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Semantic-Aware Blind Image Quality Assessment

Ernestasia Siahaan, Alan Hanjalic, Judith A. Redi

Delft University of Technology, Delft, The Netherlands

Abstract

Many studies have indicated that predicting users’ perception of visual qual-
ity depends on various factors other than artifact visibility alone, such as
viewing environment, social context, or user personality. Exploiting infor-
mation on these factors, when applicable, can improve users’ quality of expe-
rience while saving resources. In this paper, we improve the performance of
existing no-reference image quality metrics (NR-IQM) using image semantic
information (scene and object categories), building on our previous findings
that image scene and object categories influence user judgment of visual qual-
ity. We show that adding scene category features, object category features, or
the combination of both to perceptual quality features results in significantly
higher correlation with user judgment of visual quality. We also contribute a
new publicly available image quality dataset which provides subjective scores
on images that cover a wide range of scene and object category evenly. As
most public image quality datasets so far span limited semantic categories,
this new dataset opens new possibilities to further explore image semantics
and quality of experience.

Keywords: Blind image quality assessment, No-reference image quality
metrics (NR-IQM), Quality of experience (QoE), Image semantics,
Subjective quality datasets

1. Introduction1

A recent report on viewer experience by Conviva shows that users are2

becoming more and more demanding of the quality of media (images, videos)3

delivered to them: 75% of users will give a sub-par media experience less than4

5 minutes before abandoning it [1]. In this scenario, mechanisms are needed5

that can control and adaptively optimize the quality of the delivered media,6
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depending on the current user perception. Such optimization is only possible7

if guided by an unobtrusive, automatic measure of the perceived Quality of8

Experience (QoE) [2] of users.9

Algorithms that predict perceived quality from an analysis of the en-10

coded or decoded bitstream of the media content are often referred to as Im-11

age Quality Metrics (IQM), and are typically categorized into full-reference12

(FR) or no-reference (NR) methods [3]. FR methods predict quality by com-13

paring (features of) an impaired image with its original, pristine version. NR14

methods, on the other hand, do not rely on the availability of such refer-15

ence images, and are therefore preferred for real time and adaptive control16

of visual quality.17

NR methods often approach the problem of predicting quality by model-18

ing how the human visual system (HVS) responds to impairments in images19

or videos [3, 4]. This approach implies that users’ QoE depends mostly on20

the visibility of impairments, and that a measure of visual sensitivity alone21

is enough to predict visual quality. In this paper, we challenge this view,22

and we prove empirically that semantic content, besides impairment visibil-23

ity, plays an important role in determining the perceived quality of images.24

Based on this result, we propose a new paradigm for IQM which consid-25

ers semantic content information, on top of impairment visibility, to more26

accurately estimate perceived image quality.27

The potential to exploit image semantics in QoE assessment has already28

been recognized in previous research that investigated the influence of various29

factors, besides impairment visibility, on the formation of QoE judgments.30

Context and user influencing factors [2, 5, 6, 7, 8], such as physical environ-31

ment, task, affective state of the user and demographics, have been shown32

to be strong predictors for QoE, to the point that they could be used to33

automatically assess the perceived quality of individual (rather than aver-34

age) users [6]. A main drawback of this approach is that information about35

context of media consumption or preferences and personality of the user may36

prove difficult to collect unobtrusively, or may require specific physical in-37

frastructure (e.g., cameras) or data structure (e.g., preference records). As a38

result, albeit promising, this approach has limited applicability to date.39

A separate but related trend has instead looked into incorporating in im-40

age quality metrics higher level features of the HVS that enable cognition,41

such as visual attention [9]. This has been shown to bring significant accu-42

racy improvements without an excessive computational and infrastructural43

overhead, as all information can be worked out from the (decoded) bitstream.44
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The first steps in this direction have investigated the role of visual attention45

in quality assessment [9]. In [10], it was shown that impairments located in46

salient or visually important areas of images are perceived as more annoying47

by users. Because those areas are more likely to attract visual attention,48

the impairments they present will be more visible and therefore more an-49

noying. Based on this rationale, a number of studies have confirmed that,50

by adding saliency and/or visual importance information to quality metrics,51

their accuracy can be significantly improved [11, 12, 13].52

The study in [14] brought this concept further by identifying visually im-53

portant regions with those having richer semantics, and incorporating a mea-54

sure of semantic obviousness into image quality metrics. The study reasoned55

that regions presenting clear semantic information would be more sensitive to56

the presence of impairments, which may be judged more annoying by users as57

they hinder the content recognition. The authors therefore proposed to ex-58

tract the object-like regions, and weight them based on how likely the region59

is actually containing an object. They would then extract local descriptors60

for evaluating quality from the top-N regions.61

In this work, we look deeper at the role that semantics plays in image62

quality assessment. Our rationale relies on the widely accepted definition of63

vision by Marr [15]: vision is the process that allows to know what is where64

by looking. As such, vision involves two mechanisms: the filtering and orga-65

nizing of visual stimuli (perception), and the understanding and interpreting66

of these stimuli through recognition of their content [16]. The earliest form67

of interpretation of visual content is semantic categorization, which consists68

of recognizing (associating a semantic category to) every element in the field69

of view (e.g., ”man” or ”bench” in the top-left picture in Figure 1). In vi-70

sion studies, semantics refers to meaningful entities that people recognize as71

content of an image. These entities are usually categorized based on scenes72

(e.g., landscape, cityscape, indoor, outdoor), or objects (e.g., chair, table,73

person, face).74

It is known that early categorization involves basic and at most superor-75

dinate semantic categories [17, 18], which are resolved within the first 500 ms76

of vision [19]. Most of the information is actually already processed within77

the first fixation (∼100 ms, [20]). Such a rapid response is motivated by78

evolutionary mechanisms, and is at the basis of every other cognitive pro-79

cess related to vision. When observing impaired images, however, semantic80

categories are more difficult to be resolved [21]. The HVS needs to rely on81

context (i.e. other elements in the visual field) to determine the semantic82
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category of, e.g., blurred objects. This extra step (1) slows down the recog-83

nition process, and (2) reduces the confidence on the estimated semantic84

category. In turn, this may compromise later cognitive processes, such as85

task performance or decision making. Hence, visual annoyance may be a86

reaction to this hindrance, and may depend on the entity of the hindrance87

as well as on the semantic category of the content to be recognized. Some88

categories may be more urgent to be recognized, e.g. because of evolutionary89

reasons (it is known, for example, that human faces and outdoor scenes are90

recognized faster [20]). Images representing these categories may tolerate91

a different amount of impairment than others, thereby influencing the final92

quality assessment of the user.93

It is important to remark here that the influence of semantic categories94

on visual quality should not be confused with the perception of utility or95

usefulness of an image [22, 23]. Image utility is defined as the image usefulness96

as a surrogate for its reference, and so relates with the amount of information97

that a user can still draw from an image despite any impairment present. The98

idea that image usefulness can influence image quality perception has been99

exploited in some work on no-reference image quality assessment such as in100

[14], although there are studies that argue the relationship between utility101

and quality perception is not straightforward [22]. Instead of looking at the102

usefulness of an image content, we look at users’ internal bias toward the103

content category, and show in this paper the difference between the two and104

their respective relationship with quality perception.105

In our previous research, we conducted a psychophysical experiment to106

verify whether the semantic content of an image (i.e., its scene and/or object107

content category) influences users’ perception of quality [24]. Our findings108

suggest that this is the case. Using JPEG impaired images, we found that109

users are more critical of image quality for certain semantic categories than110

others. The semantic categories we used in our study are indoor, outdoor111

natural and outdoor manmade for scene categories, and inanimate and ani-112

mate for object categories. In [25], we then showed initial results that adding113

object category features to perceptual quality features significantly improves114

the performance of existing no-reference image quality metrics (NR-IQMs) on115

two well-known image quality datasets. Based on these studies, in this work116

we look into improving NR-IQMs by injecting semantic content information117

in their computation.118

In this paper, we extend our previous work to include (1) different types of119

impairments and (2) scene category information in NR-IQM. As a first step,120
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we collect subjective data of image quality for a set of images showing high121

variance in semantic content. Having verified the validity of the collected122

data, we then use it as ground truth to train our semantic-aware blind image123

quality metric. The latter is based on the joint usage of perceptual quality124

features (either from Natural Scene statistics [26], or directly learned from125

images [27]), and semantic category features. We then show the added value126

of semantic information in image quality assessment, and finally propose an127

analysis of the interplay between semantics, visual quality and visual utility.128

