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Abstract

Although block compressive sensing (BCS) makes it tractable to sense large-sized images and video, its

recovery performance has yet to be significantly improved because its recovered images or video usually suffer

from blurred edges, loss of details, and high-frequency oscillatory artifacts, especially at a low subrate. This

paper addresses these problems by designing a modified total variation technique that employs multi-block

gradient processing, a denoised Lagrangian multiplier, and patch-based sparse representation. In the case of

video, the proposed recovery method is able to exploit both spatial and temporal similarities. Simulation

results confirm the improved performance of the proposed method for compressive sensing of images and

video in terms of both objective and subjective qualities.

Keywords: Block Compressive Sensing, Distributed Compressive Video Sensing, Total Variation, Nonlocal

Means Filter, Sparsifying Transform

1. Introduction

Current video coding techniques, such as HEVC [1], are designed to have low-complexity decoders for

broadcasting applications; this is based on the assumption that large amounts of resources are available at

the encoder. However, many emerging real-time encoding applications, including low-power sensor network

applications or surveillance cameras, call for an opposite system design that can work with very limited

computing and power resources at the encoder. Distributed video coding (DVC) [2] is an alternate solution

for a low-complexity encoder, in which the encoding complexity is substantially reduced by shifting the most

computationally-intensive module of motion estimation/motion compensation to the decoder. Nonetheless,

other than the encoding process, the processes of image/video acquisition also need to be considered to

further reduce the complexity of the encoder [2] because current image/video applications capture large

amounts of raw image/video data, most of which are thrown away in the encoding process for achieving highly

compressed bitstream. In this context, compressive sensing (CS) has drawn interest since it provides a general

signal acquisition framework at a sub-Nyquist sampling rate while still enabling perfect or near-perfect signal
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reconstruction [3]. More clearly, a sparse signal that has most entries equal to zero (or nearly zero) can be sub-

sampled via linear projection onto sensing bases; this can be reconstructed later by a sophisticated recovery

algorithm, which basically seeks its K-sparse approximation (i.e., the K largest magnitude coefficients).

Consequently, CS leads to simultaneous signal acquisition and compression to form an extremely simple

encoder. Despite its simplicity, its recovery performance is heavily dependent on the recovery algorithm,

in which some of the important factors are properly designing the sparsifying transforms and deploying

appropriate denoising tools.

Although many CS recovery algorithms have been developed, including NESTA (Nesterov’s algorithm)

[4], gradient projection for sparse reconstruction (GPSR) [5], Bayesian compressive sensing [6, 7, 8], smooth

projected Landweber (SPL) [9], and total variation (TV)-based algorithms [10, 11, 12], their reconstructed

quality has yet to be improved much, especially at a low subrate. For better CS recovery, Candes [13]

proposed a weighted scheme based on the magnitude of signals to get closer to `0 norm, while still using

`1 norm in the optimization problems. In a similar manner, Asif et al. [14] adaptively assigned weight

values according to the homotopy of signals. As another approach, the authors in [15, 16, 17] utilized local

smoothing filters, such as Wiener or Gaussian filters, to reduce blocking artifacts and enhance the quality of

the recovered images. Despite these improvements, the performances of the aforementioned approaches are

still far from satisfactory because much of the useful prior information of the image/video signals (e.g., the

non-local statistics) was not taken into full account.

More recent investigations have sought to design a sparsifying transform to sparsify the image/video

signal to the greatest degree because the CS recovery performance can be closer to that of sampling at the full

Nyquist rate if the corresponding transform signal is sufficiently sparse [3]. The direct usage of predetermined

transform bases, such as the discrete wavelet transform (DWT) [7, 15], discrete cosine transform (DCT) [8, 15],

or gradient transform [10, 11, 12, 17], is appealing due to their low complexity. However, predetermined

transform bases cannot produce sufficient sparsity (i.e., the number of zero or close-to-zero coefficients is

limited) for the signal of interest, thereby limiting their recovery performance. Because image and video

signals are rich in nonlocal similarities (i.e., a pixel can be similar to other pixels that are not located close

to it), usage of those nonlocal similarities [18] can generate a higher sparsity level to achieve better recovery

performance; this is known as a patch-based sparse representation approach [19]. Note that this approach

originally showed much success in image denoising [19, 20, 21, 22] and researchers have incorporated this

idea into CS frameworks. Xu and Yin [23] proposed a fast patch method for whole-image sensing and

recovery under a learned dictionary, while Zhang et al. [24] took advantage of hybrid sparsifying bases by

iteratively applying a gradient transform and a three-dimensional (3D) transform [20]. By using the concept

of decomposition, the authors in [25] also used a 3D transform for cartoon images to enhance the recovery

quality. The 3D transform can be considered a global sparsifying transform because it is used for all patches

of the recovered images. Dong et al. [26], motivated by the success of data-dependent transforms for patches

(referred to as local sparsifying transforms) such as principal component analysis (PCA) or singular-value
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decomposition (SVD), proposed a method to enhance the sparsity level with the logdet function to bring `1

norm closer to `0 norm, similar to the work of Candes [13]. Metzler et al. [27] acquired a local sparsifying

transform via block matching [21] and demonstrated the effectiveness of applying denoising tools to the CS

recovery of the approximate message passing (AMP) method. However, because of the frame sensing that

accesses the entire image at once, the work described in [23, 24, 26, 27] requires extensive computation and

huge amounts of memory for storing the sensing matrix [28]; thus, these approaches are not suitable as

sensing schemes for real-time encoding applications or large-scale images/video.

Alternatively, block compressive sensing (BCS) has been developed to deal more efficiently with large-

sized natural images and video by sensing each block separately using a block sensing matrix with a much

smaller size. The compressive sensor can instantly generate the measurement data of each block through its

linear projection rather than waiting until the entire image is measured, as is done in frame sensing. The

advantages of BCS are discussed in [9, 28, 29, 30]. However, in BCS, the recovery performance has yet to

be substantially improved in comparison to that of frame sensing. To address this problem on the sensing

side, a Gaussian regression model between the coordinates of pixels and their gray levels can be used to

achieve better performance compared to traditional Gaussian matrices [31]. Additionally, Fowler et al. [32]

developed an adaptive subrate method (i.e., multi-scale BCS) to exploit the different roles of wavelet bands.

On the recovery side, for example, Dinh et al. [33] designed overlapped recovery with a weighted scheme to

reduce the blocking artifacts caused by block recovery. Chen et al. [34] used the Tikhonov regularization

and residual image information to enhance the smooth projected Landweber [9]. Furthermore, to enrich

the details of recovered images, the K-SVD algorithm [19] was used in [35]. By sharing the same idea

in [23, 24, 26, 27, 35] where nonlocal similarities are exploited to design the local sparsifying transform,

group-based sparse representation (GSR) [36] can achieve better recovery performance (in terms of the peak

signal-to-noise-ratio (PSNR)) than other algorithms that were previously designed for BCS. However, its

recovered images still contain many visual artifacts since the nonlocal searching and collecting patches based

on the initial recovered images produced by [34] often have poor quality at low subrates. Consequently, this

implies that more efforts are required for improving both the objective and subjective quality.

This paper attempts to improve the recovery performance of the BCS framework by using TV minimiza-

tion, which is good at preserving edges [10], with multiple techniques consisting of reducing blocking artifacts

in the gradient domain, denoising the Lagrangian multipliers, and enhancing the detailed information with

patch-based sparse representation. Furthermore, the proposed recovery methods are easily extendible to

compressive sensing and encoding problems of video [37, 38, 39, 40, 41]. Specifically, our main contributions

are summarized as follows.

