of the signal converges to p0:

MSE(σ2;σ2
s , p0, λ, τs) = lim

n→∞

1

n
E{‖x̂(λ, τs)− x0‖22}, (35)
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where the limit is taken along a converging sequence. Since the class Fε in (7)
is scale-invariant, where ε = k/n = ρδ according to (2), the minimax risk of the
GENP-LASSO can be written as

inf
λ,τs

sup
p0∈Fρδ

MSE(σ2;σ2
s , p0, λ, τs) = M∗(δ, ρ, γ2

s )σ2, (36)

which indicates the sensitivity of the GENP-LASSO to the noise variance in
the measurements, where γ2

s is defined in Eq. (11), and the expression of noise
sensitivityM∗(δ, ρ, γ2

s ) is given by the following proposition. We also give closed-
form expressions of the tuning parameters λ and τs that achieve the minimax
risk bound.

Before presenting the proposition, we first define the formal mean square
error (fMSE) and formal noise-plus interference level (fNPI), following Defini-
tions 3.1−3.4 in [8]. fMSE is defined as the MSE of an observable in a large
system framework LSF(δ, ρ, σ, γs, p), where LSF(δ, ρ, σ, γs, p) denotes a sequence
of problem instances (y;A, x)m,n as per Eq. (1) indexed by the problem sizes,
and m and n grow proportionally such that m/n = δ. fNPI is expressed as

fNPI = (
u∗

1 + u∗
)2σ2

s + (
1

1 + u∗
)2(σ2 + fMSE/δ),

u∗ =
σ2 + fMSE/δ

σ2
s

.

Its minimax value is NPI∗(δ, ρ, γ2
s ) ≡ γ2

sσ
2(1+M∗(δ,ρ,γ2

s )/δ)
γ2
s+1+M∗(δ,ρ,γ2

s )/δ by replacing fMSE in

the equation above with its minimax risk M∗(δ, ρ, γ2
s ).

Proposition 5.1. (1) For any point in the surface, i.e., ρ 6 1/δ (since δρ =
ε 6 1), the minimax risk of GENP-LASSO is bounded, and M∗(δ, ρ, γ2

s ) is given
by

M∗(δ, ρ, γ2
s ) =

−G(δ, ρ, γ2
s ) +

√
G(δ, ρ, γ2

s )2 + 4δγ2
sM±(δρ)

2
, (37)

where G(δ, ρ, γ2
s ) = δγ2

s + δ − γ2
sM
±(δρ).

(2)For c > 0, define

h∗(δ, ρ, γ2
s ; c) ≡ h±(δρ, c) ·

√
NPI∗.

Then similar to Eq. (10), the distribution p ∈ Fδρ with a fraction (1 − δρ) of
its mass at zero and the remaining mass equally at ±h∗(δ, ρ, γ2

s ; c) is c-nearly-
least-favorable, i.e., the formal noise sensitivity of x̂(λ, τs) is

−G(δ, ρ, γ2
s ; c) +

√
G(δ, ρ, γ2

s )2 + 4(1 − c)δγ2
sM±(δρ)

2
, (38)

where G(δ, ρ, γs; c) = δγ2
s + δ − (1− c)M±(δρ)γ2

s .
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(3) The formal minimax parameters are given by

λ(υ; δ, ρ, σ, σs) ≡ (1 + u∗) · α±(δρ) ·
√

fNPI(α±; δ, ρ, σ, σs, υ)

× (1− 1

1 + u∗
EqDR(υ;α±(δρ))/δ),

τs(υ; δ, ρ, σ, σs) ≡ u∗(1−
1

1 + u∗
EqDR(υ;α±(δρ))/δ),

(39)

where EqDR is the equilibrium detection rate, i.e., the asymptotic fraction of
coordinates that are estimated to be nonzero, i.e., EqDR = P{η(x∞; θ∞) 6= 0},
as in Eq. (4.5) in [8].

Proof. The proof is given in Appendix Appendix B.

To show that the noise sensitivity analysis presented here is indeed a gener-
alized result, we next discuss three special cases and show that the result here
degrades to the existing known conclusions. First, let γ2

s =∞. In this case, Eq.
(37) degrades to the formulae of the bounded MSE below the phase transition
boundary of AMP, i.e., Eq. (4.8) in [8] . The phase transition boundary only
exists in this extreme case for GENP-AMP. Second, if γ2

s = 0, i.e., x̃ = x, we do
not need to run the AMP; hence the MSE is 0, which coincides with Eq. (37)
when γ2

s = 0. Last, if δ = 0, which means there is no compressed measurement,
solving the minimization problem in Eq. (12) is equivalent to scalar denoising,
and the minimax MSE is M±(ρδ)σ2

s , which also agrees with the denoising of
scalars introduced in Sec. 2.

When there is no initial estimation x̃, the formal MSE noise sensitivity above
the phase transition is infinite. However, this is no longer the case in the presence
of the GENP, as we can at least assign τs to ∞ while keeping λ to be finite,
and the formal MSE noise sensitivity is thus bounded by γ2

s . We can do even
better by exploiting the measurement and the sparsity of the original signal, as
shown below.

It is easy to verify that ∂M∗(δ, ρ, γ2
s )/∂γ2

s is positive, so M∗(δ, ρ, γ2
s ) is a

monotonically increasing function of γ2
s . Since GENP-AMP reduces to AMP

when γ2
s = ∞, this means that the minimax bound of GENP-LASSO is no

greater than that of LASSO, i.e.,

M∗(δ, ρ, γ2
s ) 6M b(δ, ρ), (40)

where M b(δ, ρ) = M±(δρ)
1−M±(δρ)/δ is the bound of LASSO minimax risk.