Our contribution through this paper can be summarized as follows.129

1. We introduce a new image quality dataset comprising a wide range130

of semantic categories. In the field of image quality research, several131

publicly available datasets exist. However, most (if not all) of these132

datasets do not cover the different semantic categories extensively or133

uniformly. To open more possibilities of research on visual quality and134

semantics, we set up an image quality dataset which spans a wider and135

more uniform range of semantic categories than the existing datasets.136

2. We show how using scene and object information in NR-IQMs improves137

their performance across impairments and image quality datasets. We138

perform experiments to analyze how different types of semantic cat-139

egory features would be beneficial to use in improving NR-IQM. We140

also compare the performance of adding semantic features to improve141

NR-IQMs on different impairments and image quality datasets.142

This paper is organized as follows. In the following section, we review ex-143

isting work on blind image quality assessment, creation of subjective image144

quality datasets, and automatic methods for categorizing images semanti-145

cally. In Section 3, we introduce our new dataset, SA-IQ, detailing the data146

collection, reliability and analysis to prove that semantic categories do in-147

fluence image quality perception. In Section 4, we describe the experiments148

proposing our semantic-aware objective metrics, based on the addition of se-149

mantic features to the perceptual quality ones. In addition, in Section 5, we150

compare the relationship of semantic categories with image utility and image151

quality. We conclude our paper in Section 6.152

2. Related Work153

2.1. No-Reference Image Quality Assessment154

Blind or No-reference image quality metrics aim at predicting perceived155

image quality without the use of a reference image. Many algorithms have156
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been developed to perform this task, and usually fall into one of two cat-157

egories: impairment-specific or general purpose NR-IQMs. As the name158

suggests, impairment-specific NR-IQMs rely on prior knowledge of the type159

of impairment present in the test image. Targeting one type of impairment160

at a time, these metrics can exploit the characteristics of the particular im-161

pairment and how the HVS perceives it to design features that convey in-162

formation on the strength and annoyance of such impairments. Examples of163

these metrics include those for assessing blockiness in images [28, 29], blur164

[30, 7], and ringing [31].165

General purpose NR-IQMs deal with multiple impairment types, and do166

not rely on prior information on the type of impairment present in a test167

image. This of course allows for a wider applicability of the metrics, but also168

requires a more complex design of the quality assessment problem. To de-169

velop these metrics, usually a set of features is selected that can discriminate170

between different impairment types and strengths, followed by a mapping171

(pooling) of those features into a range of quality scores that matches human172

perception as closely as possible [32].173

Handcrafted features are often used to develop general purpose NR-IQMs,174

one of the most common being natural scene statistics (NSS), although other175

types of features have also been proposed, such as the recent free-energy176

based features [33, 34]. NSS assume that pristine natural images have reg-177

ular statistical properties which are disrupted when the image is impaired.178

Capturing this disruption can reveal the extent to which impairments are179

visible (and thus annoying) in the image. To do so, typically the image is180

transformed to a domain (e.g. DCT or wavelet), that better captures fre-181

quency or spatial changes due to impairments. The transform coefficients182

are then fit to a predefined distribution, and the fitting coefficients are taken183

as the NSS features.184

Different NSS-based NR-IQMs have used various image representations185

to extract image statistical properties. In [26], for example, the NSS features186

were computed from the subband coefficients of an image’s wavelet transform.187

Beside fitting a generalized Gaussian distribution to the subband coefficients,188

some correlation measures on the coefficients were also used in extracting189

the features. The study aimed at predicting the quality of images impaired190

by either JPEG or JPEG 2000 compression, white noise, Gaussian blur, or191

a Rayleigh fading channel. Saad et al. [35] computed NSS features with a192

similar procedure, but in the DCT domain. Mittal et al. [36] worked out NSS193

features in the spatial domain instead. They fitted a generalized Gaussian194
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distribution on the image’s normalized luminance values and their pairwise195

products along different orientations. In this case, the parameters of the196

fit were used directly as features. Another study in [37] took the Gradient197

Map (GM) of an image, and filtered it using Laplacian of Gaussian (LOG)198

filters. The GM and LOG channels of the image were then used to compute199

statistical features for the quality prediction task.200

Lately, the IQM community has also picked up on the tendency of using201

learned, rather than handcrafted (e.g., NSS and free energy-based), features.202

A popular approach is to first learn (in an unsupervised way) a dictionary203

or codebook of image descriptors from a set of images. Using another set of204

images, the codebook will then be used as the basis for extracting features205

to learn a prediction model. To extract these features, an encoding step is206

performed on the image descriptors, followed by a pooling step. The study in207

[38] used this approach. The codebook was built based on normalized image208

patches and K-means clustering. To extract features for training and testing209

the model, a soft-assignment encoding was then performed, followed by max-210

pooling on the training and testing images. In [39], image patches underwent211

Gabor filtering before being used as descriptors to build the codebook. Hard212

assignment encoding was then performed, after which average pooling was213

used to extract the image features. To limit the computational burden yield214

by the large size of codebooks, a more recent study [27] proposed using a215

small sized codebook, built using K-means clustering based on normalized216

image patches. Smaller sized codebook usually decreases the prediction per-217

formance, and so to compensate for that, the study proposes to calculate the218

differences of high order statistics (mean, covariance and co-skewness) be-219

tween the image patches and corresponding clusters as additional features.220

Finally, the research on NR-IQMs has also recently started looking at221

features learned through convolutional neural networks (CNNs). CNNs [40]222

are multilayer neural networks which contain at least one convolutional layer.223

The network structure already includes parts that extract features from input224

images and a regression part to output a prediction for the corresponding225

input. The training process of this network not only optimizes the prediction226

model, but also the layers responsible for extracting representative features227

for the problem at hand. The study in [41] is an example of NR-IQMs using228

this approach, which brings promising results. However, one should be aware229

that, when learning features especially through CNNs, their interpretability230

is mostly lost. The high dimensionality of learnable CNN parameters also231

makes those features to be prone to overfitting of the training data, which232
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Table 1: Properties of Several Publicly Available Image Quality Datasets

Dataset
Number

of Images

Number of

Reference

Images

Impairment

Types *

Levels

Semantic Categories

(of Reference Images)

Scene Object

TID2013 [42] 3000 25 24 * 5

21 Outdoors

3 Indoors

1 N/A

7 Animate

14 Inanimate

1 N/A

CSIQ [43] 900 30 6 * 5
30 Outdoors

0 Indoors

13 Animate

17 Inanimate

LIVE [44] 982 29 5 * 6-8
28 Outdoors

1 Indoor

8 Animate

20 Inanimate

MMSPG HDR

with JPEG XT

[45]

240 20 3 * 4

12 Outdoors

6 Indoors

2 N/A

4 Animate

14 Inanimate

2 N/A

IRCCyN-IVC

on Toyama [46]
224 14 2 * 7

14 Outdoors

0 Indoors

3 Animate

11 Inanimate

UFRJ Blurred

Image DS [47]
585 N/A N/A

412 Outdoor

173 Indoors

198 Animate

387 Inanimate

ChallengeDB

[48]
1163 N/A N/A

759 Outdoor

403 Indoors

321 Animate

842 Inanimate

SA-IQ 474 79 2 * 3
39 Outdoors

40 Indoors

25 Animate

54 Inanimate

is especially a risk when the size of data is small, as in the case of Image233

Quality Assessment databases (see more details in sec. 2.2).234

The NR-IQMs described earlier, which are based on features representing235

perceptual changes in an image due to the presence of impairments, have236

higher interpretability and can still obtain acceptable accuracy. In this paper,237

we aim at improving accuracy while maintaining interpretability. Therefore,238

we focus on this category of metrics and on enabling them to incorporate239

features that account for semantic content understanding.240

2.2. Subjective Image Quality Datasets241

Over the years, the IQM community has developed a number of datasets242

for metric training and benchmarking. Such datasets usually consist of a set243

of reference (pristine) images, and a larger set of impaired images derived244

from the pristine ones. Impaired images are typically obtained by injecting245

different types of impairments (e.g., JPEG compression or blur) at different246

levels of strength. Each image is then associated with a subjective quality247

8



score, usually obtained from a subjective study conducted with a number of248

users. Individual user judgments of Quality are averaged per image across249

users into Mean Opinion Scores, which represent the quantity to be predicted250

by Image Quality Metrics.251

Most Subjective Image Quality datasets are structured to have a large252

variance in terms of types and level of impairments, as well as perceptual253

characteristics of the reference images, such as Spatial Information or Color-254

fulness [49]. On the other hand, richness in semantic content of the reference255

images is often disregarded, nor information is provided on categories of256

objects and scenes represented there. This limits the understanding and as-257

sessment of image quality as it excludes users’ higher-level interpretation of258

image content in their evaluation of quality. Table 1 gives an overview of the259

semantic diversity covered by several well-known and publicly available im-260

age datasets. The semantic categorization follows that proposed by Li et al.261

in their work related to pre-attentional image content recognition [20] (note262

that these categories were not provided with the datasets and were manually263

annotated by the authors of this paper).264

From the table, we can see that most datasets do not have a balanced265

number of scene or object categories to allow for further investigation of the266

relationship between semantic categories and image quality. Two datasets267

are quite diverse in their semantic content: the UFRJ Blurred Image dataset268

[47], and the Wild Image Quality Challenge dataset [48]. On the other hand,269

these datasets lack structured information on the impairment types and levels270

of impairments present in the images. The images were collected ”in the271

wild”, meaning that they were collected in typical real-world settings with272

a complex mixture of multiple impairments, instead of being constructed in273

the lab by creating well-modeled impairments on pristine reference images.274

These datasets were created to simulate the way impairments typically275

appear in consumer images. An impaired image in these datasets thus does276

not correspond to any reference image, and there is no clear framework to277

refer to in order to obtain information about how the impairments were added278

to the images. This makes it difficult to systematically look into the interplay279

between image semantics, impairments, and perceived quality.280

In this work we propose a new dataset rich in semantic content diversity.281

We look at 79 reference images with contents covering different object and282

scene categories. These images are further impaired to obtain blur and JPEG283

compression artifacts at different levels. The proposed dataset SA-IQ can be284

seen as the last entry in Table 1, and we explain details of how the dataset285
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was constructed in Section 3.286