• For BCS of images, we propose a method, referred to as multi-block gradient processing, that addresses

the blocking artifacts caused by block-by-block independent TV processing during recovery. Further-

more, based on our observation that both image information (e.g., edges and details) and high-frequency

artifacts and staircase artifacts are still prevalent in the Lagrangian multiplier of the TV optimization,
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we propose a method to reduce such artifacts by denoising the Lagrangian multiplier directly with a

nonlocal means (NLM) filter. Because the direct application of the NLM filter is not effective in preserv-

ing local details with low contrast [18], we further propose enriching these low-contrast details through

an additional refinement process that uses patch-based sparse representation. We propose using both

global and local sparsifying transforms because the single usage of either transform limits the effective

sparse basis and achievement of a sufficient sparsity level for noisy data. The proposed recovery method

demonstrates improvements for BCS of images compared to previous works [7, 8, 15, 16, 34, 35, 36].

• For BCS of videos, we extend the proposed method to a compressive video sensing problem known as

block distributed compressive video sensing (DCVS). An input video sequence is divided into groups

of pictures (GOP), each of which consists of one key frame and several non-key frames. These undergo

block sensing by a Gaussian sensing matrix. The proposed method first recovers the key frame using

the proposed recovery method. Then, for non-key frames, side information is generated by exploiting

measurements of the non-key and previously recovered frames in the same GOP. Improved quality of

the non-key frames is sought by joint minimization of the sparsifying transforms and side information

regularization. Our experimental results demonstrate that the proposed method performs better than

existing recovery methods designed for block DCVS, including BCS-SPL using motion compensation

(MC-BCS-SPL) [38] or BCS-SPL using multi-hypothesis prediction (MH-BCS-SPL) [39].

The rest of this paper is organized as follows. Section 2 briefly presents works related to the BCS framework

with some discussion. The proposed recovery method for BCS of images is described in Section 3, and its

extension to the block DCVS model is addressed in Section 4. Section 5 evaluates the effectiveness of the

proposed methods compared to other state-of-the-art recovery methods. Finally, our conclusions are drawn

in Section 6.

2. Block compressive sensing

In the BCS framework, a large-sized image u is first divided into multiple non-overlapping (small) blocks.

Let a vector ūk of length n denote the kth block, which is vectorized by raster scanning. Its m×1 measurement

vector bk is generated through the following linear projection by a sensing matrix AB :

bk = ABūk (1)

A ratio (m/n) denotes the subrate (or sub-sampling rate, i.e., the measurement rate). BCS is memory-

efficient as it only needs to store a small sensing matrix instead of a full one corresponding to the whole

image size. In this sense, block sampling is more suitable for low-complexity applications.

The CS recovery performance heavily depends on the mutual coherence χ of the sensing matrix AB which

is computed as [42]:

χ = max
1≤i<j≤n

|〈 ai, aj〉|
‖ai‖2‖aj‖2

(2)
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Here, ai and aj are any two arbitrary columns of AB ; 〈 , 〉 denotes the inner product of two vectors. According

to the Welch bounds [42], χ is limited in the range of [
√

(n−m)/m(n− 1), 1]. Additionally, at a low subrate

(i.e., m� n), it can be approximated as

χ ∈
[

1√
m
, 1

]
(3)

Note that a low mutual coherence is preferred for CS, and that the lower bound of (3) is inversely proportional

to
√
m. A low mutual coherence is harder to achieve with a small block size, although it is attractive in

terms of memory requirements. This explains the limited recovery quality of BCS with a small block size,

despite the great amount of research that has been conducted on this topic [7, 8, 15, 33, 34, 35, 43, 44].

The work in [7, 8] sought to obtain structured sparsity of signals in the Bayesian framework with a

Markov-chain Monte-Carlo [7] or variational Bayesian framework [8]. However, for practical image sizes, these

approaches demand impractical computational complexity; thus, the search must be terminated early, and the

recovered images suffer from high-frequency oscillatory artifacts [24]. The recoveries [15, 34] are much faster

than those previous ones, but they are limited by their predetermined transforms. Specifically, non-iterative

recovery was demonstrated in [44] with a convolutional neural network being used for the measurement data.

The work in [35, 36] uses a single patch-based sparse representation; therefore, its reconstructed quality is

still not satisfactory. The initial images used for adaptive learning of sparsity contain a large amount of noise

and artifacts; thus, using only one of them limits the definition of the effective sparse basis and makes it

difficult to achieve a sufficient sparsity level for noisy data. These observations motivated us to design a new

recovery method for high recovery quality, as discussed in the next section.

3. Proposed recovery for block compressive sensing of image

In this section, we design a recovery method for BCS of images. For this, we modify the TV-based

recovery method [10] for BCS by introducing a multi-block gradient process to reduce blocking artifacts

and directly denoise the nonlocal Lagrangian multiplier to mitigate the artifacts generated by the TV-based

methods. Also, due to the limitations of the NLM filter in preserving the image texture, a patch-based sparse

representation is also designed to enrich the local details of recovered images.

3.1. CS recovery for BCS framework

The first recovery method for BCS was proposed by L. Gan [9], who incorporated a Wiener filter and

Landweber iteration with the hard thresholding process. S. Mun et al. [15] further improved this idea by

adding directional transforms of DCT, dual-tree DWT (DDWT), or contourlet transform (CT). The visual

quality of the best method [15], namely the SPL with the dual-tree wavelet transform (SPLDDWT), is shown

in Figure 1a for the image Leaves. The recovered image suffers from high-frequency oscillatory artifacts [45]

and has blurred edges. TV has been shown to be effective for frame CS [10] in preserving edges and object

boundaries in recovered images. As expected, the recovered image by TV, shown in Figure 1b, looks much

sharper than the image recovered via SPLDDWT [15], although TV is applied to BCS for block-by-block
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(a) SPLDDWT [15] (b) TV [10]

Figure 1: BCS recovered image of the test image Leaves (subrate 0.2, block size 32 × 32)

recovery. However, it shows significant blocking artifacts, due to the block-independent TV processing.

Motivated by this, we investigate a TV-based recovery scheme for BCS with an emphasis on improving the

TV method that is applied to BCS such that it does not suffer from blocking artifacts. Our TV-based BCS

recovery method has several implications, as follows.

3.2. Noise and artifacts reduction

As mentioned above, independent block-by-block TV processing makes images suffer heavily from blocking

artifacts as in Figure 1b. When TV is computed separately for individual blocks as in [12], a good de-blocking

filter should also be used to mitigate the blocking artifacts. When the BCS scheme [9] is in use, a block

diagonal sensing matrix A corresponding to a whole image u of size
√
N ×

√
N (assuming it consists of G

blocks) and its measurement b are given as

A = diag (AB , . . . , AB) (4)

b = [b1b2 . . . bG] (5)

We design a method, referred to as multi-block total variation (MBTV), based on a multi-block gradient

process, as depicted in Figure 2a. This calculates the gradient for TV over multiple blocks such that the

discontinuities at block boundaries can be reduced significantly by minimizing the gradient. Notice that, if

this method is applied to all blocks in a recovered image, it is equivalent to a frame-based gradient calculation.