Besides, we can also verify that for a fixed sparsity, i.e., ε = δρ is a constant,
∂M∗(δ, ρ, γ2

s )/∂δ is non-positive (only equal to 0 when δ = 0), and M∗(δ, ρ, γ2
s )

is a monotonically decreasing function of δ. Since GENP-AMP reduces to de-
noising via soft-thresholding described in Sec. 2 when δ = 0, we conclude that
the minimax bound of GENP-LASSO is no greater than that of scalar denoising,

M∗(δ, ρ, γ2
s ) 6M±(δρ)γ2

s . (41)
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In fact, Eq. (40) and (41) have proved that GENP-AMP outperforms AMP
and the scalar denoising via soft-thresholding. More importantly, Eq. (40)
measures the benefit brought by the generalized elastic net prior while Eq. (41)
measures the benefit brought by the linear CS measurements.

We can find more properties of this minimax risk bound. For a fixed δ, the
only function of ρ is M±(δρ). From [8], we know that M±(δρ) is monotonically
increasing with respect to ρ, and M±(0) → 0, M±(1) → 1. Besides, we can
find that M∗(δ, ρ, γ2

s ) is monotonically increasing with respect to M±(δρ). The
maximum value of M±(δρ) is 1. The maximum value of M∗(δ, ρ, γ2

s ) is thus

max
M±(δρ)

M∗(δ, ρ, γ2
s )

=

√
(δγ2

s − γ2
s + δ)

2
+ 4δγ2

s − (δγ2
s − γ2

s + δ)

2
,

(42)

where the maximum is achieved at ρ = 1/δ.

6. Parameterless GENP-AMP

In the GENP-AMP proposed above, two parameters need to be known in
advance: (1) the sparsity of the signal, ε = k/n, in order to select the appropriate
thresholding parameter in soft thresholding function in Sec. 2; (2) the variance
of the prior x̃, σ2

s , in order to determine the weighting parameter ut as in Prop.
4.2. This makes the algorithm impractical.

The original AMP also needs to know the sparsity. However, recently two
types of parameterless AMP algorithms have been developed in [28] and [13, 14].
In [28], Stein’s unbiased risk estimate (SURE) framework is used to automati-
cally determine the optimal thresholding parameter in AMP using the gradient
descent method. The methods in [13, 14] are both based on the GAMP [12],
and try to approximate the MMSE result by learning the prior distribution of
the sparse signal through Expectation Maximization (EM) method.

In this part, we follow the approach in [28] due to its theoretical guarantee,
since the complete analysis of the EM algorithm used in [13, 14] is still not
available. However, the method in [28] cannot be applied in this paper directly
since it does not consider the GENP. In the following proposition, using the
SURE theory, we develop a practical parameterless version of the GENP-AMP
(P-GENP-AMP) that can simultaneously select the thresholding parameter and
estimate the variance of the GENP.

Proposition 6.1. The variance of the GENP x̃ can be approximated by

σ2
s ≈
‖x̃− xAMP‖22 − lim

t→∞
r̂(θt)

n
, (43)

where xAMP is the sparse signal estimated by the AMP with the same setup
(fixed A, δ, and ρ), lim

t→∞
r̂(θt)/n is the MSE of AMP predicted by the SURE
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method in [28], and

r̂(θt)

n
=

1

n

∥∥η(x̂t0; θt)− x̂t0
∥∥2

2
+ σ2

t +
1

n
σ2
t [1T (η′(x̂t0; θt)− 1)] (44)

is Eq. (13) in [28], in which σ2
t is the noise-plus interference level in the tth

iteration of the standard AMP.

Proof. The proof is given in Appendix Appendix C.

In fact, thanks to the state evolution analysis, the choice of xAMP can be
quite flexible. Another good choice is x̂∗0, the un-thresholded estimator in the
last iteration of AMP, whose variance is σ2

∗, mentioned in Eq. (14). Then, σ2
s

can also be approximated by

σ2
s ≈
‖x̃− x̂∗0‖

2
2 − σ2

∗
n

. (45)

Note that as shown in Prop. 6.1 and its proof in Appendix Appendix C, the
approximation of σ2

s relies on the approximation of the standard AMP. There-
fore, above the phase transition boundary of AMP, the AMP approximation is
unstable since the MSE is unbounded, making the approximation lim

t→∞
r̂(θt)/n

unbounded. A tiny mismatch between lim
t→∞

r̂(θt)/n and MSE of AMP will cause

large error when estimating σ2
s . On the other hand, below the phase transition

boundary, the MSE of AMP is bounded. The approximation is very stable.
Once σ2

s is estimated, the remaining problem is to determine the thresholding
parameter in Eq. (17). Since the iteration formulae and the state evolutions of
GENP-AMP are similar to those of AMP, we only need to replace the explicit
expressions of σ2

t in Eq. (44) with npi(q2
t ) in Eq. (30). The subsequent steps are

exactly the same as those in [28], i.e., determining the thresholding parameter θt
using gradient descent, and updating the estimator and the residual according
to Eq. (17) and (20).

7. Numerical Experiments

In this section, we present simulation results with 1-D data and two dif-
ferent imaging applications to demonstrate the performances of the proposed
GENP-LASSO and GENP-AMP. Comparisons with some other methods are
also included.