2.3. Image Semantics Recognition287

One of the most challenging problem in the field of computer vision has288

long been that of recognizing the semantic content of an image. A lot of289

effort has been put by the research community to improve image scene and290

object recognition performances: creating larger datasets [50], designing bet-291

ter features, and training more robust machines [51]. In the past five years,292

wider availability of high-performance computation machines and labelled293

data has allowed for the rise of Convolutional Neural Networks (CNNs) [40],294

and resulted in vast progress in the field of image semantic recognition.295

One of the pioneering attempts of deploying CNNs for object recogni-296

tion was AlexNet by Krizhevsky et al. [52]. Based on five convolutional297

and three fully connected layers, the AlexNet processes 224x224 images to298

map them into a 1000-dimensional vector, the elements of which represent299

the probability values that the input image belongs to any of a thousand300

predefined object categories. Since AlexNet, current state-of-the-art systems301

include VGG [53], and GoogleNet [54]. For a more comprehensive overview302

of state-of-the-art systems, readers are referred to [51].303

Along with object recognition, scene recognition has also had its share of304

rapid development with the advent of CNNs. One recently proposed trained305

CNN for scene recognition is the Places-CNN [55, 56]. This CNN is trained306

on the Places image dataset, which contains 2.5 millions images with a scene307

category label. 205 scene categories are defined in this dataset. The original308

Places-CNN was trained using similar architecture as the Alexnet mentioned309

above. Further improvements of the original Places-CNN were obtained by310

training on the VGG and GoogleNet architectures [56].311

The implementation we use in this paper is the PlacesVGG. The architec-312

ture has 13 convolutional layers, with four pooling layers among them, and313

a fifth pooling layer after the last convolutional layer. Three fully connected314

layers follow afterwards. The network outputs a 205-dimensional vector with315

elements representing the probability that the input image belongs to any of316

the 205 scene categories.317

3. Semantic-Aware Image Quality (SA-IQ) Dataset318

As mentioned in Section 2, most publicly available image quality datasets319

do not cover a wide range of semantic categories. This limitation does not320
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allow us to look deeper into how users evaluate image quality in relation with321

their interpretation of the semantic content category. For this reason, we322

created a new image quality dataset with not only a wider range of semantic323

categories included in it, but also a more even distribution of these categories.324

We describe our proposed dataset in the following subsections.325

3.1. Stimuli326

We selected 79 images that were 1024x768 in size from the LabelMe image327

annotation dataset [57]. The images were selected such that there was a328

balanced number of images belonging to each of the scene categories indoor,329

outdoor natural, and outdoor manmade, and within each scene category,330

enough number of animate and inanimate objects. Animate objects include331

humans and animals, whereas inanimate objects include objects in nature332

(e.g., body of water, trees, hill, sky) and objects that are manmade (e.g.,333

buildings, cars, roads).334

To have an unbiased annotation of the image categories, we asked five335

users to categorize the image scenes and objects. They were shown the336

pristine or unimpaired version of the images, and asked to assign the image337

to either of the three scene categories and either of the two object categories.338

The images were presented one at a time, and we did not restrict the time339

for users to view each image. Each image was then assigned the scene and340

object category which had the majority vote from the five users. In the341

end, we have 39 indoor images, 19 outdoor natural images, and 21 outdoor342

man-made images. In terms of object categories, we have 25 images with343

animate objects and 54 with inanimate objects. Figure 1 shows examples of344

the images in the dataset.345

Image texture and luminance analysis. A possible concern in struc-346

turing a subjective quality dataset based on semantic, rather than percep-347

tual, properties of the reference images is that certain semantic categories348

could include a majority of images with specific perceptual characteristics,349

and be more or less prone to visual alterations caused by the presence of350

impairments. For example, outdoor images may have higher luminance than351

indoor ones, and risk incurring luminance masking of artifacts. If that were352

the case, outdoor images would mask impairments better, thereby resulting353

in higher quality than indoor one; this difference, though, would not be due354

to semantics.355

Texture and luminance are two perceptual properties that are known356

to influence and possibly mask impairment visibility [58, 59]. We therefore357
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Figure 1: Examples of images in the SA-IQ dataset; the dataset contains images with
indoor, outdoor natural, and outdoor manmade scenes, as well as animate and inanimate
objects.

verified that the images included in the dataset had similar texture and358

luminance levels across semantic categories. Although this does not make our359

image set bias-free with respect to other possible perceptual characteristics,360

as luminance and texture play a major role in the visibility of artifact (and,361

consequently, on perceptual quality) [58, 59], this ensures that we rule out362

possible major effects of potential biases on our results so that we can ascribe363

differences in perceptual quality (in our study) to differences in semantics.364

We used a modified version of Law’s texture energy filter based on [28]365

to measure texture in horizontal and vertical directions. For each image,366

we computed the average mean and standard deviation of texture measures367

in both horizontal and vertical directions. Similarly, we used a weighted368

low-pass filter based on [28] to measure luminance in horizontal and vertical369

directions. We then calculated the average mean and standard deviation in370

both directions as our image luminance measure.371

We compared the luminance and texture values of the images in the differ-372

ent scene categories using a one-way ANOVA. To compare the values across373
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the different object categories, we used a T-Test. Our analysis showed that374

there is no significant difference in luminance or texture among the indoor,375

outdoor natural, and outdoor manmade images (p<0.05 ). Similarly, no sig-376

nificant difference was found for the two perceptual characteristics among377

the images belonging to animate or inanimate object categories (p<0.05 ).378

Hence, we can conclude that perceptual properties of the images are uniform379

across semantic categories.380

Impairments. We impaired the 79 reference images with two different381

types of impairments, namely JPEG compression and Gaussian blur. We382

chose these two impairment types, as they are typically found in practical383

applications [60]. Moreover, most image quality assessment studies typically384

include these two impairment types, giving us the possibility to easily com-385

pare our results with previous studies. Of course, other types of impairments386

may be added in further studies. The impairments were introduced as fol-387

lows.388

1. JPEG compression. We impaired the original images through Mat-389

lab’s implementation of JPEG compression. We set the image quality390

parameter Q to 30 and 15, to obtain images with visible artifacts of391

medium and high strength, respectively.392

2. Gaussian blur. We applied Gaussian blur to the original images using393

Matlab’s function imgaussfilt. To obtain images with visible artifacts394

of medium and high strength, the standard deviation parameter was395

set to 1.5 and 6, respectively. As for the choice of parameters for our396

JPEG compression, we also considered the parameters for our Gaussian397

blur to represent medium and low quality images.398

Eventually, we obtained 316 impaired images. JPEG and blur images were399

then evaluated in two separate subjective experiments.400

3.2. Subjective Quality Assessment of JPEG images401

To collect subjective quality scores for the JPEG compressed images, we402

conducted an experiment in a laboratory setting. 80 naive participants (28 of403

them were females) evaluated each 60 images. The 60 images were selected404

randomly from the whole set of 237 images (79 reference + 158 impaired),405

such that no image content would be seen twice by a participant, and at the406

end of the test rounds, we would obtain 20 ratings for each image.407

The environmental conditions (e.g., lighting and viewing distance) fol-408

lowed those recommended by the ITU in [61]. Images were shown in full409
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resolution on a 23” Samsung display. At the beginning of each experiment410

session, participants went through a short training to familiarize themselves411

with the task and experiment interface. Participants were then shown the412

test images one at a time, in a randomized order, to avoid fatigue or learning413

effects in the responses. There was no viewing time restriction. Partici-414

pants could indicate that they were ready to score the image by clicking on a415

button; this would make a discrete 5-point Absolute Category Rating (ACR)416

quality scale appear, on which they could express their judgment of perceived417

quality.418

3.3. Subjective Quality Assessment of Blur images419

For the images impaired with Gaussian blur, we decided to conduct the420

experiments in a crowdsourcing environment. Crowdsourcing platforms such421

as AMTurk1, Micorworkers 2 and Crowdflower 3 have become an interest-422

ing alternative environment to perform subjective tests as it is more cost423

and time-friendly compared with its lab counterpart. A consistent body of424

research has shown that crowdsourcing-based subjective testing can yield re-425

liable results, as long as a number of precautions are taken to ensure that426

the scoring task is properly understood and carried out properly [62]. For427

example, evaluation sessions should be short (no longer than 5 minutes) and428

control questions (honey pots) should be included in the task to monitor the429

reliability of the execution.430

We used Microworkers as the platform to recruit participants for our test.431

We randomly divided our 237 images into 5 groups consisting of 45-57 images432

each, such that we could set up 5 tasks/campaigns on Microworkers. Each433

campaign would take 10-15 minutes to complete. A user on Microworkers434

could only participate in one campaign out of the five, and would be paid435

$0.40 for completing the campaign. To avoid misunderstanding of the task,436

and since our experiment was presented in English, we constrained our par-437

ticipants to those coming from countries with fluency in English. The aim438

here was to prevent users from misinterpreting the task instructions, which is439

known to impact task performance ([23, 63, 62]). Users were directed to our440

test page through a link in Microworkers. We obtained 337 participations441

over all of the campaigns.442

1http://mturk.com
2http://microworkers.com
3http://crowdflower.com
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Protocol. When a Microworkers user chose our task, s/he was directed443