The visual quality of the recovered image Leaves, which is illustrated in Figure 2c, demonstrates that many

of the blocking artifacts are reduced compared to the block-by-block TV-based recovery (Figure 2b). Here,

we use a small sensing matrix (16 × 16) to visualize the significant improvements of MBTV. Note that the

recovered images usually suffer from more blocking artifacts with a small sensing operator when they are

independently recovered block-by-block, as shown in Figure 2b.

The proposed MBTV-based recovery is described in detail below. The constrained problem of TV-based

CS is expressed as

min
u

TV (u) s.t. Au = b (6)
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(a) (b) (c) (d)

Figure 2: Multi-block total variation (MBTV) based on multi-block gradient process. (a) Multi-block gradient process; the

recovered images of the test image Leaves at subrate 0.2, with a block size of 16 × 16, as recovered respectively by (b) TV with

block independent gradient process, (c) the proposed MBTV, and (d) the proposed MBTV with nonlocal Lagrangian multiplier

denoising.

where TV (.) stands for the TV operator, which can be either isotropic or anisotropic. For isotropic TV, (6)

is converted into an unconstrained problem by the augmented Lagrangian method [10, 17]

L(w, u) =

{
‖w‖2 − υT (Du− w) +

β

2
‖Du− w‖22 − λT (Au− b) +

µ

2
‖Au− b‖22

}
(7)

Here, w = Du , and D ∈ {Dx, Dy}, where Dx and Dy denote the horizontal and vertical gradient operators,

respectively. υ and λ are Lagrangian multipliers, and β and µ are positive penalty parameters. The key idea

of the augmented Lagrangian method is to seek a saddle point of L(w, u) that is also the solution of (6).

At the (t+ 1)th iteration, by acquiring the splitting technique [46], (7) is iteratively solved by two so-called

sub-problems, wt+1 and ut+1 , as shown below:

wt+1 = argmin
w

{
‖w‖2 − υT (Dut − w) +

β

2
‖Dut − w‖22

}
(8)

ut+1 = argmin
u

{
−υT (Du− wt+1) +

β

2
‖Du− wt+1‖22 − λT (Au− b) +

µ

2
‖Au− b‖22

}
(9)

The solution of (8) is found by the shrinkage-like formula, where � denotes the element-wise product:

wt+1 = max

{∥∥∥∥Dut − υt

β

∥∥∥∥
2

− 1

β
, 0

}
� Dut − υt/β
‖Dut − υt/β‖2

(10)

Because (9) is a quadratic function, its solution can be achieved by calculating the first derivative of the

sub-problem u. However, to reduce the computational complexity of the Moore-Penrose inverse [10], we also

use gradient descent, as proposed in [10, 17]:

ut+1 = ut − ηd (11)

The direction d and the optimized step size η in (11) are calculated by the Barzilai−Borwein method [10, 16]:

d = βDT
(
Dut − wt+1

)
−DTυt + µAT

(
Aut − b

)
−ATλt (12)

η = 〈d, d〉 / 〈d,Gd〉 ; G = µATA+ βDTD (13)
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The two Lagrangian multipliers are then updated by [10]:

υt+1 = υt − β
(
Dut+1 − wt+1

)
(14)

λt+1 = λt − µ
(
Aut+1 − b

)
(15)

Since TV basically assumes piecewise smoothness, it cannot avoid losing detailed information [47]; this is

a valid assumption for natural images in smooth regions but is less applicable in non-stationary regions

near edges. Consequently, so-called staircase artifacts occur in the recovered image, as shown in Figure 2c.

Moreover, it is worth emphasizing that, even though the signal acquisition is assumed to be noise-free (i.e.,

Au = b ), image signals cannot be perfectly recovered because they cannot be described exactly by K-sparse

approximation, as shown in [6]. Therefore, if a compressible signal of length N in a selected transform

domain is K-term approximated by its K-largest entries in magnitude (K < N), then the remaining (N−K)

elements can be considered as recovery error or noise. By the central limit theorem, it is reasonable to assume

that the noise is Gaussian if the sensing matrix is random [6]; in this scenario, the application of a filter will

help smoothing the recovered images [9, 15, 16, 17]. Moreover, for image denoising, the idea of applying a

denoising technique to a selected derived image (for example, the normal vectors of the level curves of the

noisy image [48], the curvature image [49], or the combined spatial-transformed domain image [50]) might be

more effective than directly smoothing the corresponding original noisy image. Motivated by this idea, we

suggest that smoothing the Lagrangian multiplier υ can effectively enhance the CS recovered image quality.

Lagrangian multipliers are used to find the optimum solution for a multivariate function of CS recov-

ery. The Lagrangian multipliers that represent the gradient image and the measurement vector (υ and λ,

respectively) should have their own roles in solving the ill-posed CS problems. Specially, υ is updated by the

gradient image Du which naturally contains a rich image structure. Hence, in CS recovery, we note that υ in

(14) can be seen as a noisy version of the gradient image. Indeed, the noise can actually be seen if Figure 3a

and 3b are compared. With full-Nyquist sampling (i.e., a subrate of 1.0), there is no noise in υ ; however,

there exists a large amount of noise if the subrate is lowered to 0.2. Also note that, according to the splitting

technique, υ plays a role in estimating the solution u. Therefore, a more exact υ will provide more accuracy

to the w sub-problem and ultimately produce a superior recovered image. Consequently, this suggests the

importance of improving the quality of υ in order to obtain better quality with the augmented Lagrangian

TV recovery. A proper process should be designed to mitigate noise and artifacts in υ. Rather than utilizing

Wiener or Gaussian filters, which might easily over-smooth the recovered image [16], we employ the nonlo-

cal means (NLM) filter [18], which is well-known for its denoising ability while also preserving textures by

employing an adaptive weighting scheme with a smoothing parameter that depends on the amount of noise

in the signals. The new method to update the Lagrangian multiplier υ is designed as

Step 1: a = υt − β
(
Dut+1 − wt+1

)
Step 2: υt+1 = NLM(a)

(16)

Here NLM(.) denotes the NLM filtering operator [18]. We first update υ by the traditional method [10] in
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order to estimate a temporal version (denoted as a in Step 1). Next, the NLM filter is applied to reduce

the noise in Step 2. Figure 3c visualizes the efficiency of the proposed method. After NLM denoising, the

Lagrangian multiplier is much cleaner and shows image structures better. Moreover, Figure 2d shows the

recovered image “Leaves” at a subrate of 0.2, indicating a reduction of the high-frequency artifacts. The

proposed combination of MBTV and the nonlocal Lagrangian multiplier (NLLM) is referred to as MBTV-

NLLM and is summarized in Algorithm 1.

Algorithm 1 MBTV-NLLM recovery

Input: Sensing matrix A, measurement vector b, Lagrangian multipliers, penalty parameters, and u0 = AT b

While Outer stopping criterion unsatisfied do

While Inner stopping criterion unsatisfied do

Solve the w sub-problem by (10)

Solve the u sub-problem by computing the gradient descent (11) with estimation of the gradient

direction via (12) and the optimal step size via (13)

End of while

Update the multiplier υ using NLM filter by (16)

Update the multiplier λ by (15)

End of while

Output: Final CS recovered image of MBTV-NLLM

At this point, we stress that utilizing the NLM filter for the Lagrangian multiplier yields better recovered

images in terms of both subjective and objective qualities. In addition, NLLM has lower computational

complexity than nonlocal regularization methods that directly use an NLM filter for noisy images, as in

[11, 51], since the Lagrangian multipliers are only updated if the recovered images are significantly changed.