7.1. Performance of GENP-LASSO

We first compare the predicted and empirical MSEs of GENP-LASSO and
LASSO. Note that GENP-LASSO reduces to LASSO when γ2

s =∞. We gener-
ate the signal vector x0 by randomly choosing each entry from {+1, 0,−1} with
probabilities P (x0,i = +1) = P (x0,i = −1) = 0.064. The entries of the mea-
surement matrix A are drawn from the i.i.d. Gaussian distribution N (0, 1/m).
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Figure 1: The predicted and actual MSEs of LASSO and GENP-LASSO with different
regularization parameter λ. The sample rate is δ = 0.64.

The sampling noise w are drawn from N (0, 0.2), and the noise e of the GENP
x̃ are drawn from N (0, 0.2γ2

s ). The simulation setup is the same as that in [9],
except for the GENP.

As shown in Sec. 4, the MSE of GENP-LASSO is controlled by two regular-
ization parameters λ and τs, but they are connected by the hidden parameter
u. If one of them is given, using Prop. 4.1, Prop. 4.2, and Prop. 4.3, the other
parameters can be uniquely determined.

Fig. 1 shows the predicted and the empirical MSEs of LASSO and GENP-
LASSO with different λ. Three γ2

s are tested, each with two different values of
n. In this example, the predicted MSEs of GENP-LASSO are given by the state
evolution of GENP-AMP. The empirical results of LASSO and GENP-LASSO
for n = 200 are obtained by the Matlab-based CVX package [37]. The empirical
results of LASSO for n = 2000 are obtained by the OWLQN algorithm [38],
which is written in C++. The empirical results of GENP-LASSO for n = 2000
are obtained by modifying the OWLQN to incorporate the GENP, as described
in Sec. 3. We denote this as GENP-OWLQN.

It can be seen from Fig. 1 that the predicted MSE is quite accurate in both
LASSO and GENP-LASSO. The result of LASSO (with γ2

s = ∞) is the same
as Fig. 9 in [9]. When γ2

s = 4 or γ2
s = 1, the minimal MSE of GENP-LASSO

can be reduced by about 20% and 50%, respectively, compared to the standard
LASSO without any prior.

7.2. Comparison of AMP, GENP-AMP, Denoising and Least Squares

We now compared the performances of AMP, GENP-AMP, the LMMSE
solution for Eq. (13), and scalar denoising via soft thresholding of the initial
estimation when they are operated at different points of the sampling plane,
including points below and above the phase transition boundary of the standard
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δ ρ h∗ λ∗ τ∗ fMSE eMSE eMSE fMSE eMSE eMSE fMSE eMSE eMSE
(GENP (GENP- (GENP (AMP) (OWLQN) (AMP) (DN) (DN) (LMMSE)
-AMP) OWLQN) -AMP)

0.100 0.095 2.828 2.585 0.995 0.033 0.032 0.033 0.136 0.119 0.128 0.058 0.062 0.071
0.100 0.142 2.807 2.359 0.993 0.047 0.044 0.048 0.380 0.394 0.430 0.079 0.081 0.098
0.100 0.170 2.801 2.256 0.992 0.055 0.057 0.056 1.045 1.199 1.089 0.090 0.093 0.111
0.100 0.180 2.799 2.223 0.992 0.058 0.058 0.058 2.063 1.958 3.159 0.094 0.103 0.116
0.100 1.900 2.656 0.919 0.951 0.405 0.405 0.406 UB UB UB 0.486 0.479 0.525
0.250 0.134 2.581 2.025 0.995 0.086 0.091 0.088 0.374 0.369 0.366 0.150 0.151 0.167
0.250 0.201 2.547 1.796 0.994 0.120 0.121 0.123 1.028 1.213 1.137 0.201 0.203 0.213
0.250 0.241 2.533 1.694 0.993 0.139 0.137 0.139 2.830 2.708 2.910 0.228 0.226 0.243
0.250 0.254 2.529 1.663 0.992 0.145 0.145 0.148 5.576 6.665 5.680 0.236 0.236 0.251
0.250 1.900 2.276 0.511 0.973 0.619 0.625 0.626 UB UB UB 0.797 0.790 0.592
0.500 0.193 2.362 1.512 0.995 0.182 0.184 0.184 0.853 0.845 0.856 0.315 0.316 0.289
0.500 0.289 2.314 1.279 0.992 0.245 0.245 0.245 2.329 2.343 2.412 0.410 0.415 0.345
0.500 0.347 2.291 1.172 0.993 0.280 0.275 0.280 6.365 7.232 6.312 0.459 0.465 0.367
0.500 0.366 2.285 1.140 0.993 0.291 0.296 0.290 12.427 15.665 12.165 0.475 0.476 0.386
0.500 1.900 1.253 0.047 0.986 0.689 0.689 0.696 UB UB UB 0.978 0.972 0.458

Table 1: Empirical and predicted MSEs of different methods for different points in the
sampling space.

