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Abstract

In most practical situations, the compression or transmission of images and videos creates
distortions that will eventually be perceived by a human observer. Vice versa, image and video
restoration techniques, such as inpainting or denoising, aim to enhance the quality of experi-
ence of human viewers. Correctly assessing the similarity between an image and an undistorted
reference image as subjectively experienced by a human viewer can thus lead to significant im-
provements in any transmission, compression, or restoration system. This paper introduces the
Haar wavelet-based perceptual similarity index (HaarPSI), a novel and computationally inexpen-
sive similarity measure for full reference image quality assessment. The HaarPSI utilizes the
coefficients obtained from a Haar wavelet decomposition to assess local similarities between two
images, as well as the relative importance of image areas. The consistency of the HaarPSI with
the human quality of experience was validated on four large benchmark databases containing
thousands of differently distorted images. On these databases, the HaarPSI achieves higher
correlations with human opinion scores than state-of-the-art full reference similarity measures
like the structural similarity index (SSIM), the feature similarity index (FSIM), and the visual
saliency-based index (VSI). Along with the simple computational structure and the short execu-
tion time, these experimental results suggest a high applicability of the HaarPSI in real world
tasks.

1 Introduction

Digital images and videos are omnipresent in daily life and the importance of visual data is still
growing: According to [1], by 2020, nearly a million minutes of video content is estimated to cross
the internet every second.

Typically, video and image signals are intended to be ultimately viewed by humans. For trans-
mission or storage, most signals are compressed in order to meet today’s channel and/or storage
demands. Compression as well as transmission errors can introduce distortions to video or image
signals that are visible to human viewers. For evaluating or optimizing a transmission system or parts
of it, e.g. by controlling the rate-distortion trade-off of a video encoder, it is crucial to measure the
severity of distortions in a perceptually meaningful way. Quality ’in a perceptually meaningful way’
can only be measured reliably in psychometric tests. In such tests, participants are asked to rate the
subjectively perceived quality of images or videos that have previously been subject to some kind
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of distortion introducing processing. The quality ratings of individual participants can eventually be
averaged to obtain a single mean opinion score (MOS) for each stimulus. However, although being
the gold standard for assessing perceived quality such studies are expensive and time-consuming and
not feasible at all for real-time tasks like optimizing or monitoring transmission systems. This has
been motivating research in computational image quality assessment for decades.

Image quality assessment methods typically belong to one of three categories with different
challenges and scopes of applications: Full reference (FR) image quality assessment approaches
require and utilize the availability of a reference image. Reduced reference (RR) methods exploit a
small set of features extracted from the reference image. No reference (NR) approaches estimate
the perceived quality of a possibly distorted image solely from the image itself [2]. Unconstrained
NR IQA has the notion of being the holy grail of IQA and, when successful, essentially replicates
human abilities. It is, however, not a feasible approach for some applications such as, for example,
encoder control for video compression. An NR quality metric used for rate-distortion optimization
in a video encoder would steer the optimization towards coding decisions that remove any type of
noise or artifacts. However, there are videos in which noise and artifacts were intentionally added
to create a certain visual effect. As an example, the reader is invited to imagine a video encoder
that removes film grain from the Quentin Tarantino movie The Hateful Eight due to the application
of an NR quality metric that penalizes ”noisy” coding decisions. Such an encoder would change a
deliberate artistic decision made by the filmmakers and thus deteriorate the viewing experience.

The simplest FR image quality metric is the mean squared error (MSE), which is defined as the
average of the squared differences of the reference and the distorted image. Although being widely
used, it does not correlate well with perceived visual quality [3]. More sophisticated approaches
towards perceptually accurate image quality assessments (IQA) typically follow one of three strate-
gies. Bottom-up approaches explicitly model various processing mechanisms of the human visual
system (HVS), such as masking effects [4], contrast sensitivity [5], or just-noticeable-distortion [6, 7]
in order to assess the perceived quality of images. For instance, the adaptivity of the HVS to the
magnitude of distortions is modeled explicitly by the concept of most apparent distortion (MAD) [8]
in order to apply two different assessment strategies for supra- and near-threshold distortions.