to our test page, and shown instructions explaining the aim of the test (to444

rate image quality), and how to perform evaluations. To minimize the risk445

of users misunderstanding their task, we were careful to provide detailed446

instructions and training for our users. In the first part of our training447

session (as recommended by [62]), we gave a definition of what we intended448

as impaired images in the experiment (i.e., images with blur impairments).449

Example images of the worst and best quality that could be expected in the450

experiment were provided. Afterwards, participants were asked to rate an451

example image to get acquainted with the rating interface. The test started452

afterwards. Images were shown at random order, along with the rating scale453

at the bottom of the screen.454

We used a continuous rating scale with 5-point ACR labels in this exper-455

iment. In [64], it was shown that both discrete 5-point ACR and continuous456

scale with 5-point ACR labels in crowdsourcing experiments would yield re-457

sults with comparable reliability. We decided to use the continuous scale458

in this experiment, to give users more flexibility to move the rating scale.459

The continuous scale range was [0..100]. In our analysis, we will normalize460

the resulting mean opinion scores (MOS) into the range [1..5] using a linear461

normalization, so that we can easily compare the results on blurred images462

with those on JPEG images.463

To help filter out unreliable participants, we included two control ques-464

tions in the middle of the experiment. For these control questions, we would465

show a high quality image with a rating scale below it. After the user rates466

that image, a control question would appear, asking the users to indicate467

what they saw in the last image. A set of four options were given from which468

the users could select an answer.469

3.4. Data overview and reliability analysis470

For the lab experiment on the JPEG images, we ended up with a total471

of 4618 ratings for the whole 237 images in the dataset after performing472

an outlier detection. One user was indicated as an outlier, and was thus473

removed for subsequent analysis. After this step, as customary, individual474

scores were pooled into Mean Opinion Scores (MOS) across participants per475

image, resulting in 237 MOS now provided along with the images.476

For the crowdsourcing experiments on blurred images, we first filtered477

out unreliable users based on incorrect answers to the content questions in478

the experiment, and incomplete task executions. We also performed outlier479
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Figure 2: Overview of MOS across impairments for the two impairment types: Blur and
JPEG compression

detection on the filtered data. From the 337 total responses that we received480

across all campaigns, we removed almost half of them due to incorrect an-481

swers to content questions, and failure to complete the whole task in one482

campaign. We did not find any outliers from the filtered data. In the end,483

we had 179 users whose responses were considered in our data analysis, with484

on average 37 individual scores per image. These were further pooled in485

MOS as described above. Figure 2 shows the collected MOS values across486

all impairment levels for the two impairment types: JPEG compression and487

Blur.488

Given the diversity in the data collection method, and the concerns in489

terms of faithfulness of the evaluations obtained in crowdsourcing, we per-490

formed a reliability analysis. Our aim was to establish whether the obtained491

MOS were estimated with sufficient confidence, i.e., whether different par-492

ticipants expressed sufficiently similar evaluations for the same image. To493

do so, based on our and other previous work [25, 65], we chose the following494

measures to compare data reliability:495

1. SOS hypothesis alpha. The SOS hypothesis was proposed in [66], and496

models the extent to which the standard deviation of opinion scores497

(SOS) changes with the mean opinion scores (MOS) values. This498

change is represented through a parameter α. A higher value of α499

would indicate higher disagreement among user scores. The hypothesis500

for an image i is expressed as in Eq. 1 below.501

SOS2(i) = α(−MOS2(i) + (V1 + VK)MOS(i)− V1VK), (1)
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Table 2: SOS hypothesis alpha and average confidence interval (CI) across datasets

Dataset
Rating

Methodology

Number of
Ratings per

Image

Experiment
Environment

SOS
Hypothesis

Alpha
Average CI

SA-IQ (JPEG
images)

discrete 5-point
ACR scale

19-20 Lab 0.200 0.316

SA-IQ (Blur
images)

continuous with
5-point ACR

labels
37 on average Crowdsourcing 0.2473 0.3182

CSIQ

multistimulus
comparison by

positioning a set
of images on a

scale

n/a Lab 0.065 n/a

IRCCyN-IVC
on Toyama

discrete 5-point
ACR scale

27 Lab 0.1715 0.1680

UFRJ Blurred
Image DS

continuous
5-point ACR

scale
10-20 Lab 0.1680 0.5011

MMSPG HDR
with JPEG XT

DSIS 1 [61],
5-grade

impairment
scale

24 Lab 0.201 0.273

ChallengeDB
continuous with

5-point ACR
labels

175 on average Crowdsourcing 0.1878
2.85 (100-point

scale)

TID2013
tristimulus
comparison

>30
Lab and

Crowdsourcing
0.001 n/a

where V1 and VK indicate, respectively, the lowest and highest end of502

a rating scale.503

2. Average 95% confidence interval. We calculate the average confidence504

interval over all images in a dataset to indicate user’s average agreement505

on their ratings across the images. The confidence interval of an image506

i, rated by N users, is given as follows.507

CI(i) = 1.96 ∗ SOS(i)√
N

(2)

Table 2 gives a comparison of SOS hypothesis alpha and average CI values508

across different image quality studies and datasets. We also note in the table509

the different experiment setups used in the studies to construct the datasets.510

From the table, we see that the highest user agreement is obtained in stud-511

ies that use comparison methods (i.e. double stimulus [61]) as their rating512

methodology. This was not a feasible option for us, as comparison methods513
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on quite a large number of images as we have would be very costly. Neverthe-514

less, our laboratory and crowdsourcing studies obtained highly comparable515

reliability measures. Moreover, our studies showed comparable reliability to516

that of other studies that also employ single stimulus rating methodology,517

and have the number of ratings per image proportionate to ours (i.e. the518

datasets IRCCyN-IVC on Toyama, UFRJ Blurred Image DS, and MMSPG519

HDR with JPEG XT as shown in Table 2).520

3.5. Effect of Semantics on Visual Quality521

Having established that our collected data is reliable, we proceeded to522

check how semantic categories influence visual quality ratings at different523

levels and types of impairments. Perception studies have looked into the524

relation of scene versus objects with respect to human interpretation of image525

content. Questions such as whether users recognize scenes or objects first526

when looking at images have been asked and explained. In [20], it was527

found that even in pre-attentive stages, users do not have the tendency to528

recognize scenes or objects one faster than the other. Both are processed529

simultaneously to form an interpretation of the image content. Here, we530

attempt to check if one holds more significance than the other in influencing531

the user assessment of image quality.532

Figures 3 and 4 show bar plots of the mean opinion scores (MOS) across533

impairment levels and semantic categories for JPEG and blurred images,534

respectively. From the plots, we see that images with no perceptible im-535

pairments are rated similarly in both cases: indoor images are rated more536

critically than outdoor images, and images with animate objects are rated537

more critically than those with inanimate objects. From the figures, we see538

that in the case of JPEG compressed images, this tendency of being more539

critical towards indoor images and images with animate objects continues540

for images with lower quality. However, the reverse seems to happen in the541

case of blurred images. It seems that with the presence of blur impairments,542

indoor images and images with animate objects are rated higher than other543

scene and object categories.544

To check how semantic categories influence visual quality ratings, we fit a545

Generalized Linear Mixed Model (GLMM) to Visual Quality ratings, where546

semantic categories (scene and object) and impairment levels act as fixed547

factors, and users are considered as a random factor. Due to the different548

rating scale used to evaluate the two different impairment types, the model549

for JPEG images uses a multinomial distribution with logit link function,550
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Figure 3: Bar plots of mean visual quality rating of JPEG compressed images across
impairment levels and scene categories (right), and object categories (left)

Figure 4: Bar plots of mean visual quality rating of blurred images across impairment
levels and scene categories (left), and object categories (right)

while that for blurred images uses a linear distribution with an identity link551

function. We use the following notation to describe the output of our sta-552

tistical analysis. Next to each independent variable that we looked into,553

we indicate the degrees of freedom (df1, df2 ), the F-statistic evaluating the554

goodness of the model’s fit (F ), and the p-value representing the probability555

that the variable is not relevant to the model (p). A p-value that is less than556

or equal to 0.05 indicates a statistically significant influence of a variable to557

predicting visual quality ratings.558

For images with JPEG impairments, we find that all three independent559

variables, as well as the interaction of the three of them significantly in-560

fluence user rating of visual quality (impairment level: df1=2, df2=4.657,561
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Table 3: Comparison of p-values for semantic category variables obtained through GLMM
fitting

Impairment Type Independent Variables to Predict Visual Quality Ratings p-value

JPEG

Scene category p=0.00

Object category p=0.00

Scene category and object category (interaction of the two) p=0.00

Blur

Scene category p=0.015

Object category p=0.086

Scene category and object category (interaction of the two) p=0.00

F=1193.54, p=0.00 ; scene category: df1=2, df2=4.657, F=28.35, p=0.00 ;562

object category: df1=1, df2=4.657, F=13.35, p=0.00 ; impairment level*scene563

category*object category: df1=6, df2=4.657, F=18.28, p=0.00 ). This shows564

us that in judging images with JPEG compression impairments, users are sig-565

nificantly influenced by both scene and object category content.566

Interestingly, for blurred images, a different conclusion is found. When567

we consider both scene and object categories, our model shows that scene568

category and impairment level has a significant effect on visual quality rating,569

while object category only significantly influences visual quality rating in in-570

teraction with scene category and impairment level (impairment level: df1=2,571

df2=8.717, F=1880.8, p=0.00 ; scene category: df1=2, df2=8,717, F=4.18,572

p=0.01 ; scene category*impairment level: df1=4, df2=8.717, F=9.74, p=0.00 ;573

impairment level*scene category*object category: df1=6, df2=4.657, F=6.722,574

p=0.00 ). Unlike images with JPEG compression impairments, the visual575

quality rating of images with blur impairments are more significantly influ-576

enced by their scene category content than their object category content.577

For a clear overview of the p-values for the different (semantic category)578

independent variables, a summary is given in Table 3.579

4. Improving NR-IQMs using Semantic Category Features580

In this section, we show how the performance of no-reference image qual-581

ity metrics can significantly improve when taking semantic category informa-582

tion into consideration. We do this by concatenating features that represent583

image semantic category (as extracted, for example, by large convolutional584

networks trained to detect objects and scenes in images) to perceptual quality585

features. Figure 5 illustrates this idea. A no-reference image quality metric586

(NR-IQM) typically consists of two building blocks [32]. The first is a feature587
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Figure 5: Block diagram of no-reference image quality metrics (NR-IQM): (1) using only
perceptual quality features, and (2) using both perceptual quality features and semantic
category features