γ2
s δ ρ h∗ λ∗ τ∗ fMSE eMSE eMSE fMSE eMSE eMSE

(GENP (GENP- (GENP (DN) (DN) (LMMSE)
-AMP) OWLQN) -AMP)

2

0.100 0.095 3.465 2.107 0.497 0.049 0.047 0.047 0.115 0.105 0.108
0.100 0.142 3.511 1.882 0.495 0.073 0.077 0.077 0.157 0.134 0.145
0.100 0.170 3.539 1.779 0.494 0.087 0.086 0.086 0.181 0.161 0.173
0.100 0.180 3.549 1.747 0.494 0.093 0.093 0.094 0.189 0.165 0.189
0.100 1.900 3.717 0.625 0.452 0.794 0.807 0.808 0.971 0.870 1.030

4

0.100 0.095 4.086 1.785 0.248 0.068 0.070 0.071 0.231 0.148 0.140
0.100 0.142 4.271 1.543 0.246 0.108 0.114 0.115 0.315 0.205 0.234
0.100 0.170 4.377 1.433 0.245 0.133 0.128 0.129 0.361 0.242 0.289
0.100 0.180 4.413 1.398 0.245 0.142 0.148 0.148 0.377 0.250 0.291
0.100 1.900 5.224 0.399 0.203 1.566 1.566 1.567 1.942 1.459 2.046

Table 2: Empirical and predicted MSEs of different methods with different γ2s .

AMP. We will compare the predicted and empirical MSEs of GENP-AMP and
AMP using the nearly-least-favorable signal generated by Eq. (10). We also use
OWLQN and GENP-OWLQN to find the LASSO solution x̂(λ) and the GENP-
LASSO solution x̂(λ, τs) for Eq. (12), but OWLQN-based methods could not
predict the MSE, and the regularized parameters need to be chosen manually.
The number of iterations of GENP-AMP and AMP for empirical results is fixed
as 60.

We first generate in each case 20 random realizations of size n = 2000, with
parameters , γ2

s = 1, σ2 = 1, δ ∈ {0.10, 0.25, 0.50}, ρ ∈ { 1
2ρ(δ), 3

4ρ(δ), 9
10ρ(δ),

19
20ρ(δ), 1.9}, where ρ(δ) represents the phase transition boundary of the stan-
dard AMP. The results are summarized in Table 1, where eMSE and fMSE
denote the empirical MSE and predicted formal MSE respectively. DN denotes
the denoising method, and UB represents unbounded MSE. More results with
different γ2

s are shown in Table 2.
Some observations can be drawn from Tables 1 and 2. First, the MSE of

GENP-AMP is much lower than those of AMP and denoising. Secondly, the
fMSE and eMSE of GENP-AMP match very well, even when the number of
measurements is smaller than the sparsity. For example, for ρ = 1.9, the fMSE
of GENP-AMP is still very close to eMSE. For AMP, this ρ is much higher than
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its phase transition boundary. Its MSE is thus unbounded. Thirdly, since the
denoising method is equivalent to GENP-AMP with δ = 0, the performance
difference between GENP-AMP and denoising shows the contribution of the CS
measurements. Moreover, the LMMSE solution is comparable to DN solution.
The exceptions happen when δ = 0.25, ρ = 1.9 and δ = 0.5, ρ = 1.9. This can
be expected since LMMSE can be interpreted as assuming the target signal x
follows Gaussian distribution. When ε = δρ is sufficiently large, the distribution
of x is close to Gaussian distribution, according to central limit theorem. In
this case, the LMMSE result is near-optimal. Especially, when δ = 0.5, ρ = 1.9,
i.e., ε = 0.95, almost all entries of x are nonzero, LMMSE outperforms other
methods. However, in all other cases, LMMSE is worse than our proposed
algorithm.

Finally, although the empirical MSE of GENP-OWLQN is very similar to
that of GENP-AMP, GENP-OWLQN is much slower, since it needs to calculate
the gradients in each iteration. For example, on a computer with Intel Core
i7 3.07GHz CPU and 6.00 GB memory, our Matlab implementation of GENP-
AMP is about 10 times faster than the C++ implementation of GENP-OWLQN.

7.3. Performance of the Parameterless GENP-AMP

In the previous two simulations, the sparsity ε and the variance σ2
s of the

prior x̃ are assumed to be known. In this subsection, we show the performance
of the parameterless GENP-AMP (P-GENP-AMP), which can estimate σ2

s . A
similar setup to the previous experiments is used, except for the following. The
non-zero coefficients of the sparse signal x follow i.i.d. N (0, 100). The sampling
noise w are drawn from N (0, σ2) where the variance σ2 is set according to

signal-to-noise ratio (SNR) defined as SNR = 10log10( 1
m ‖Ax‖

2
2 /σ

2), and the
noise e of the GENP x̃ are drawn from N (0, σ2

s). The number of Monte-Carlo
simulations is 100.

For comparison purpose, we also estimate σ2
s using the following method

σ2
s ≈

1

n
‖x̃− xAMP‖22 , (46)

i.e., we first reconstruct the sparse signal using standard CS reconstruction
methods such as AMP, and then use the reconstructed signal and x̃ to estimate
σ2
s . And we name such kind of algorithm as Parameterless GENP-AMP with

faked variance (P-GENP-AMP-FK). In fact, the only difference between Eq.
(43) and Eq. (46) is the term lim

t→∞
r̂(θt)/n, the estimated MSE by the SURE

framework proposed in [28].
We also compare with the method in [13], denoted as EMGMAMP, using its

source code from [39]. We modify its source code to incorporate the GENP, and
treat the variance of GENP as an additional hidden parameter, which can also
be updated by the Expectation-Maximization algorithm in [13]. This algorithm
is denoted as EMGMAMP-GENP in the following figures. The updating rule
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Figure 2: Performances of parameterless algorithms with δ = 0.5 and ε = 0.2. First row (from
left to right): (a) Estimated σ2

s with SNR=20 dB. The confidence level of the error bar is 0.95.
(b) MSEs with SNR=20 dB. Second row: (c) Estimated σ2

s with SNR=5 dB. The confidence
level of the error bar is 0.95. (d) MSEs with SNR=5 dB.

follows

σ2
s(t) =

1

n

n∑
i=1

[(x̃i − x̂i(t))2
+ µxi (t)

2
], (47)

where x̂i(t) and µxi (t) is the approximate MMSE result, and its standard devi-
ation in the t-th iteration, respectively.