However, the method proposed in this paper as well as most image quality metrics developed
recently follow a top-down approach. There, general functional properties of the HVS (considered
as a black box) are assumed in order to identify and to exploit image features corresponding to
the perceived quality. Prominent examples are the structural similarity index (SSIM) [9], visual
information fidelity (VIF) [10], the gradient similarity measure (GSM) [11], spectral residual based
similarity (SR-SIM) [12], and the visual saliency-induced index (VSI) [13]. The SSIM [9] aims at
taking into account the sensitivity of the human visual system towards structural information. This
is done by pooling three complementary components, namely luminance similarity (comparing local
mean luminance values), contrast similarity (comparing local variances) and structural similarity,
which is defined as the local covariance between the reference image and its perturbed counterpart.
Although being criticized [14], it is highly cited and among the most popular image quality assessment
metrics. The SSIM was generalized for a multi-scale setting by the multi-scale structural similarity
index (MS-SSIM) [15]. One of the first information theoretic approaches to FR IQA was presented
as visual information fidelity (VIF) [10]. VIF models the wavelet coefficients as Gaussian Scale
Mixtures and quantifies the mutual information shared between reference and test images. The
information theoretic measure of mutual information is shown to be correlated to perceived image
quality. Changes in contrast and structure are captured by considering local gradients in [11],
while the squared difference in pixel values between the reference image and the distorted image is
used to measure luminance variations. This approach thus follows the basic framework of combining
complementary feature maps originally introduced in [9]. Additionally, masking effects are estimated,
based on the local gradient magnitude of the reference image and incorporated when the two feature
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maps are combined. Spectral residual-based similarity (SR-SIM) [12] takes into account changes
in the local horizontal and vertical gradient magnitudes. Additionally, it incorporates changes in a
spectral residual-based visual saliency estimate. The visual saliency-induced index (VSI) [13] follows
the same line as SR-SIM by combining similarities in the gradient magnitude and the visual saliency.
However, it further exploits the visual saliency map for weighting the spatial similarity pooling.
Furthermore, [13] also explores the influence of different saliency models on the performance of the
proposed image quality measure. A combination of two feature maps is also applied successfully by
the feature similarity index (FSIM) [16]. Due to its conceptual similarity to the proposed method,
it will be discussed in more detail in a later section.

Adopting the advances in machine learning and data science, IQA methods following a third,
purely data driven strategy have been proposed recently. So far, data driven approaches were mainly
developed for the domain of NR IQA [17, 18, 19, 20], but they have also been adapted in the context
of FR IQA [21].

1.1 Contributions

This work introduces the Haar wavelet-based perceptual similarity index (HaarPSI), a novel and
computationally inexpensive measure yielding FR image quality assessments. The HaarPSI utilizes
the magnitudes of high-frequency Haar wavelet coefficients to define local similarities and low-
frequency Haar wavelet coefficients to weight the importance of (dis)similarities at specific locations
in the image domain.

The six discrete two-dimensional Haar wavelet filters used in the definition of the HaarPSI
respond to horizontal and vertical edges on different frequency scales. The HaarPSI is thus based on
elementary implementations of functional properties known to be exhibited by neurons in the primary
visual cortex, namely orientation selectivity and spatial frequency selectivity. We aim to demonstrate
that such a simple model already suffices to define a similarity measure that yields state-of-the-art
correlations with human opinion scores.

The HaarPSI can also be seen as a drastic simplification of the FSIM [16], which is based on
a similar combination of similarity and weight maps. In the definition of the FSIM, both local
similarities and weights rely on the phase congruency measure [22], whose computation requires
images to be convolved with 16 complex-valued filters and contains several non-trivial steps such as
adaptive thresholding. For the HaarPSI on the other hand, the two maps are computed from the
responses of only six discrete Haar wavelet filters and are cleanly separated in the sense that local
similarities and weights are based on different frequency scales. Surprisingly, these simplifications
not only decrease the required computational effort but also lead to consistently higher correlations
with human mean opinions scores.