Figure 6: Heat map of probability values for the 1000 semantic classes output by AlexNet
for two impaired images (with JPEG compression) taken from the TID2013 dataset, and
the corresponding reference image on the right.

extraction module, which produces a set of features that represent the im-588

age, as well as any artifacts present in it. The next block is the prediction or589

pooling module, which translates the set of features from the previous block590

into a quality score Q. In the following subsections, we compare the perfor-591

mance of image quality prediction when using only well-known perceptual592

quality features (condition 1 in Figure 5), with that of using a combination593

of perceptual quality features and semantic category features (condition 2 in594

the figure).595

4.1. Perceptual and Semantic Features for Prediction596

We used the following perceptual quality features in our experiment:597

21



1. NSS features.598

As mentioned in Section 2, NSS features are hand-crafted, and designed599

based on the assumption that the presence of impairments in images600

disrupts the regularity of an image’s statistical properties. We used601

three different kinds of NSS features in our experiment, BLIINDS [35],602

BRISQUE [36], and GM-LOG [37]. These three metrics were chosen603

such that we would have NSS features extracted in different domains604

(DCT, spatial, and GM-LOG channels, respectively).605

2. Learned features.606

We also chose to perform our experiment using learned features (codebook-607

based features). As these features are learned directly from image608

patches, it is possible that the features themselves already have seman-609

tic information embedded. It is therefore interesting to check how our610

approach would add to this type of metrics. We used HOSA features611

[27] to represent learned features in this paper.612

To extract semantic category features, we fed the test images to the613

AlexNet [52] to obtain object category features, and to PlacesVGG [56] to ob-614

tain scene category features. We used the output of the last softmax layer of615

each CNN as our semantic category features. This led to a 1000-dimensional616

vector resulting from AlexNet, and a 205-dimensional vector resulting from617

PlacesVGG. Each element k in these vectors represents the probability that618

the corresponding image content depicts the k -th semantic category (scene619

or object). Each of these semantic category feature vectors would then be620

appended to the one containing the perceptual quality features. Adding ob-621

ject category features would result in an additional 1000-dimensional feature622

vector to the perceptual quality feature vector, while adding scene category623

features would result in an additional 205-dimensional feature vector to the624

perceptual quality features. Consequently, adding both to evaluate the ben-625

efit of considering jointly scene and object information in the IQM, would626

increase the feature count of 1205.627

In Figure 6, we show heatmaps of the 1000-object category probability628

values that were output by AlexNet for two images with different levels of629

JPEG compression impairment. From the image, we can observe that most630

of the probability values of the 1000 object categories are very small. Given631

that quality prediction is a regression problem, we decided to use a sparse632

representation of these semantic feature vectors to improve on computational633

complexity. With a sparse representation, the number of non-zero multiplica-634
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Figure 7: Impact of the number of top-N semantic categories condsidered in the IQM, in
terms of Pearson and Spearman Correlation Coefficients (PLCC and SROCC respectively),
between teh IQM prediction and the subjetive quality scores of different datasets. When
the number of semantic features is 0, no semantic information is attached to the perceptual
features, and the metric is calculated purely on perceptual feature information.

tions to be performed by our regression model is significantly smaller, thereby635

reducing the computation time. To make the semantic feature vector sparse,636

we set to zero the values of all but the top-N semantic categories in each637

vector.638

In our previous study [25], we compared the performance of using only the639

top-10, 20, and 50 probability values in the object feature vector in addition640

to perceptual quality features. Our results showed no significant difference in641

performance among the three choices of N for top-N object category features.642

Given this result, we proceeded with using the top-20 object category features643

in subsequent experiments. In the next subsection, we investigate whether644

these results also hold for scene category features.645

4.2. Augmenting NR-IQM with Semantics646

To investigate the added value of using semantic category information in647

NR-IQM, we first compared metrics with and without using semantic infor-648

mation in a simplified setting. We first concatenated the sparsified semantic649
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feature vectors with 10, 20 and 50 top-N scene semantic features to the650

NSS and HOSA features described in the previous section. Then, we fed the651

perceptual + semantic feature vector to a prediction module as depicted in652

Figure 5. For the sake of comparison, we also added a condition with N=0,653

corresponding to not adding semantic features. This condition represents,654

for this specific test, our baseline.655

With reference to Figure 5, we used the same prediction module: a Sup-656

port Vector Regression (SVR) with a linear kernel. This means that here657

we discarded the prediction modules used in the original studies proposing658

the perceptual quality features (i.e. BLIINDS uses a bayesian probabilistic659

inference module [35], BRISQUE and GM-LOG use linear SVR with RBF660

kernel [36, 37], white HOSA uses a linear kernel SVR [27]). This step is661

necessary to isolate the benefit that adding semantic information brings in662

terms of prediction accuracy: using different learning methods to implement663

the prediction module would be a confounding factor for our result here.664

We performed our experiments on four datasets, TID2013, CSIQ, our665

own SA-IQ, and ChallengeDB. The subjective scores of these datasets were666

collected in different experiment setups, e.g. display resolution, impairment667

types and viewing distance, such that our experiment results not be limited668

to images viewed in one particular setting. The TID2013 dataset [42] and669

CSIQ dataset [43] originally contains images with 5 to 24 different types670

of image impairments. As most perceptual quality metrics (including those671

used in this paper) are constructed to evaluate images impaired with JPEG,672

JPEG2000 compression, additive white noise, and Gaussian blur, we limited673

our experiments to images with these impairments only.674

The ChallengeDB dataset contains images with impairments present in675

the wild (typical real world consumption of images), and we included this676

dataset in our experiments to see how our approach would perform on said677

impairment condition. We used all the images in the ChallengeDB dataset678

in our experiment. We ran 1000-fold cross validation to train the SVR, with679

data partitioned into an 80%:20% training and testing set. The resulting680

median Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank681

Order Correlation Coeffient (SROCC) values between subjective and pre-682

dicted quality scores are reported in Figure 7 for performance evaluation.683

In our previous work [25], we observed that the addition of object cate-684

gory features in combination with NSS perceptual quality features (BLIINDS,685

BRISQUE, and GM-LOG) improved the performance of quality prediction.686

These improvements in both PLCC and SROCC were statistically significant687
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(T-test, p < 0.05 ). However, using object category features in combination688

with learned features (in this case, HOSA), did not bring significant added689

value. A similar result can be seen for the case of combining scene category690

features with perceptual quality features. In Figure 7, we see that for the691

NSS perceptual quality features, prediction performance increased with the692

addition of scene semantic categories. Conducting T-tests on the resulting693

PLCC and SROCC values showed that the improvements were statistically694

significant (p < 0.05 ). On the other hand, combining scene category fea-695

tures with HOSA features did not contribute to significant performance im-696

provement. The average PLCC and SROCC values for the TID2013 dataset697

without scene features, for example, were 0.962 and 0.959, respectively, while698

the values when using scene features were 0.963 and 0.959, respectively.699

A possible reason for the lack of improvement of the HOSA-based metric700

is that, unlike the handcrafted NSS features that specifically capture im-701

pairment visibility, HOSA features are learned directly from image patches.702

The features learned in this way may also capture semantic information, be-703

side the impairment characteristics. Thus, the addition of semantic category704

features to these features may be redundant. Despite this observation, it is705

worth noting that the addition of semantic categories (either object or scene)706

could bring NSS-based models’ performances close to that of HOSA while707

keeping the input dimensionality and thus model complexity lower (HOSA708

uses 14700 features, whereas NSS models use less than 100).709

From the figure, we also notice that prediction performance did not710

change significantly among the N=10, 20 and 50 for top-N scene features711

(further confirmed using one-way ANOVA, giving p=0.05 ). This applies for712

all four datasets and four perceptual quality metrics used in the experiment,713

and is aligned with our previous study on object category features [25].714

4.3. Full-stack Comparison715

In the previous section, we used a uniform prediction module (i.e. linear716

kernel SVR) across combinations of perceptual and semantic features to iso-717

late the effect of adding semantic information on the performance of IQM.718

Referring once again to Figure 5, most image quality metrics in literature are719

optimized using a specific prediction module. For example, BLIINDS uses720

a Bayesian inference model, while BRISQUE and GM-LOG use SVR with721

an RBF kernel, and HOSA uses a linear kernel. In this subsection, we com-722

pare our approach of combining semantic category features with perceptual723
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Figure 8: Features and prediction module combinations for blackbox comparison

quality features within the metrics original implementations (i.e. using their724