In the first experiment, we consider a high SNR of 20 dB. From Fig. 2(a),
we can see that P-GENP-AMP, and P-GENP-AMP-FK can both provide good
approximations of the variance σ2

s while the gap between the ones estimated by
P-GENP-AMP and GENP-AMP is exactly the MSE of AMP shown in Fig. 2
(b). It can also be seen from Fig. 2 (b) that all GENP-based algorithms achieve
better performances. EMGMAMP-GENP outperforms the others, since it can
learn the prior distribution of the sparse signal through EM and thus achieves
near MMSE result. Although the full understanding of EM algorithm is still not
available, its efficiency can be proven empirically in this high SNR example. On
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σ2, σ2
s δ Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8

1e3, 1e3
1/5 24.73 26.34 26.40 24.48 23.24 17.79 24.95 17.83
1/2 26.15 26.87 26.86 20.58 20.04 18.14 24.95 26.49

1e3, 2.5e3
1/5 24.73 25.91 25.89 24.48 23.97 14.00 24.15 6.73
1/2 26.15 26.57 26.61 20.58 19.75 14.70 24.15 26.03

Table 3: PSNRs of different methods for the reconstruction of ”Lena”. For σ2
s = 1e3, the

PSNR of the corrupted upsampled version are all 18.13 dB, whereas when σ2
s = 2.5e3, the

PSNR is 14.00 dB.

Test sequence σ2, σ2
s δ Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8

Balloons

1e2, 1e2
1/5 31.27 33.72 33.72 32.65 34.50 27.25 32.04 32.31
1/2 34.71 35.63 35.79 30.41 30.65 28.04 32.04 35.62

1e2, 1e3
1/5 31.27 32.71 32.61 32.65 33.20 18.02 28.69 14.28
1/2 34.71 35.07 35.10 30.43 30.20 19.45 28.69 32.91

1e3, 1e3
1/5 27.83 30.36 30.42 27.08 25.70 18.01 28.69 15.38
1/2 29.06 30.87 30.94 21.17 20.60 18.52 28.69 29.81

Kendo

1e2, 1e2
1/5 33.08 35.88 35.82 34.37 35.56 27.57 33.51 34.77
1/2 36.22 37.05 37.04 30.79 30.89 28.28 33.51 37.33

1e2, 1e3
1/5 33.08 34.73 34.76 34.37 35.20 18.07 30.20 16.77
1/2 36.22 36.63 36.64 30.77 30.59 19.50 30.20 35.11

1e3, 1e3
1/5 28.15 31.86 32.00 28.07 25.98 18.04 30.20 22.30
1/2 30.26 32.20 32.31 21.32 20.64 18.57 30.20 31.04

Pantomime

1e2, 1e2
1/5 31.65 34.41 34.20 33.42 33.51 27.43 31.93 24.79
1/2 36.46 36.24 36.36 30.89 30.29 28.20 31.93 37.62

1e2, 1e3
1/5 31.65 33.73 33.77 33.42 34.40 18.06 29.77 24.58
1/2 36.46 36.62 36.66 30.88 30.57 19.48 29.77 34.41

1e3, 1e3
1/5 28.50 31.39 31.49 28.01 25.74 17.63 29.77 26.38
1/2 30.32 31.86 32.01 21.34 20.66 18.56 29.77 31.11

Table 4: PSNRs of different methods for multiview images. For σ2
s = 1e3, the PSNRs of

the corrupted virtual middle views are all 18.03 dB, whereas when σ2
s = 1e2, the PSNRs are

26.96 dB for ”Balloons”, 27.35 dB for ”Kendo”, and 27.20 dB for ”Pantomime”.

the other hand, both P-GENP-AMP and P-GENP-AMP-FK perform almost
the same as GENP-AMP with known GENP variance. The reason is that at
high SNR, the MSE of AMP is very small. Therefore Eq. (43) and Eq. (46) are
very similar.

Fig. 2 (c) and (d) show the results with a low SNR of 5 dB. In this case,
EMGMAMP-GENP no longer achieves an accurate estimate of σ2

s , whereas
the proposed P-GEMP-AMP still performs well. Moreover, P-GENP-AMP and
GENP-AMP are still very close and are much better than other algorithms.
The failure of EMGMAMP-GENP is because there are many approximations
in EMGMAMP, e.g., using the GAMP approximated posterior as the true one
and learning the hidden parameters through EM. At low SNRs, these approx-
imations are not accurate, and the method cannot achieve near MMSE result.
Its performance can be even worse than the AMP.

7.4. Application in Compressive Image Sampling

We next consider a compressive image sensing example. The target image is
the image ”Lena” with resolution 512 × 512. We assume that the receiver has
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Figure 3: The reconstructed ”Balloons” with σ2 = 1e3, σ2
s = 1e3, δ = 1/5. First row (from

left to right): original, AMP (PSNR: 27.83dB) , P-GENP-AMP (30.36dB), GENP-AMP
(30.42dB). Second row: EMGMAMP-GENP (25.70dB), Residual AMP (18.02dB), Denoising
(28.69dB), and Modified CS (14.28dB).

access to a 128× 128 low-resolution version of the image, which is then upsam-
pled to 512 × 512 and corrupted by Gaussian noises with different variances,
to simulate the noises in poor illumination, high temperature, or transmission
error. This is used as the GENP prior of our method.