One can refer to Trinh et al. [17] for both a theoretical analysis and a numerical comparison between NLLM

and nonlocal regularizations [11, 51]. In this paper, we focus on a valid explanation for the gain of the NLLM

method, as discussed below.

Mathematically, the error bound of our method (MBTV-NLLM) is smaller than that of traditional TV

[10] due to the following local convergence statement [52]. Assume that ut and υt are the solutions (see (11)

and (16)) of the proposed method at the tth iteration, where ũt and υ̃t are the solutions of TV [10]. With

a positive scalar γ, according to proposition 2.4 [52], the reconstructed errors of MBTV-NLLM and TV [10]
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(a) (b) (c)

Figure 3: Illustration of the Lagrangian multiplier before and after denoising (block size 16 × 16): (a) Subrate = 1.0 (i.e., no

noise), (b) Subrate = 0.2 (before NLM filter), (c) Subrate = 0.2 (after NLM filter)

are

‖ut − û‖1 ≤
γ

β
‖υt − υ̂‖1 (17)

‖ũt − û‖1 ≤
γ

β
‖υ̃t − υ̂‖1 (18)

Here, υ̂ is the Lagrangian multiplier corresponding to the solution û. Hence, we can set up error bounds:

δ1 =
γ

β
‖υt − υ̂‖1 (19)

δ2 =
γ

β
‖υ̃t − υ̂‖1 (20)

Note that the solution υ̂ prefers to be a clean version (see Figure 3a). NLLM tries to reduce the noise in

υt by acquiring the NLM filter (i.e., see (16)). This implies that υt is closer to υ̂ than υ̃t is (i.e., compare

Figure 3b with Figure 3c), which can be represented as ‖υt − υ̂‖1 ≤ ‖υ̃t − υ̂‖1. Thus, we obtain

δ1 ≤ δ2 (21)

The above error coincides with recent reports [53], confirming that the spatial error is bounded by the gradient

error. Although the NLM filter provides nonlocal benefits, it still has difficulties in preserving many details in

images with low contrast. This drawback is caused by the fact that two very similar pixels on opposite sides

produce inaccurate weights for the NLM filter. As a result, some artifacts near edges cannot be sufficiently

mitigated without losing detailed information [54]. In this paper, additional processing to enrich the local

details through patch-based sparse representation is designed to solve the problem, as proposed in the next

sub-section.

3.3. Refinement for recovered images with patch-based sparse representation

Classical predetermined transforms, such as DCT or wavelet transforms, cannot always attain a sparse

representation of complex details. For example, sharp transitions and singularities in natural images are not

expressed well by DCT. In the same way, 2D wavelets might perform poorly for textured or smooth regions
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[20]. Recently, for image restoration applications such as denoising, inpainting, or deblurring, patch-based

sparse representation has been actively investigated to deal with the complex variations of natural images.

Suppose that ui, i = 1, 2, ..., Z, (where Z is the total number of patches) denotes an s × 1 column vector

representing the ith
√
s ×
√
s image patch extracted by a patch-extracting operator Ri through ui = Riu

from an image of size
√
N ×

√
N represented by an N column vector u. In this scenario, the image u is

synthesized as

u =

(
Z∑
i=1

RTi Ri

)−1 Z∑
i=1

RTi ui (22)

where (.)T is the regular transpose. Moreover, assume ui to be sparse over a dictionary Φi with its coefficient

vector αi (that is, ui = Φiαi). Φ and α denote the concatenation of dictionaries {Φi} and {αi}, respectively.

Then, u in (22) is further expressed in a patch-based sparse representation as

u = Φ ◦ α =

(
Z∑
i=1

RTi Ri

)−1 Z∑
i=1

RTi Φiαi (23)

The operator ◦ makes the patch-based sparse representation more compact [19]. Briefly, utilizing a patch-

based sparsifying transform to de-correlate the signal and noise in the transform domain is presented by the

five following basic steps [20, 21, 22]:

1. Group similar patches: use a nonlocal search to find patches that are similar to the reference patch and

stack them in a group.

2. Forward transform: apply a sparsifying transform (i.e., global or local sparsifying transforms) to each

group for transformed coefficients.

3. Thresholding process: decollate signal and noise by keeping only the significant coefficients. The

remaining coefficients are considered to be noise and are discarded. For the CS viewpoint, this step

can be referred to as K-sparse approximation [9].

4. Inverse transform: obtain the estimates for all grouped patches.

5. Weighting process: return the pixels of the patches to the original locations. The overlapping patches

are appropriately weighted according to the number of times each pixel repeats.

For the K-sparse approximation (Steps 2, 3, and 4), choosing a proper sparsifying basis will determine the

recovered image quality. The authors in [24] applied a global transform [20] that combined 2D wavelet

transform and 1D DCT transform for all grouped blocks. A predetermined global transform is advantageous

in terms of its simplicity; however, it cannot reflect the various sparsity levels of all groups. Therefore, a local

transform [21, 22] was calculated for each individual group to adaptively support the various local sparsity

levels. If the local sparsifying transform is poorly designed due to data heavily contaminated by noise, the

recovered images will have serious visual artifacts.

Another important quality issue is determining how to collect the proper groups. Related to the nonlocal

search discussed in [18, 55], patch-based sparse representation still faces some explicit challenges with two
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outright problems [55]: (i) for singular structures, it might fail to find similar patches, thereby producing

poor results; and (ii) due to noise, it may detect incorrect patches (i.e., selecting some patches that do not

actually belong to the same underlying structure). This can eventually cause over-smoothing. Below, we

show that the similarity between a recovered image and its original heavily depends on the variance of error.

Let us assume that the elements of the error vector (u− u∗) = [e1, e2, ..., eN ]T are independent and come

from a normal distribution with zero mean and variance σ2. Here, u∗ ∈ RN represents a restored version of

an original image u ∈ RN after performing patch-based sparse representation. Since |ei|, i = 1, ..., N, are also

independent and come from the half-normal distribution with mean σ
√

2/π and variance σ2(1− 2/π), a new

random variable X = (|e1|+ |e2|+ . . .+ |eN |)/N has mean and variance of

E[X] = σ

√
2

π
(24)

var[X] =

(
1− 2

π

)
σ2

N
(25)

Based on the Chebyshev inequality in probability, for a value ε > 0,

P {|X − E[X]| ≤ ε} ≥ 1− var [X]

ε2
(26)

Substituting (24) and (25) into (26), the probability that expresses the similarity between u and u∗ is

P

{
σ

√
2

π
− ε ≤ ‖u− u

∗‖1
N

≤ σ
√

2

π
+ ε

}
≥ 1−

(
1− 2

π

)
σ2

Nε2
(27)

With a sufficiently large image size (i.e., as N becomes large), the probability of similarity between u and u∗

in (27) approaches 1. The implication of this is twofold:

• First, a good patch-based sparse representation should produce less estimation error (i.e., σ is small).

• Second, as the noise becomes smaller, the patch-based sparse representation performs better.