proposed perceptual quality features along with their prediction module).725

Figure 8 shows the semantic category feature combinations that we used726

in our experiments, along with the prediction module that we use for each727

perceptual quality feature. There are three types of semantic category fea-728

tures that we looked into: object category features, scene category features,729

and the combination of both. Each of these were combined with each of the730

four perceptual quality metric, and trained using the corresponding learn-731

ing method as shown in the table. We used RBF kernel SVR as learning732

method for the combination of semantic features with BLIINDS, BRISQUE733

and GM-LOG features. For the combination of semantic features with HOSA734

features, we used linear kernel SVR as our learning method.735

As we used optimized prediction modules for each combination of features,736

we report here the performance of each original NR-IQM also when optimized737

for each dataset separately. The performance of the NSS metrics optimized738

for TID2013 and CSIQ that we report here are as per [37], while the HOSA739

metric performance optimized for the two datasets corresponds to that in740

[27]. For SA-IQ and ChallengeDB, we used grid search to optimize the SVR741

parameters of the four metrics. For performance evaluation, again we took742

the median PLCC and SROCC between the subjective and predicted quality743

scores across a 1000 folds cross-validation. Figure 9 gives an overview of the744

prediction performance for each feature combination on the four datasets745

TID2013, CSIQ, SA-IQ and ChallengeDB.746

A look into the results on the TID2013 dataset reveals that the addi-747
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Figure 9: Full-stack comparison of the different NR-IQMs and semantic category feature
combination on datasets TID2013, CSIQ, SA-IQ, and ChallengeDB

tion of semantic category features generally improved the performance of748

no-reference image quality assessment. As expected, based on our obser-749
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vation in section 4.2, the NSS-based metrics showed larger improvement in750

predicting quality when combined with semantic category features. Never-751

theless, the combination of semantic category features with learned features752

(HOSA) also improved prediction performance in this case.753

Results on the CSIQ dataset showed improvement particularly when the754

perceptual quality features were combined with object category features. If755

we refer back to Table 1, which gives an overview of semantic categories756

spanned by the different datasets used in this work, we see that the CSIQ757

dataset does not have any variance in scene category (all images are outdoor758

images), whereas there seems to be more diversity in terms of objects. We759

argue that this could make object category features more discriminative than760

scene category features.761

The figure further shows results on the SA-IQ dataset. We can see that762

adding semantic features results in a prediction improvement compared with763

only using NSS features. However, as also observed in Section 4, adding764

semantic features did not improve prediction performance for codebook-based765

features (i.e. HOSA). Furthermore, we also note that adding scene and object766

category features together did not result in higher prediction performance767

than when using only scene or only object category features.768

Similarly for the ChallengeDB dataset, we observe improvement of quality769

prediction with the addition of semantic category features across the three770

NSS-based IQMs. On the other hand, the addition of semantic category771

features did not improve the performance of learning-based metric, HOSA,772

similar to our results for the TID2013, and SA-IQ datasets.773

As mentioned briefly in Section 4.2, the four datasets that we use in our774

experiments were constructed through subjective experiments with different775

experiment setups, including viewing condition and type of impairments.776

For example, the TID2013 study suggested users to use a viewing distance777

from the monitor that is comfortable to them [42], while the CSIQ study778

maintained a fixed viewing distance from the monitor for all its participants779

[43]. All the datasets use different monitors and display resolutions in their780

studies. And while the datasets TID2013, CSIQ, and SA-IQ have images with781

one impairment type per image, the ChallengeDB dataset images contain782

multiple impairments per image. Considering these differences across the783

datasets, our results here and in Section 4.2 indicates that our proposed784

approach to improve NR-IQMs could be applied across multiple impairments785

and viewing conditions.786

Performance with other type of perceptual quality features. So787

28



Figure 10: Full-stack comparison of the NFERM IQM and semantic category feature
combination on datasets TID2013, CSIQ, SA-IQ, and ChallengeDB

far, our experiment results show that the addition of semantic category fea-788

tures alongside perceptual quality features can improve the performance of789

quality prediction, especially for NR-IQMs with handcrafted (i.e. NSS-790

based) features. We would like to show here that these results still hold791

for NR-IQMs based on different types of handcrafted features, such as free792

energy-based features ([33, 34]).793

We performed a full-stack comparison using the NFERM metric on the794

datasets TID, CSIQ, SA-IQ and ChallengeDB. We used grid search to opti-795

mize the prediction modules for each combination of features, including when796

no semantic feature is used. We show our results in figure 10, which plots797

the median PLCC and SROCC between the subjective and predicted quality798

scores across 1000 folds cross-validation. The figure shows that our previous799

results for NSS-based NR-IQMs still hold for non NSS-based NR-IQMs such800

as NFERM, that is, the addition of either scene or object category features,801

or both, helps improve the performance of blind image quality prediction802

4.4. Performance on Specific Impairment Types803

In the previous experiments, we performed our evaluation on datasets804

consisting of different impairment types: JPEG and JPEG2000 compression,805

blur, and white noise in the TID2013 and CSIQ datasets, and JPEG and806

blur in the SA-IQ dataset. As shown through our analysis in section 3.5,807
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Table 4: Comparison of the different NR-IQMs and semantic category features on different
impairment types in the SA-IQ dataset

BLIINDS BLIINDS+S BLIINDS+O BRISQUE BRISQUE+S BRISQUE+O

SA-IQ
JPEG 0.8717 0.8941 0.8938 0.885 0.9086 0.9084

BLUR 0.8925 0.9093 0.9068 0.9029 0.9219 0.9222

TID

JPEG 0.8853 0.9383 0.9391 0.9103 0.9478 0.9530

JP2K 0.9118 0.9591 0.9529 0.9044 0.9487 0.9504

BlUR 0.9176 0.9665 0.9696 0.9059 0.9635 0.9696

WN 0.7314 0.9417 0.9409 0.8603 0.9524 0.9509

CSIQ

JPEG 0.9115 0.9052 0.9300 0.9253 0.9342 0.9292

JP2K 0.8870 0.9147 0.9416 0.8934 0.9056 0.9262

BlUR 0.9152 0.9003 0.9148 0.9143 0.8781 0.9018

WN 0.8863 0.9248 0.9246 0.9310 0.9398 0.9416

GM-LOG GM-LOG+S GM-LOG+O HOSA HOSA+S HOSA+O

SA-IQ
JPEG 0.8843 0.9218 0.9099 0.9149 0.9140 0.9151

BLUR 0.9048 0.9262 0.9228 0.9029 0.9034 0.9030

TID

JPEG 0.9338 0.9478 0.9403 0.9283 0.9288 0.9271

JP2K 0.9263 0.9539 0.9548 0.9453 0.9283 0.9265

BlUR 0.8812 0.9635 0.9604 0.9538 0.9604 0.9562

WN 0.9068 0.9513 0.9524 0.9215 0.9273 0.9243

CSIQ

JPEG 0.9328 0.8927 0.9220 0.9254 0.9062 0.9071

JP2K 0.9172 0.9249 0.9316 0.9244 0.9032 0.9036

BlUR 0.9070 0.8752 0.8969 0.9266 0.8848 0.9037

WN 0.9406 0.9342 0.9237 0.9192 0.9232 0.9038

semantic categories influence the assessment of visual quality in both JPEG808

compressed and blurred images, but in a different way. It is therefore inter-809

esting to look at the prediction performance on different impairment types810

individually. Our setup for this experiment is similar to that of Section 4.3,811

i.e. the SVR parameters of the NR-IQMs were optimized for evaluating812

each of the three datasets. The datasets were split into subsets with spe-813

cific impairment types, and the prediction models were re-trained for each814

impairment type. We again refer to [37] for the performance of NSS metrics815

optimized for TID2013 and CSIQ, and [27] for the HOSA metric performance.816

Table 4 shows the results of our experiments. We report only the SROCC817
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values due to limited space, however we note here that the resulting PLCC818

values yielded similar conclusions. The bold numbers in the table indicate the819

conditions in which the prediction performance improved with the addition820

of semantic category features. From the table, we see that the addition821

of semantic category features, whether they are scene or object features,822

improved significantly the performance of NSS-based no-reference metrics on823

all impairment types presented for the SA-IQ and TID datasets. However,824

for the CSIQ dataset, only images with JP2K compression and white noise825

impairment consistently showed similar improvement. It is interesting to826

note that the improvement in performance were not significantly different827

between the addition of object and scene categories. For the codebook-based828

metric, HOSA, as we have seen in the previous sections, we again observe829

that the addition of semantic category features did not bring improvement,830

even for specific impairment types, on any of the three datasets.831

5. Image Utility and Semantic Categories832

Image quality has often been associated with image usefulness or util-833

ity. Nevertheless, studies have shown that perceived utility does not linearly834

relate to perceived quality [22]. In this section, we show that bias on im-835

age content category can influence utility and perceived quality differently,836

and thus further confirm that an image usefulness cannot always explain837

perceived image quality. We do this by comparing the relationship between838

image semantic categories and image utility with the relationship between839

image semantic categories and image quality. We perform this comparison840

on our image dataset, SA-IQ.841

To perform the comparison, we calculated image utility scores for each842

image in the dataset. We refer to [67] for image utility metric NICE. The843

metric calculates image utility based on image contour. For every image, we844

used an edge detection algorithm (e.g., Canny) to obtain the binary of the845

test image and its reference, which we denote as BT and BR, respectively.846

We then performed a morphological dilation on the two binary images using847

a 3x3 plus-sign shaped structural element. We further assumed that the848

result of this morphological dilation is IR for the reference image and IT for849

the test image. We then obtained the utility score NICE for the image by850

taking the Hamming distance of IR and IT , and dividing it by the number851

of non-zero elements in BR, to account for the variability of contours across852

the reference images. The utility metric NICE gives an estimation of how853
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Figure 11: Image utility vs. quality scores of JPEG images across semantic categories
(left: scene categories, right: object categories