The full size image is partitioned into overlapped blocks of size 48×48 pixels,
with an overlap of 6 pixels to reduce the blocking artifacts. The DCT is used as
the sparsifying transform. The same i.i.d. Gaussian sensing matrix is applied
to each block to obtain the CS measurements. Eight algorithms are compared:
AMP (denoted as Alg1), P-GENP-AMP (Alg2), GENP-AMP (Alg3), EMG-
MAMP (Alg4), EMGMAMP-GENP(Alg5), the residual AMP similar to [19]
(Alg6), the direct denoising of the prior image via soft-thresholding (Alg7), and
the modified CS [25] (Alg8), which finds the sparsest signal outside the support
set detected from the prior x̃. For the denoising algorithm, the parameterless
SURE framework in [28] is applied to automatically choose the tuning parame-
ter, and σ2

s is assumed to be known.
The results are summarized in Table 3. The top-two best results in each

case are highlighted in bold. We can see that our proposed P-GENP-AMP
and GENP-AMP always outperform other algorithms. Besides, at low SNRs
(σ2 = 1e3), the performance of EMGMAMP-GENP is quite poor. Note that
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the performance of Algorithms 4 and 5 degrade when given more samples, due
to the instability of EM-based algorithms.

7.5. Application in Hybrid Multi-View Imaging System

We next apply the GENP-AMP to the hybrid multi-view imaging system
[19, 22, 23], where a group of cameras capture the scene from different locations.
Some cameras are traditional cameras, and others are CS cameras such as the
single pixel cameras [20]. For each CS camera, we assume its left and right
neighbouring cameras are traditional cameras. To help the reconstruction from
CS sampling, the left and right views are used to generate a virtual view, which
is corrupted by Gaussian noise and serves as the initial estimate or the GENP
of the middle view.

We test the multiview image sequences ”Balloons”, ”Kendo”, and ”Pan-
tomime” under various channel noise levels. The setup is similar to Sec. 7.4.
The virtual middle image is generated by Version 3.5 of the MPEG view syn-
thesis reference software (VSRS) [40], and the test sequences are downloaded
from [41].

Table 4 reports the PSNRs (dB) of the reconstructions given by the eight
methods under different σ2, σ2

s , and δ. The following can be observed. First,
almost all the top-two results are P-GENP-AMP and GENP-AMP, and there is
no noticeable gap between them, verifying the efficiency of the proposed algo-
rithms. In particular, when σ2 = 1e3 and σ2

s = 1e3, i.e., both the CS samples
and GENP have low quality, our algorithms always perform the best. Second,
when the channel noise level is low and sampling rate is high, i.e., σ2 = 1e2,
σ2
s = 1e2, and δ = 1/2, the modified CS (Alg6) is comparable to or even better

than the proposed methods Alg2 and Alg3. This is as expected, since detecting
the support of the virtual view x̃ is easier under low noise levels. However, as
the noise level increases, the performance of the modified CS degrades quickly.
It also requires the knowledge of σ2, which is not needed in AMP-based algo-
rithms. Third, at high SNR (σ2 = 1e2), EMGMAMP-GENP outperforms the
proposed P-GENP-AMP, but our method is better at low SNRs. Finally, Our
methods are also about 20 times faster than the CVX-based modified CS and
comparable to EMGMAMP and EMGMAMP-GENP.

Some examples of the reconstructed images are shown in Fig. 3. Our
P-GENP-AMP and GENP-AMP provide the best visual quality. All other
methods have some limitations. For example, some artifacts exist in the AMP
and EMGMAMP. Blurs happen when thresholding-based denoising is used, and
Gaussian noises cannot be removed by the residual AMP. Although some parts
can be well recovered by the modified CS, it also introduces severe artifacts in
certain areas, due to its poor detection rate of the support set in high noise
levels.

8. Conclusions and Future Work

This paper studies the generalized elastic net prior (GENP)-aided com-
pressed sensing problem, where an additional noisy version of the original signal
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is available for CS reconstruction. We develop a GENP-aided approximate mes-
sage passing algorithm (GENP-AMP), and study its parameter selection, state
evolution, and noise sensitivity. The contribution of the GENP is also examined.
We also develop a parameterless GENP-AMP that does not need to know the
sparsity of the unknown signal and the variance of the GENP. Simulation results
with 1-D data and two imaging applications demonstrate the performances of
the proposed methods.

For the future work, a parameterless GENP-AMP algorithm that can accu-
rately work in the whole plane need to be developed. According to the noise
sensitivity analysis in Sec. 5, there is no phase transition boundary, and the
MSE is bounded in the whole plane. However, the parameterless GENP-AMP
proposed in Sec. 6 only works well below the phase transition boundary of the
standard AMP, due to the unbounded MSE above the phase transition boundary
of the standard AMP and the approximation accuracy of SURE.

The original AMP is based on the simple soft thresholding in each iteration.
Recently, it is found in [42, 43] that other denoising methods can be employed
in AMP to further improve the reconstruction. For example, using the BM3D
denoising algorithm [36], state-of-the-art CS reconstructions can be achieved in
imaging applications. This approach can also be adopted into the GENP-AMP
framework in this paper.