The probability of the estimation error in (27) is important and suggests the idea of combining the local

and global sparsifying transforms. At the tth iteration, the recovered image ut is first updated by the five

aforementioned steps with a local sparsifying transform. The output of this stage is referred to as ũ, as shown

in Figure 4. Thanks to the local sparsifying transform, ũ has less noise and fewer artifacts than the input

image ut. Additionally, this stage generates a more desirable input version for the second stage, in which

we determine the sparsity levels of signals via a global sparsifying transform in order to produce the output

image ˜̃u. Our suggested design is described below.

Generally, improving the sparsity level of a signal via a proper transform in CS can be carried out using

[23, 24, 26, 27, 35, 36, 40]

argmin
α

‖α‖0 s.t. AΦ ◦ α = b (28)

The unconstrained problem of (28), according to the patch-based sparse representation, is formulated to a

more tractable optimization problem as

argmin
α

{
ρ

Z∑
i=1

‖αi‖1 +
1

2
‖b−AΦ ◦ α‖22

}
(29)
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Figure 4: Patch-based sparse representation in two stages

where ρ is a slack variable ensuring that (29) is equal to (28). We further note that (29) is a mixed `1 − `2
optimization problem that aims at minimizing the cost between the sparsifying coefficients of all of the patches

and compressive sensing. For a very simple encoder, the sparsifying transform is moved to the decoder [9],

which means that measurements are directly acquired in the spatial domain (i.e., Au = b). According to the

modified augmented Lagrangian approach in [56], which is a closed form of a sparsifying transform, (29) is

changed to:

argmin
u,α

{
ρ

Z∑
i=1

‖αi‖1 +
1

2
‖b−Au‖22 +

µ1

2
‖u− Φ ◦ α− λ1‖22

}
(30)

Here, µ1 is a positive penalty parameter. The scaled vector λ1 is then updated as

λt+1
1 = λt1 −

(
ut+1 − Φ ◦ αt+1

)
(31)

Using the splitting technique [46], we minimize (30) by alternatively solving the α and u sub-problems. More

clearly, α is solved by seeking sparsity levels with the five steps of patch-based sparse representation shown

in Figure 4. The u sub-problem is solved by gradient descent ut+1 = ut − ηd with an optimized step η, and

the direction d is calculated by the Barzilai−Borwein method [10, 16, 17]:

d = µ
(
ut − Φ ◦ αt − λt1

)
−AT

(
b−Aut

)
(32)

η = 〈d, d〉 / 〈d,Gd〉 ; G = ATA+ µI (33)

Here, I is an identity matrix. The combination of local and global sparsifying transforms (CST) and MBTV-

NLLM is referred to as MBTV-NLLM-CST. A summary of our proposed recovery method for the BCS

framework is depicted in Algorithm 2. Figure 5 verifies the effectiveness of the suggested design. More

clearly, MBTV-NLLM-CST (P1) visualizes the reduction in error variance by the first stage in Figure 4 (i.e.,

using a local sparsifying transform), while MBTV-NLLM-CST (P1+2) points out the noise reduction after the

two stages in Figure 4. The gap between the two graphs of MBTV-NLLM-CST (P1) and MBTV-NLLM-CST

(P1+2) indicates the gain from the additional global sparsifying transform. To better understand the nature

of this gain, Figure 5 also shows two extra graphs corresponding to MBTV-NLLM with a global sparsifying

transform (MBTV-NLLM-GST) and the one with a local sparsifying transform (MBTV-NLLM-LST) only.

We recall that the PSNR value is inversely proportional to the variation of error; thus, from Figure 5, we

can confirm that our proposed algorithms always converge to a feasible solution. This is valuable because

proving the convergence of a recovery algorithm that deploys a sparsifying transform is not trivial [35, 36].
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Figure 5: Error reduction over iterations for recovered image Leaves (subrate 0.2, and block size of 32 × 32)
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Figure 6: Proposed block DCVS scheme

More interestingly, the results also reveal that the proposed method is better than previous ones [35, 36],

which use either a global sparsifying transform or a local sparsifying transform.

4. Block distributed compressive video sensing

In this section, we extend the proposed recovery method to block DCVS, as shown in Figure 6. The main

advantage of this design over other existing ones, such as the design proposed in [37], is that it does not

require full Nyquist sampling.

4.1. Key frame recovery

A key frame is recovered using the proposed recovery scheme in Algorithm 2, which was developed for

still images. That is, an initial estimate is generated by MBTV-NLLM, and then a sparsifying transform is

applied to enrich the local details of the reconstructed key frame.

4.2. Side information generation

In distributed video decoding, side information (SI) plays an important role because inaccurate SI strongly

degrades the recovery quality of non-key frames. The frames that can be used for reconstructing a non-key

frame (denoted by uNK) as the side information are

SI-Frames =
{
u ∈ Gξ | ‖u− uNK‖2 ≤ τ2

}
(34)

14



Algorithm 2 Proposed recoveries with patch-based sparse representation

Input: Sensing matrix A, measurement vector b, Lagrangian multipliers, penalty parameters, and u0 = AT b

% Initial recovered image by using MBTV-NLLM

Call Algorithm 1

% Sparsity obtained by using global sparsifying transform, local sparsifying transform, or both of them

While stopping criterion unsatisfied do

If use global or local sparsifying transform do % MBTV-NLLM-GST or MBTV-NLLM-LST

Solve the α sub-problem by patch-based sparse representation with global or local sparisfying

transform

Else use both global & local sparsifying transforms do % MBTV-NLLM-CST

Solve the α sub-problem by patch-based sparse representation with local sparsifying transform

Solve the α sub-problem again by patch-based sparse representation with global sparsifying trans-

form

End if

Solve the u sub-problem by gradient descent method (11) with estimation of the gradient direction via

(32) and the optimal step size (33).

Update vector λ1 by (31)

End of While

Output: Final CS recovered image
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Here, Gξ denotes the ξth GOP in a video sequence, and the subscript NK indicates a non-key frame.

However, the definition in (34) is impractical when finding proper SI frames for DCVS simply because the

only information available at the decoder is the measurement data of non-key frames. According to the

Johnson−Lindenstrauss lemma [57], the selection in (34) can be equivalently written as

SI-Frames = {u ∈ Gξ | ‖bNK −ANKu‖2 ≤ τ2} (35)

In a GOP, (35) allows all of the non-key frames similar to the current non-key frame in the measurement

domain to be gathered. The selected SI frames are not much different from each other; thus, an initial

non-key frame is computed as their average. Otherwise, it is considered to be a frame with the minimum

value of ‖bNK −ANKu‖2. Our goal is to find the best initial non-key frame.