Figure 12: Image utility vs. quality scores of blurred images across semantic categories
(left: scene categories, right: object categories

degraded an image’s contours have become due to impairments compared854

with its reference, and is thus inversely related with image utility.855

In Figures 11 and 12 we show plots of perceived quality mean opinion856

scores (MOS) against NICE utility scores for JPEG compressed and blurred857

images in our datasets. If we compare our plots with the perceived utility858

vs. perceived quality plot found in [22], we can observe that our blurred859

images span the lower range of image quality and higher range of image860

quality, in which utility doesn’t grow or change with the change of perceived861

quality. However, our JPEG images seem to span a middle-range quality,862

in which perceived quality has a linear relationship with perceived utility.863
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Table 5: Significance level of semantic categories’ influence on image utility and quality
across Blurred and JPEG image clusters

Impairment

Type

Image

Cluster

Semantics

on Utility

Semantics

on Quality

Scene Object Scene Object

BLUR
HQ cluster p = 0.098 p = 0.971 p = 0.009 p = 0.324

LQ cluster p = 0.054 p = 0.469 p = 0.177 p = 0.228

JPEG
HQ cluster p = 0.03 p = 0.049 p = 0.851 p = 0.866

LQ cluster p = 0.003 p = 0.219 p = 0.307 p = 0.365

In general, we can see that our data represented the different relationships864

between perceived quality and utility across the range of quality.865

We ran K-means on the blurred and JPEG image data, to isolate the866

different clusters as shown in the plots, and conducted statistical analysis to867

check how semantic categories influence utility and quality in these clusters.868

We set the number of clusters k to two for both the blurred and JPEG data.869

We then performed several one-way ANOVA for each cluster. Specifically,870

we first conducted one-way ANOVAs with semantic categories (either scene871

or object categories) as independent variables, and utility as dependent vari-872

ables. Similarly, we then conducted one-way ANOVAS with quality MOS as873

dependent variables instead of utility.874

Table 5 shows the results of our analysis. We label the two clusters for875

each image sets as HQ for clusters with images having higher quality range,876

and LQ for clusters with images having lower quality range. The numbers877

in bold indicate cases in which semantics has a significant influence on ei-878

ther utility or quality. From the table, we can see that semantic categories879

influence image utility and quality differently. Moreover, the influence of880

semantics on utility seems to be more significant in JPEG images than in881

blurred images.882

6. Conclusion883

In this paper, we showed that an image’s semantic category information884

can be used to improve its quality prediction to align better with human per-885

ception. Through subjective experiments, we first observed that an image’s886

scene and object categories influence users’ judgment of visual quality for887

JPEG compressed and blurred images. We then performed experiments on888

different types of no-reference image quality metrics (NR-IQMs), and showed889
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that blind/no-reference image quality predictions can be improved by incor-890

porating semantic category features into our prediction model. This applied891

across different image quality datasets representing diverse viewing condition892

(e.g. display resolution, viewing distance), and image impairments, includ-893

ing multiple impairments. We also provided a comparison of how semantics894

influences image utility and image quality, and conclude that semantics has895

more significant influence on image utility for JPEG images than for blurred896

images.897

Another contribution of this paper is a new image quality dataset, SA-IQ,898

consisting of images spanning a wide range of scene and object categories,899

with subjective scores on JPEG compressed and blurred images. The dataset900

can be accessed through http://ii.tudelft.nl/iqlab/SA-IQ.html. Fu-901

ture work on these findings would include looking into better representations902

or methods to combine semantic information and perceptual quality features903

in NR-IQMs.904
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[2] P. Le Callet, S. Möller, A. Perkis, et al., Qualinet white paper on def-912

initions of quality of experience, European Network on Quality of Ex-913

perience in Multimedia Systems and Services (COST Action IC 1003) 3914

(2012).915

[3] S. S. Hemami, A. R. Reibman, No-reference image and video quality es-916

timation: applications and human-motivated design, Signal Processing:917

Image Communication 25 (7) (2010) 469–481 (2010).918

[4] W. Lin, C.-C. J. Kuo, Perceptual visual quality metrics: a survey, Jour-919

nal of Visual Communication and Image Representation 22 (4) (2011)920

297–312 (2011).921

34

http://ii.tudelft.nl/iqlab/SA-IQ.html
http://www.conviva.com/conviva-viewer-experience-report/vxr-2015/
http://www.conviva.com/conviva-viewer-experience-report/vxr-2015/
http://www.conviva.com/conviva-viewer-experience-report/vxr-2015/
http://www.conviva.com/conviva-viewer-experience-report/vxr-2015/