Applying the proposed schemes to multiview videos instead of multiview
images is another attractive topic, where the approaches in [16, 17] could be
useful. It is also worthwhile to find other applications of the proposed GENP-
AMP method.

Appendix A. A heuristic derivation of the state evolution of GENP-
AMP

In this section, we derive the state evolution of GENP-AMP in Eq. (28) of
Sec. 4.3. The derivation is generalized from that in [9] for AMP. We start from
the GENP-AMP iteration in (17) and (20), but introduce the following three
modifications: (i) The random matrix A is replaced by a new i.i.d. A(t) at
each iteration t, where Aij(t) ∼ N(0, 1/m); (ii) The corresponding observation
becomes yt = A(t)x + w; (iii) The last term in the update equation for rt is
eliminated. We thus get the following dynamics:

xt+1 = η(
ut

1 + ut
x̃+

1

1 + ut
(xt +A(t)T rt); θt), (A.1)

rt = yt −A(t)xt. (A.2)

Eliminating rt, the first equation becomes:

xt+1 = η(
ut

1 + ut
x̃+

1

1 + ut
(A(t)T yt + (I −A(t)TA(t))xt; θt)

= η(x+
ut

1 + ut
(x̃− x) +

1

1 + ut
(A(t)Tw +B(t)(xt − x)); θt),

(A.3)
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where B(t) = I−A(t)TA(t).
Since the large system limit is assumed here, similar to [8], q2

t in Sec. 4.3 can

be approximated by lim
n→∞

‖xt − x‖22 /n. It can be shown using the central limit

theorem that B(t)(xt − x) converges to a vector with i.i.d. normal entries, and
each entry has zero mean and variance q2

t /δ. In addition, the entries of A(t)Tw
have zero mean and variance of σ2, and they are independent of B(t)(xt − x).
Therefore, each entry of the vectors in the argument of η in Eq. (A.3) converges
to X0 + ξtZ with Z ∼ N(0, 1) independent of X0, and

ξ2
t =

(
ut

1 + ut

)2

σ2
s +

(
1

1 + ut

)2

(σ2 +
1

δ
q2
t ). (A.4)

On the other hand, by Eq. (A.3), each entry of xt+1 − x converges to
η(X0 + ξtZ; θt)−X0. Therefore

q2
t+1 = lim

n→∞

1

n

∥∥xt+1 − x
∥∥2

2
= E{[η(X0 + ξtZ; θt)−X0]2}. (A.5)

From Eq. (A.4) and Eq. (A.5), we can obtain the state evolution in Eq.
(28).

This is a heuristic proof, more rigorous proof can be achieved following the
proof in [44].

Appendix B. Proof of Proposition 5.1

In this part, we prove Prop. 5.1, which studies the bound of the MSE of the
GENP-AMP in the (ρ, δ) plane.

Proof Consider p0 ∈ Fδρ, σ2 = 1 and let α∗(δ, ρ) = α±(δρ) minimax the MSE.
To simplify the notation, we define

Ψ(q2, u; p) = Ψ(q2, u, δ, σ = 1, σs, α
∗, p)

= mse(npi(q2, u, 1, σs, δ); p, α
∗).

(B.1)

Then, by the definition of fixed point, we get

q2
∗ = Ψ(q2

∗, u
∗; p),

u∗ =
1 +

q2∗
δ

γ2
s

.

Using the scale invariance, we have mse(σ2; p, α∗) = σ2mse(1; p̃, α∗), where
p̃ is a rescaled probability measure, p̃{x · σ ∈ B} = p{x ∈ B}. For p ∈ Fδρ, we
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have p̃ ∈ Fδρ as well. Therefore,

q2
∗ = mse(npi(q2

∗, u
∗, 1, σs, δ); p, α

∗)

= mse(1; p̃, α∗) · npi(q2
∗, u
∗, 1, σs, δ)

6M±(δρ) · npi(q2
∗, u
∗, 1, σs, δ)

Hence,
q2
∗

npi(q2
∗, u
∗; 1, σs, δ)

6M±(δρ),

where we use the fact that σ = 1 and γs = σs.
By the definition of npi in Eq. (25), we have

q2
∗

( u∗

1+u∗ )
2
γ2
s + ( 1

1+u∗ )
2
(1 +

q2∗
δ )

6M±(δρ).

Replacing u∗ by (29), we get

q2
∗ 6
−G(δ, ρ, γ2

s ) +

√
G(δ, ρ, γ2

s )
2

+ 4δγ2
sM
±(δρ)

2
(B.2)

where G(δ, ρ, γ2
s ) = δγ2

s + δ − γ2
sM
±(δρ).

It is easy to verify that the phase transition boundary only exists when
γ2
s =∞ from the inequality above. If we let (γ2

s + 1)δ < γ2
sM
±(δρ), G(δ, ρ, γ2

s )
in the right hand side of Eq. (B.2) is positive. In such case, if γ2

s goes to ∞,
then δ < M±(δρ), we can get q2

∗ 6∞, i.e., the mean square error is unbounded,
corresponding to the classical AMP phase transition boundary.

To prove the second part of Prop. 5.1, we make a specific choice p̄ of p, and
fix a small constant c > 0.