4.3. Recovery of non-key frames

The non-key frame is refined by its measurement vector, sparsifying transform, and the SI frame denoted

by uSI :

argmin
uNK ,α

{
ρ

Z∑
i=1

‖αi‖1 +
1

2
‖bNK −ANKΦ ◦ α‖22 +

1

2
‖uNK − uSI‖22

}
(36)

Similar to (30), (36) can also be minimized using the augmented Lagrangian approach [54]. This is converted

to

argmin
uNK ,α

{
ρ

Z∑
i=1

‖αi‖1 +
µ2

2
‖uNK − Φ ◦ α− λ2‖22 +

1

2
‖bNK −ANKuNK‖22 +

µ3

2
‖uNK − uSI − λ3‖22

}
(37)

Here, µ2 and µ3 are positive penalty parameters. At each iteration, the side information is updated, and then

the two sub-problems α and uNK are solved. Additionally, the two vectors that represent the sparsifying

transform and side information regularization (i.e., λ2 and λ3, respectively) are updated as λt+1
2

λt+1
3

 =

 λt2

λt3

−

 I

I

ut+1 − ut+1
SI

 (38)

In detail, the side information is first initialized by (35) and then updated at each iteration by a multi-

hypothesis (MH) prediction using Tikhonov regularization [39]. Additionally, the α sub-problem is solved

by the patch-based sparse representation with a combination of local and global sparsifying transforms, as

explained previously. Finally, the uNK sub-problem is solved by gradient descent ut+1
NK = utNK − ηd with the

optimal step size and direction estimated by the Barzilai−Borwein method [10, 16, 17]:

d =
{
µ1

(
utNK − Φ ◦ αt − λt2

)
+ µ2

(
utNK − uSI − λt3

)
−ATNK (bNK −ANKuNK)

}
(39)

η = 〈d, d〉 / 〈d,Gd〉 ;G = ATNKANK + (µ2 + µ3)I (40)

5. Experimental results

5.1. Test condition

The recovery performance of the proposed recovery schemes for the BCS framework is evaluated by

extensive experiments using both natural images and video. The parameters in the proposed method are
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experimentally chosen to achieve the best-reconstructed quality. The positive penalty parameters θ and

µ of MBTV-NLLM are equal to 128 and 32, respectively. The NLM filter has a patch size of 7 × 7 and

a search range of 13 × 13. The smoothing parameter is 0.19. The outer stopping criterion is defined as∣∣‖uk‖2 − ‖uk+1‖2
∣∣ /‖uk‖2 ≤ 10−5, while the inner stopping criterion is defined as

∣∣‖uk‖2 − ‖uk+1‖2
∣∣ /‖uk‖2 ≤

10−4. For patch-based sparse representations, the size of the groups is 36 × 60, and overlapping is used

between patches with an overlapping step size of 2 pixels. The training window for collecting groups is 30×30

in size. The penalty parameters µ1 and µ2 of the refinement problems are set to 0.0025, while µ3 is set to

0.055. Additionally, for video recovery, the scale vector λ1 is initially set to a zero vector, and the value of

τ2 is set to 2. The testing conditions required for the other recovery methods are established based on their

suggested recommendations [7, 8, 15, 34, 35, 36]. All of the experiments are performed by MatlabR2011a

running on a desktop Intel Corei3 RAM4G with the Microsoft Windows 7 operating system. For objective

analysis, we use the PSNR (in units of dB). Additionally, the Feature SIMilarity (FSIM) [58] is used for

visual quality evaluation. FSIM is in the range of [0, 1], where a value of 1 indicates the best quality.

5.2. Test results with still images

Eight well-known 256× 256 natural images are used, that is, Lena, Leaves, Monarch, Cameraman, House,

Boat, and Pepper, as shown in Figure 7. For fair comparisons with previous works [7, 8, 15, 34, 35, 36], the

natural images are divided into non-overlapping blocks (32×32 in size). They are compressively sensed by an

i.i.d. random Gaussian sensing matrix. Table 1 compares five well-known existing CS recovery methods (i.e.,

the tree-structured CS with variational Bayesian analysis using DWT (TSDWT) [7], the tree-structured CS

with variational Bayesian analysis using DCT (TSDCT) [8], SPLDDWT [15], the SPL using the contourlet

transform (SPLCT) [15], and the multi-hypothesis CS method (MH) [34]) with the proposed MBTV-NLLM

when patch-based sparse representation is not employed. It is worth emphasizing that, for this test case,

MH is by far the most state-of-the-art method. However, it turns out that the proposed MBTV-NLLM is

competitive with MH and much better than the others. In the best case, MBTV-NLLM surpasses TSDWT,

TSDCT, SPLCT, SPLDWT, and MH by 9.40 dB, 6.94 dB, 6.38 dB, 6.43 dB, and 2.19 dB, respectively. Thus,

it successfully demonstrates the effectiveness of the proposed schemes: MBTV and denoising of the Lagrange

multiplier. The last rows of Tables 1 and 2 show the gains achieved by the proposed MBTV-NLLM and

MBTV-NLLM-CST, respectively, with respect to each individual method.

Further effectiveness of the proposed patch-based sparse representation is demonstrated in Table 2. In

[35], the authors employed KSVD [19] to design a recovery method that used adaptively-learned sparsifying

(RALS), while the group sparse representation (GSR) [36] acquired the local sparsifying transform. GSR

is certainly better than RALS because of the local sparsifying basis for each group. In our three proposed

methods in Table 2, MBTV-NLLM-GST attains better reconstructed quality than RALS, while MBTV-

NLLM-LST and MBTV-NLLM-CST outperform GSR. This is because the better initial image created by

MBTV-NLLM has beneficial effects on grouping patches by facilitating a better non-local search and defining
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Figure 7: Original tested images

more appropriate sparsifying bases for each group (when using a local sparsifying transform). In particular,

the PSNR of MBTV-NLLM-CST is as much as 3.33 dB higher than GSR for the recovered image Leaves.

Furthermore, for a complex image with as much detail as is found in the image Lena, MBTV-NLLM-CST

is not as successful as MBTV-NLLM-GST at a subrate of 0.1. The recovered image lacks spatial detail at a

very low-subrate such that the combination of local and global sparsifying transforms might make it slightly

over-smoothed. The visual quality of the proposed schemes and previous work are compared in Figure 8

and Figure 9 using the image Monarch at subrate 0.1 and Cameraman at subrate 0.2. This test shows that,

while all conventional CS recovery schemes [7, 8, 15, 34, 35, 36] suffer from a large degree of high-frequency

artifacts, including the state-of-art method (GSR), the three proposed schemes seem to work much better.

However, the recovered image of MBTV-NLLM-GST still has some artifacts at a very low subrate (e.g., see

the image Monarch at subrate 0.1). This indicates that a global sparsifying transform cannot adequately

express the sparsifying levels for all groups.

Figure 10 quantifies the effectiveness of MBTV-NLLM-CST according to block sizes utilizing three images

(i.e., Lena, Leaves, and Cameraman). Increasing the size of the sensing matrix yields better quality in the

recovered images in terms of the PSNR. For example, at subrate 0.1 with a block size of 8× 8, the recovered

image Lena has a PSNR of 24.60 dB. However, this value can be increased up to 27.00 dB with a block size

of 64× 64. These results coincide with our analysis in Section II based on the RIP property.

5.3. Test results with video for block DCVS

The effectiveness of the proposed CS recovery design is also evaluated with the first 88 frames of three

QCIF video sequences: News, Mother-daughter, and Salesman [59]. The GOP is set to 2. Input frames

are split into non-overlapping blocks (16 × 16 in size), each of which is subject to BCS by an i.i.d. random

Gaussian sensing matrix. To achieve better quality, key frames are sensed with a subrate of 0.7, while non-key

frames are sensed by a subrate ranging from 0.1 to 0.7. Figure 11 shows the improvements of the reconstructed

key frames of the proposed methods compared with MC-BCS-SPL and MH-BCS-SPL. All three proposed

recovery schemes show far better visual quality than the previous block DCVS in [38, 39]. On average, over
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the three tested video sequences, MBTV-NLLM-CST shows 8.45 dB and 7.84 dB gains over MC-BCS-SPL

and MH-BCS-SPL, respectively.