[5] J. Xue, C. W. Chen, Mobile video perception: New insights and adap-922

tation strategies, IEEE Journal of Selected Topics in Signal Processing923

8 (3) (2014) 390–401 (2014).924

[6] Y. Zhu, A. Hanjalic, J. A. Redi, QoE prediction for enriched assessment925

of individual video viewing experience, in: Proceedings of the 2016 ACM926

on Multimedia Conference, ACM, 2016, pp. 801–810.927

[7] K. Gu, G. Zhai, W. Lin, X. Yang, W. Zhang, No-reference image sharp-928

ness assessment in autoregressive parameter space, IEEE Transactions929

on Image Processing 24 (10) (2015) 3218–3231 (2015).930

[8] S. C. Guntuku, J. T. Zhou, S. Roy, W. Lin, I. W. Tsang, Understanding931

deep representations learned in modeling users likes, IEEE Transactions932

on Image Processing 25 (8) (2016) 3762–3774 (2016).933

[9] U. Engelke, R. Pepion, P. L. Callet, H.-J. Zepernick, Linking distortion934

perception and visual saliency in H. 264/AVC coded video containing935

packet loss, in: Visual Communications and Image Processing, SPIE,936

2010.937

[10] H. Alers, J. Redi, H. Liu, I. Heynderickx, Studying the effect of opti-938

mizing image quality in salient regions at the expense of background939

content, Journal of Electronic Imaging 22 (4) (2013).940

[11] W. Zhang, A. Borji, Z. Wang, P. Le Callet, H. Liu, The application941

of visual saliency models in objective image quality assessment: A sta-942

tistical evaluation, IEEE transactions on neural networks and learning943

systems 27 (6) (2016) 1266–1278 (2016).944

[12] K. Gu, L. Li, H. Lu, X. Min, W. Lin, A fast reliable image quality945

predictor by fusing micro-and macro-structures, IEEE Transactions on946

Industrial Electronics 64 (5) (2017) 3903–3912 (2017).947

[13] D. Temel, G. AlRegib, Resift: Reliability-weighted sift-based image948

quality assessment, in: Image Processing (ICIP), 2016 IEEE Interna-949

tional Conference on, IEEE, 2016, pp. 2047–2051.950

[14] P. Zhang, W. Zhou, L. Wu, H. Li, Som: Semantic obviousness metric951

for image quality assessment, in: Proceedings of the IEEE Conference952

on Computer Vision and Pattern Recognition, 2015, pp. 2394–2402.953

35



[15] D. Marr, Vision: A computational approach (1982).954

[16] S. Edelman, S. Dickinson, A. Leonardis, B. Schiele, M. Tarr, On what955

it means to see, and what we can do about it, Object Categorization:956

Computer and Human Vision Perspectives (2009) 69–86 (2009).957

[17] E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, P. Boyes-Braem,958

Basic objects in natural categories, Cognitive psychology 8 (3) (1976)959

382–439 (1976).960

[18] A. Rorissa, H. Iyer, Theories of cognition and image categorization:961

What category labels reveal about basic level theory, Journal of the962

American Society for Information Science and Technology 59 (9) (2008)963

1383–1392 (2008).964

[19] I. Biederman, R. C. Teitelbaum, R. J. Mezzanotte, Scene perception: a965

failure to find a benefit from prior expectancy or familiarity., Journal966

of Experimental Psychology: Learning, Memory, and Cognition 9 (3)967

(1983) 411 (1983).968

[20] L. Fei-Fei, A. Iyer, C. Koch, P. Perona, What do we perceive in a glance969

of a real-world scene?, Journal of vision 7 (1) (2007) 10–10 (2007).970

[21] A. Torralba, K. P. Murphy, W. T. Freeman, Using the forest to see the971

trees: exploiting context for visual object detection and localization,972

Communications of the ACM 53 (3) (2010) 107–114 (2010).973

[22] D. M. Rouse, R. Pepion, S. S. Hemami, P. Le Callet, Image util-974

ity assessment and a relationship with image quality assessment, in:975

IS&T/SPIE Electronic Imaging, International Society for Optics and976

Photonics, 2009, pp. 724010–724010.977

[23] H. Ridder, S. Endrikhovski, 33.1: Invited paper: image quality is fun:978

reflections on fidelity, usefulness and naturalness, in: SID Symposium979

Digest of Technical Papers, Vol. 33, Wiley Online Library, 2002, pp.980

986–989.981

[24] E. Siahaan, A. Hanjalic, J. A. Redi, Does visual quality depend on982

semantics? A study on the relationship between impairment annoy-983

ance and image semantics at early attentive stages, Electronic Imaging984

2016 (16) (2016) 1–9 (2016).985

36



[25] E. Siahaan, A. Hanjalic, J. A. Redi, Augmenting blind image quality986

assessment using image semantics, in: 2016 IEEE International Sympo-987

sium on Multimedia (ISM), IEEE, 2016, pp. 307–312.988

[26] A. K. Moorthy, A. C. Bovik, Blind image quality assessment: from nat-989

ural scene statistics to perceptual quality, IEEE transactions on Image990

Processing 20 (12) (2011) 3350–3364 (2011).991

[27] J. Xu, P. Ye, Q. Li, H. Du, Y. Liu, D. Doermann, Blind image quality as-992

sessment based on high order statistics aggregation, IEEE Transactions993

on Image Processing 25 (9) (2016) 4444–4457 (2016).994

[28] H. Liu, I. Heynderickx, A perceptually relevant no-reference blockiness995

metric based on local image characteristics, EURASIP Journal on Ad-996

vances in Signal Processing 2009 (1) (2009) 263540 (2009).997

[29] S. Ryu, K. Sohn, Blind blockiness measure based on marginal distribu-998

tion of wavelet coefficient and saliency, in: Acoustics, Speech and Signal999

Processing (ICASSP), 2013 IEEE International Conference on, IEEE,1000

2013, pp. 1874–1878.1001

[30] P. V. Vu, D. M. Chandler, A fast wavelet-based algorithm for global1002

and local image sharpness estimation, IEEE Signal Processing Letters1003

19 (7) (2012) 423–426 (2012).1004

[31] H. Liu, N. Klomp, I. Heynderickx, A no-reference metric for perceived1005

ringing artifacts in images, IEEE Transactions on Circuits and Systems1006

for Video Technology 20 (4) (2010) 529–539 (2010).1007

[32] P. Gastaldo, R. Zunino, J. Redi, Supporting visual quality assessment1008

with machine learning, EURASIP Journal on Image and Video Process-1009

ing 2013 (1) (2013) 1–15 (2013).1010

[33] K. Gu, G. Zhai, X. Yang, W. Zhang, Using free energy principle for1011

blind image quality assessment, IEEE Transactions on Multimedia 17 (1)1012

(2015) 50–63 (2015).1013

[34] K. Gu, J. Zhou, J. Qiao, G. Zhai, W. Lin, A. Bovik, No-reference qual-1014

ity assessment of screen content pictures, IEEE Transactions on Image1015

Processing (2017).1016

37



[35] M. A. Saad, A. C. Bovik, C. Charrier, Blind image quality assessment:1017

A natural scene statistics approach in the DCT domain, IEEE Transac-1018

tions on Image Processing 21 (8) (2012) 3339–3352 (2012).1019

[36] A. Mittal, A. K. Moorthy, A. C. Bovik, No-reference image quality as-1020

sessment in the spatial domain, IEEE Transactions on Image Processing1021

21 (12) (2012) 4695–4708 (2012).1022

[37] W. Xue, X. Mou, L. Zhang, A. C. Bovik, X. Feng, Blind image quality1023

assessment using joint statistics of gradient magnitude and laplacian1024

features, IEEE Transactions on Image Processing 23 (11) (2014) 4850–1025

4862 (2014).1026

[38] P. Ye, J. Kumar, L. Kang, D. Doermann, Unsupervised feature learn-1027

ing framework for no-reference image quality assessment, in: Computer1028

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,1029

IEEE, 2012, pp. 1098–1105.1030

[39] P. Ye, D. Doermann, No-reference image quality assessment using visual1031

codebooks, IEEE Transactions on Image Processing 21 (7) (2012) 3129–1032

3138 (2012).1033

[40] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech,1034

and time series, The handbook of brain theory and neural networks1035

3361 (10) (1995).1036

[41] L. Kang, P. Ye, Y. Li, D. Doermann, Convolutional neural networks1037

for no-reference image quality assessment, in: Proceedings of the IEEE1038

Conference on Computer Vision and Pattern Recognition, 2014, pp.1039

1733–1740.1040

[42] N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. As-1041

tola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, et al., Image database1042

tid2013: peculiarities, results and perspectives, Signal Processing: Im-1043

age Communication 30 (2015) 57–77 (2015).1044

[43] E. C. Larson, D. M. Chandler, Most apparent distortion: full-reference1045

image quality assessment and the role of strategy, Journal of Electronic1046

Imaging 19 (1) (2010).1047

38



[44] H. R. Sheikh, M. F. Sabir, A. C. Bovik, A statistical evaluation of recent1048

full reference image quality assessment algorithms, IEEE Transactions1049

on image processing 15 (11) (2006) 3440–3451 (2006).1050

[45] P. Korshunov, P. Hanhart, T. Richter, A. Artusi, R. Mantiuk,1051

T. Ebrahimi, Subjective quality assessment database of hdr images com-1052

pressed with jpeg xt, in: Quality of Multimedia Experience (QoMEX),1053

2015 Seventh International Workshop on, IEEE, 2015, pp. 1–6.1054

[46] S. Tourancheau, F. Autrusseau, Z. P. Sazzad, Y. Horita, Impact of sub-1055

jective dataset on the performance of image quality metrics, in: Image1056

Processing, 2008. ICIP 2008. 15th IEEE International Conference on,1057

IEEE, 2008, pp. 365–368.1058

[47] A. Ciancio, A. L. N. T. da Costa, E. A. da Silva, A. Said, R. Samadani,1059

P. Obrador, No-reference blur assessment of digital pictures based on1060

multifeature classifiers, IEEE Transactions on image processing 20 (1)1061

(2011) 64–75 (2011).1062

[48] D. Ghadiyaram, A. C. Bovik, Massive online crowdsourced study of1063

subjective and objective picture quality, IEEE Transactions on Image1064

Processing 25 (1) (2016) 372–387 (2016).1065

[49] S. Winkler, Analysis of public image and video databases for quality1066

assessment, IEEE Journal of Selected Topics in Signal Processing 6 (6)1067

(2012) 616–625 (2012).1068

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a1069

large-scale hierarchical image database, in: Computer Vision and Pat-1070

tern Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE, 2009,1071

pp. 248–255.1072

[51] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,1073

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large1074

scale visual recognition challenge, International Journal of Computer1075

Vision 115 (3) (2015) 211–252 (2015).1076

[52] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with1077

deep convolutional neural networks, in: Advances in neural information1078

processing systems, 2012, pp. 1097–1105.1079

39



[53] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-1080

scale image recognition, arXiv preprint arXiv:1409.1556 (2014).1081

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-1082

han, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:1083

Proceedings of the IEEE Conference on Computer Vision and Pattern1084

Recognition, 2015, pp. 1–9.1085

[55] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep1086

features for scene recognition using places database, in: Advances in1087

neural information processing systems, 2014, pp. 487–495.1088

[56] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep1089

features for discriminative localization, in: Proceedings of the IEEE1090

Conference on Computer Vision and Pattern Recognition, 2016, pp.1091

2921–2929.1092

[57] B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman, Labelme: a1093

database and web-based tool for image annotation, International Journal1094

of Computer Vision 77 (1-3) (2008) 157–173 (2008).1095

[58] T. N. Pappas, R. J. Safranek, J. Chen, Perceptual criteria for image1096

quality evaluation, Handbook of image and video processing (2000) 669–1097

684 (2000).1098

[59] C.-H. Chou, Y.-C. Li, A perceptually tuned subband image coder based1099

on the measure of just-noticeable-distortion profile, IEEE Transactions1100

on circuits and systems for video technology 5 (6) (1995) 467–476 (1995).1101

[60] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, F. Bat-1102

tisti, Tid2008-a database for evaluation of full-reference visual quality1103

assessment metrics, Advances of Modern Radioelectronics 10 (4) (2009)1104

30–45 (2009).1105

[61] I. REC, Bt. 500-12, Methodology for the subjective assessment of the1106

quality of television pictures (2009).1107

[62] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold,1108

P. Tran-Gia, Best practices for qoe crowdtesting: Qoe assessment with1109

crowdsourcing, IEEE Transactions on Multimedia 16 (2) (2014) 541–5581110

(2014).1111

40



[63] B. L. Jones, P. R. McManus, Graphic scaling of qualitative terms,1112

SMPTE journal 95 (11) (1986) 1166–1171 (1986).1113

[64] E. Siahaan, A. Hanjalic, J. Redi, A reliable methodology to collect1114

ground truth data of image aesthetic appeal, IEEE Transactions on1115

Multimedia 18 (7) (2016) 1338–1350 (2016).1116

[65] Q. Huynh-Thu, M.-N. Garcia, F. Speranza, P. Corriveau, A. Raake,1117

Study of rating scales for subjective quality assessment of high-definition1118

video, IEEE Transactions on Broadcasting 57 (1) (2011) 1–14 (2011).1119

[66] T. Hoβfeld, R. Schatz, S. Egger, Sos: The mos is not enough!, in: Qual-1120

ity of Multimedia Experience (QoMEX), 2011 Third International Work-1121

shop on, IEEE, 2011, pp. 131–136.1122

[67] D. M. Rouse, S. S. Hemami, R. Pépion, P. Le Callet, Estimating the use-1123

fulness of distorted natural images using an image contour degradation1124

measure, JOSA A 28 (2) (2011) 157–188 (2011).1125

41

View publication statsView publication stats

https://www.researchgate.net/publication/320640130

	Introduction
	Related Work
	No-Reference Image Quality Assessment
	Subjective Image Quality Datasets
	Image Semantics Recognition

	Semantic-Aware Image Quality (SA-IQ) Dataset
	Stimuli
	Subjective Quality Assessment of JPEG images
	Subjective Quality Assessment of Blur images
	Data overview and reliability analysis
	Effect of Semantics on Visual Quality

	Improving NR-IQMs using Semantic Category Features
	Perceptual and Semantic Features for Prediction
	Augmenting NR-IQM with Semantics
	Full-stack Comparison
	Performance on Specific Impairment Types

	Image Utility and Semantic Categories
	Conclusion
	Acknowledgement
	References