Now for ε = δρ, define h = h±(ε, c) ·
√

NPI∗. Let p̄ = (1−ε)δ0 +(ε/2)δ−h+
(ε/2)δh, similar to (10). Denote q2

∗ = q2
∗(p̄) the highest fixed point corresponding

to the signal distribution. Again, by the scale invariance, we have

q2
∗ = mse(npi(q2

∗, u
∗, 1, γs, δ); p̄, α

∗)

= mse(1; p̃, α∗) · npi(q2
∗, 1, γs, δ),

where p̃ is a scaled probability measure, and p̃{x ·
√
npi(q2

∗, 1, γs, δ) ∈ B} =
p̄{x ∈ B}. Since q2

∗ 6M∗, we have npi(q2
∗, 1, γs, δ) 6 NPI∗ and hence

h√
npi(q2

∗, 1, γs, δ)
= h±(ε, c) ·

√
NPI∗

npi(q2
∗, 1, γs, δ)

> h±(ε, c).

Note that mse(q; (1− ε)δ0 + (ε/2)δ−x + (ε/2)δx, α) increases monotonically
in |x|. Recall that pε,c = (1−ε)δ0 +(ε/2)δ−h±(ε,c) +(ε/2)δh±(ε,c) is nearly-least-
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favorable for the minimax problem. Consequently,

mse(1; p̃, α∗) > mse(1; pδρ,c, α
∗) = (1− c) · M±(δ, ρ).

By the scale-invariant property, we conclude that

q2
∗

npi(q2
∗, 1, γs, δ)

> (1− c) · M±(δρ).

Then, we can get the inequality

(q2
∗)

2 + [δ(γ2
s + 1)− (1− c)M±(δ, ρ)γ2

s ]q2
∗

− (1− c)M±(δρ)γ2
sδ > 0.

Therefore,

fMSE(α∗; δ, ρ, 1, γ2
s , p̄) >

−[δ(γ2
s + 1) − (1 − c)M±(δ, ρ)γ2

s ]

2

+

√
[δ(γ2

s + 1) − (1 − c)M±(δ, ρ)γ2
s ]2 + 4(1 − c)M±(δρ)γ2

sδ

2
,

where fMSE(α; δ, ρ, σ, γ2
s , p) is the equilibrium formal MSE for GENP-AMP (λ,

τs) for the large system framework [8].
As c > 0 is arbitrary, we conclude

sup
p∈Fδρ

fMSE(α∗; δ, ρ, 1, γ2
s , p) >

−[δ(γ2
s + 1)−M±(δ, ρ)γ2

s ]

2

+

√
[δ(γ2

s + 1)−M±(δ, ρ)γ2
s ]

2
+ 4M±(δρ)γ2

sδ

2
.

Also, following the same procedure as Prop. 4.2 in [8], it can be shown that
M∗ = inf

α
sup
p∈Fδρ

fMSE(α;δ,ρ,σ = 1,γ2
s , p).

The last part of Prop. 5.1 can be proven by simply substituting the fixed
point results in the second part of Prop. 5.1 for the ones in Eq. (27).

Appendix C. Proof of Proposition 6.1

In this part, we prove Prop. 6.1, which provides an accurate estimation of the
variance of the prior x̃, i.e., σ2

s . This is an important step of the parameterless
GENP-AMP.
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Proof From the definition of the GENP x̃, we get

σ2
s = E[(X̃ −X0)2]

= E[(X̃ −Xpos −X0 +Xpos)
2]

= E[(X̃ −Xpos)
2
]︸ ︷︷ ︸

(a)

+E[(X0 −Xpos)
2
]︸ ︷︷ ︸

(b)

− 2E[(X̃ −Xpos)(X0 −Xpos)]︸ ︷︷ ︸
(c)

(C.1)

where Xpos is the estimated sparse signal by GENP-AMP based on an postu-

lated variance σ2
s-pos. X̃ and Xpos can be explicitly expressed as follows.

X̃ = X0 + e, e ∼ N(0, σ2
s)

Xpos = η(X0 + σ∗Z; θ), Z ∼ N(0, 1),
(C.2)

where σ2
∗ is the variance of the unthresholded estimator in the last iteration of

GENP-AMP.
Next, we look at each part of Eq. (C.1). Part (c) can be rewritten as

E[(X̃ −Xpos)(X0 −Xpos)] = E[(X0 −Xpos)
2] + E[e(X0 −Xpos)]. (C.3)

Thus Eq. (C.1) becomes

σ2
s = E[(X̃ −Xpos)

2]− E[(X0 −Xpos)
2]− 2E[e(X0 −Xpos)]. (C.4)

If σ2
s-pos is set to ∞, GENP-AMP degrades to AMP, which does not use x̃.

This implies that a perfect candidate of Xpos is the signal recovered by AMP,
XAMP. Therefore, the two Gaussian noises σ∗Z and e are uncorrelated. As a
result, E[e(X0 −XAMP)] = 0, and σ2

s can be further represented as

σ2
s = E[(X̃ −XAMP)2]− E[(X0 −XAMP)2]. (C.5)

Part (a) can be rewritten as E[(
_

X − η(
_

X + σ∗Z − e; θ))2] This term can
exactly be seen as a denoising operator. According to the large system limit [8],
when n is sufficiently large,

E[(X̃ − xAMP)2] ≈
‖x̃− xAMP‖22

n
. (C.6)

Next, E[(X0 −XAMP)2] can be estimated by the method proposed in [28],
inspired by the SURE theory. According to Theorem 4.3 and Theorem 4.7 in

[28], it can be predicted by lim
N→∞

_
r t(τt)
N when t → ∞, where t is the inner

iteration index of AMP. Usually it will converge in a few iterations.
Summarizing the analyses above, we can prove Prop. 6.1.
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