The improvements of non-key frames for various block DCVS are shown in Figure 12. Due to the

findings that 1) TV can preserve edge objects, 2) the nonlocal Lagrangian multiplier can reduce staircasing

artifacts, and 3) the patch-based sparsifying transforms can enrich detail information, our proposed CS

recovery schemes also produce far better PSNR values. Compared with MC-BCS-SPL, MBTV-NLLM-CST

demonstrates gains between 2.31 dB and 8.36 dB depending on the subrate. In the best case, our recovery

scheme is better by an average of 8.66 dB compared to MC-BCS-SPL over 44 non-key frames.

Moreover, the visual quality of the first non-key frame of the News sequence is illustrated in Figure 13.

Because we utilized temporal redundancy over the frames, detailed information could be preserved for all

block DCVS schemes. The high values of FSIM, even at a subrate of 0.1, demonstrate how crucial it is to

exploit the correlation of frames in compressive video sensing. However, MC-BCS-SPL [38] and MH-BCS-

SPL [39] still suffer from high-frequency oscillatory artifacts. Meanwhile, the proposed schemes no longer

appear to have artifacts (i.e., the FSIM values are very close to 1).

5.4. Computational complexity

Excluding patch-based sparse representation, the main computational complexity of the proposed MBTV-

NLLM comes from the high cost of the NLM filter. More specifically, if the search range and size of the

similarity patches of the NLM filter are [−S, S]2 and (2B + 1)(2B + 1), respectively, then, for an image of size
√
N ×

√
N , the computational complexity of this filter is O(N(2S + 1)2(2B + 1)2). For natural images that

are 256× 256 in size, with a subrate of 0.1, MBTV-NLLM takes around 1 min. to recover in our simulation.

This is comparable to other methods that also do not use patch-based sparsifying transforms. That is, with

the image Leaves at a subrate of 0.1, MBTV-NLLM needs 63 s, MH takes 40 s, and SPLDDWT consumes

44 s. Alternatively, TSDCT requires much more decoding time than the others, requiring about 10 min. to

recover.

Patch-based sparse representation acts as a computational bottle-neck. For a patch size of (2B+1)(2B+1),

search range of [−S, S]2, group size of (2B+1)2F (where F is the number of similar patches in a group), and two

constant values k1 and k2, the patch-based sparse representation using a local sparsifying transform demands

a computational complexity of O
(
N(k1(2B + 1)4F + k2F

3 + (2S + 1)2(2B + 1)2)
)
. In this way, MBTV-NLLM-

CST is more complex due to the second stage containing the global sparsifying transform. Subsequently, for

recovery of a QCIF video frame using MBTV-NLLM-CST, a key frame demands around 3 min., and a non-key

frame requires 40 s. Therefore, complexity optimization of patch-based sparse representation is an important

task for future works. Specifically, to reduce complexity, we may be able to integrate our reconstructed

algorithms with a robust sensing matrix such as Gaussian regression-based [31] or multi-scale-based sensing

matrices [32].
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6. Conclusion

This paper proposed recovery schemes for BCS of still images and video that can recover pictures with

high-quality performance. For compressive imaging, the modified augmented Lagrangian total variation with

a multi-block gradient process and nonlocal Lagrangian multiplier are used to generate an initial recovered

image. Subsequently, the patch-based sparse representation enhances the local detailed information. Our

design is also easily extendible to DCVS. More specifically, key frames are reconstructed to have improved

quality and used to create initial versions of non-key frames. Subsequently, non-key frames are refined by

patch-based sparsifying transform-aided side information regularization. Our experimental results demon-

strated the improvements made by the proposed recovery schemes compared to representative state-of-the-art

algorithms for both natural images and video.
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Table 1: Performance of various CS recoveries for BCS framework without a patch-based sparse representation. (Unit of PSNR

[dB]; ∗ denotes the proposed methods)

Image Subrate
TSDWT[7] TSDCT[8] SPLCT[15] SPLDDWT[15] MH[34] MBTV-NLLM*

PSNR FSIM PSNR FSIM PSNR FSIM PSNR FSIM PSNR FSIM PSNR FSIM

Lena

0.1 22.48 0.740 22.18 0.767 24.76 0.841 25.31 0.856 26.11 0.889 26.62 0.862

0.2 25.18 0.839 26.57 0.879 27.48 0.894 28.11 0.906 29.71 0.933 29.31 0.912

0.3 27.05 0.882 28.73 0.918 29.53 0.924 30.16 0.933 31.26 0.948 31.29 0.941

0.4 28.50 0.908 30.35 0.940 31.35 0.945 31.98 0.952 33.76 0.966 33.30 0.958

Leaves

0.1 15.98 0.589 17.06 0.620 18.56 0.680 18.66 0.685 20.68 0.761 21.11 0.825

0.2 18.46 0.694 20.68 0.739 21.31 0.758 21.37 0.761 24.81 0.850 26.13 0.910

0.3 20.51 0.772 23.42 0.807 23.31 0.805 23.30 0.805 27.65 0.898 29.07 0.941

0.4 22.29 0.827 25.57 0.858 25.31 0.847 25.26 0.847 29.87 0.925 31.69 0.959

Monarch

0.1 18.92 0.664 19.71 0.690 21.57 0.772 21.80 0.785 23.68 0.803 24.54 0.853

0.2 21.50 0.759 23.33 0.782 24.71 0.832 25.26 0.850 27.23 0.869 28.72 0.915

0.3 23.76 0.818 25.70 0.837 27.10 0.870 27.76 0.885 29.52 0.908 31.50 0.944

0.4 25.90 0.868 27.68 0.875 29.05 0.898 29.81 0.912 31.28 0.928 33.47 0.959

Cameraman

0.1 20.36 0.685 20.45 0.683 22.12 0.760 21.64 0.762 22.05 0.775 23.68 0.812

0.2 22.22 0.763 23.05 0.778 24.83 0.825 24.79 0.838 25.41 0.843 26.68 0.875

0.3 24.36 0.825 24.71 0.825 26.51 0.863 27.02 0.878 28.32 0.898 28.44 0.912

0.4 25.97 0.863 26.60 0.869 28.41 0.894 28.99 0.909 29.81 0.918 30.38 0.937

House

0.1 23.91 0.719 24.75 0.767 26.69 0.836 26.95 0.846 30.07 0.895 30.47 0.877

0.2 27.20 0.837 29.23 0.871 29.95 0.894 30.56 0.902 33.73 0.938 33.51 0.920

0.3 29.64 0.884 32.03 0.912 32.34 0.926 32.83 0.931 35.62 0.956 35.58 0.945

0.4 32.30 0.920 34.09 0.938 34.18 0.947 34.67 0.949 37.20 0.967 36.98 0.958

Parrot

0.1 21.93 0.755 22.58 0.830 23.26 0.865 23.32 0.876 24.29 0.887 25.15 0.880

0.2 24.25 0.849 25.58 0.895 26.11 0.909 26.36 0.918 27.92 0.928 27.91 0.922

0.3 25.54 0.890 27.48 0.926 28.29 0.935 28.63 0.943 30.79 0.952 30.33 0.942

0.4 27.11 0.918 28.91 0.942 30.20 0.952 30.92 0.958 32.54 0.964 32.92 0.957

Boat

0.1 21.78 0.679 19.82 0.722 24.22 0.799 24.52 0.802 26.12 0.852 26.76 0.844

0.2 24.75 0.800 26.47 0.848 26.94 0.864 27.08 0.866 30.17 0.920 30.06 0.913

0.3 26.57 0.854 28.84 0.900 29.05 0.903 28.97 0.900 32.42 0.944 32.54 0.943

0.4 28.73 0.901 31.44 0.936 30.88 0.929 30.61 0.925 34.14 0.960 34.72 0.963

Pepper

0.1 20.37 0.695 21.02 0.739 23.67 0.826 24.37 0.838 25.78 0.859 25.87 0.859

0.2 22.50 0.785 25.00 0.836 27.03 0.883 27.63 0.890 29.32 0.910 30.28 0.921

0.3 26.20 0.870 28.51 0.901 29.17 0.910 29.82 0.918 31.20 0.933 32.75 0.947

0.4 29.49 0.912 30.98 0.931 30.98 0.932 31.72 0.939 32.91 0.950 34.62 0.962

Average 24.24 0.805 25.70 0.836 26.84 0.866 27.19 0.874 29.23 0.904 29.89 0.915

Gain by MBTV-NLLM∗ 5.65 0.110 4.19 0.079 3.05 0.049 2.70 0.041 0.66 0.011 - -
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Table 2: Performance of various CS recoveries for BCS framework with a patch-based sparse representation. (Unit of PSNR

[dB]; ∗ denotes the proposed methods)

Image Subrate
RALS[35] GSR[36] MBTV-NLLM

-GST∗

MBTV-NLLM

-LST∗

MBTV-NLLM

-CST∗

PSNR FSIM PSNR FSIM PSNR FSIM PSNR FSIM PSNR FSIM

Lena

0.1 27.07 0.899 27.57 0.915 27.63 0.914 28.25 0.915 28.02 0.914

0.2 30.49 0.943 30.88 0.952 30.98 0.951 31.57 0.952 31.66 0.954

0.3 33.17 0.966 33.96 0.971 33.51 0.969 34.13 0.970 34.51 0.972

0.4 35.50 0.978 36.46 0.981 35.90 0.979 36.21 0.980 36.71 0.981

Leaves

0.1 21.55 0.801 23.22 0.876 23.69 0.890 25.68 0.914 26.55 0.926

0.2 27.13 0.909 30.54 0.956 29.48 0.950 31.23 0.961 32.21 0.967

0.3 31.20 0.951 34.40 0.976 33.32 0.972 34.81 0.978 36.13 0.983

0.4 34.69 0.974 37.63 0.987 36.19 0.983 37.69 0.987 39.00 0.990

Monarch

0.1 24.42 0.827 25.28 0.867 25.88 0.882 27.73 0.912 28.08 0.915

0.2 28.36 0.892 30.77 0.941 30.27 0.931 31.98 0.953 32.80 0.956

0.3 31.60 0.933 34.25 0.964 33.34 0.956 35.04 0.971 35.99 0.974

0.4 34.39 0.957 36.86 0.976 35.58 0.969 37.35 0.980 38.32 0.982

Cameraman

0.1 22.93 0.799 22.90 0.815 24.71 0.849 25.58 0.860 25.38 0.853

0.2 26.59 0.875 26.76 0.889 28.17 0.912 28.74 0.915 28.78 0.915

0.3 29.26 0.922 28.97 0.928 30.60 0.938 30.90 0.940 31.22 0.944

0.4 31.19 0.945 31.25 0.953 32.39 0.956 32.42 0.956 32.85 0.961

House

0.1 32.10 0.911 32.94 0.920 33.31 0.928 33.17 0.927 33.88 0.930

0.2 36.08 0.955 37.37 0.964 36.43 0.959 36.37 0.958 37.19 0.963

0.3 38.37 0.973 39.41 0.978 38.81 0.975 38.41 0.974 39.20 0.977

0.4 40.17 0.982 40.90 0.984 40.32 0.982 40.03 0.982 40.88 0.985

Parrot

0.1 25.33 0.908 25.98 0.923 26.28 0.919 27.41 0.921 27.47 0.924

0.2 29.34 0.944 30.76 0.952 29.54 0.949 31.75 0.953 31.15 0.953

0.3 32.49 0.963 34.17 0.968 32.39 0.963 34.15 0.966 34.15 0.967

0.4 34.78 0.974 36.61 0.978 34.99 0.975 36.34 0.976 36.84 0.978

Boat

0.1 28.01 0.890 28.28 0.901 28.69 0.901 29.11 0.908 29.18 0.907

0.2 33.01 0.952 33.69 0.958 33.34 0.956 33.31 0.955 34.02 0.960

0.3 36.29 0.973 36.67 0.975 36.14 0.973 36.00 0.972 36.90 0.978

0.4 38.89 0.984 39.26 0.985 38.48 0.983 38.50 0.983 38.94 0.985

Pepper

0.1 27.54 0.892 28.18 0.908 28.91 0.913 28.74 0.911 29.44 0.917

0.2 31.64 0.941 32.59 0.951 32.73 0.953 32.56 0.952 33.28 0.955

0.3 34.39 0.963 35.07 0.966 35.12 0.967 34.81 0.965 35.68 0.969

0.4 36.52 0.974 37.00 0.976 37.03 0.978 36.56 0.975 37.42 0.978

Average 31.39 0.930 32.52 0.945 32.32 0.946 33.02 0.951 33.56 0.954

Gain by MBTV-NLLM-CST∗ 2.17 0.024 1.04 0.009 1.24 0.008 0.54 0.003 - -
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(a) Ground Truth (b) TSDWT[7] (c) TSDCT[8]

(d) SPLCT[15] (e) SPLDDWT[15] (f) MH[34]

(g) MBTV-NLLM∗ (h) RALS[35] (i) GSR[36]

(j) MBTV-NLLM-GST* (k) MBTV-NLLM-LST* (l) MBTV-NLLM-CST*

Figure 8: Visual quality comparison of various CS recovery methods for BCS framework (subrate 0.1, block-size 32×32, *denotes

the proposed methods)
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(a) Ground Truth (b) TSDWT[7] (c) TSDCT[8]

(d) SPLCT[15] (e) SPLDDWT[15] (f) MH[34]

(g) MBTV-NLLM∗ (h) RALS[35] (i) GSR[36]

(j) MBTV-NLLM-GST* (k) MBTV-NLLM-LST* (l) MBTV-NLLM-CST*

Figure 9: Visual quality of various CS recoveries for BCS framework (subrate 0.2, block-size 32 × 32, *denotes the proposed

methods)
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(a) Lena (b) Leaves (c) Cameraman

Figure 10: PSNR versus various block size (8 × 8, 16 × 16, 32 × 32, and 64 × 64)

(a) News (b) Mother-daughter (c) Salesman

Figure 11: Objective quality of key-frames (block-size 16 × 16, subrate 0.7)

(a) News (b) Mother-daughter (c) Salesman

Figure 12: Objective quality of non-key frames (block-size 16 × 16)
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(a) (b) (c)

(d) (e) (f)

Figure 13: Visual quality and FSIM value of the first non-key frame of sequence News (subrate 0.1, block size 16× 16, ∗denotes

the proposed methods: (a) Ground Truth, (b) MC-BCS-SPL [38] FSIM = 0.950, (c) MH-BCS-SPL [39] FSIM = 0.965, (d)

MBTV-NLLM-GST∗ FSIM = 0.993 , (e) MBTV-NLLM-LST∗ FSIM = 0.993, (f) MBTV-NLLM-CST∗ FSIM = 0.994
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