In Section 3, we evaluate the consistency of the HaarPSI with the human quality of experience
and compare its performance to state-of-the-art similarity measures like SSIM [9], FSIM [16], and
VSI [13]. As depicted in Tables 1 and 2, the HaarPSI achieves higher correlations with human
opinion scores than all other considered FR quality metrics in all test cases except one, where it
only comes second to the VSI. In addition, the HaarPSI can be computed significantly faster than
the metrics yielding the second and third highest correlations with human opinion scores, namely
VSI and FSIM. In order to facilitate reproducible research, our Matlab implement of the HaarPSI is
publicly available at http://www.haarpsi.org/.

It is both convenient and surprising that the promising experimental results of the HaarPSI are
based on the responses of Haar filters, which are arguably the simplest and computationally most
efficient wavelet filters existing. The results of a numerical analysis of the applicability of other
wavelet filters in the newly proposed similarity measure can be found in Table 4.
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1.2 The Feature Similarity Index (FSIM)

The feature similarity index (FSIM) [16], proposed in 2011, is currently one of the most successful
and influential FR image quality metrics. The FSIM combines two feature maps derived from the
phase congruency measure [22] and the local gradients of the reference and the distorted image to
assess local similarities between two images. For a grayscale image f ∈ `2(Z2), the gradient map is
defined by

Gf [x] =

√
((ghor ∗ f)[x])2 + ((gver ∗ f)[x])2, (1)

where ghor and gver denote horizontal and vertical gradient filters (e.g. Sobel or Scharr filters), and
∗ denotes the two-dimensional convolution operator. The method used in the implementation of
the FSIM to compute the phase congruency map was developed by Peter Kovesi [23] and contains
several non-trivial operations, such as adaptive soft thresholding. However, in its essence, the phase
congruency map of a grayscale image f is given by

PCf [x] ≈
|
∑

n(g
c
n ∗ f)[x]|∑

n |(gc
n ∗ f)[x]|

, (2)

where gc
n denotes differently scaled and oriented complex-valued wavelet filters. The idea behind

(2) is that if the obtained complex-valued wavelet coefficients have the same phase at a location x,
taking the absolute value of the sum is the same as taking the sum of the absolute values. If this is
the case, PCf [x] will be close to or precisely 1.

To assess local similarities between two images with respect to the maps defined in (1) and (2),
the FSIM - like many other image quality metrics - uses a simple similarity measure for scalar values
that already appeared in [9], namely

S(a, b, C) =
2ab+ C

a2 + b2 + C
, (3)

with a constant C > 0. The graph of S(a, b, C) for values ranging from 0 to 100 and C = 30 is
shown in Figure 1b. The local feature similarity map for two grayscale images f1, f2 ∈ `2(Z2) is
defined by

FSf1,f2 [x] = S (Gf1 [x],Gf2 [x], C1)
β ·S (PCf1 [x],PCf2 [x], C2)

γ , (4)

with constants C1, C2 > 0 and exponents β, γ > 0. Based on the assumption that the human visual
system is especially sensitive towards structures at which the phases of the Fourier components are
in congruency (see e.g. [24]), the phase congruency map is not only used in (4) but also applied
to determine the relative importance of different image areas with respect to human perception.
Eventually, the feature similarity index is computed by taking the weighted mean of all local feature
similarities, where the phase congruency map is used as a weight function, that is

FSIMf1,f2 =

∑
x FSf1,f2 [x] · PCf1,f2 [x]∑

x PCf1,f2 [x]
, (5)

where
PCf1,f2 [x] = max (PCf1 [x],PCf2 [x]) . (6)

The original publication of the FSIM proposes a generalization to color images defined in the
YIQ color space, named FSIMC. In the YIQ space, the Y channel encodes luminance information,
while the I and Q channels encode chromatic information. Color images defined in the RGB color
space can easily be transformed to the YIQ space with a linear mapping, namelyfY

f I

fQ

 ≈
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

 ·
fR

fG

fB

 . (7)
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FSIMC simply incorporates the chroma channels I and Q into the local feature similarity measure
(4). The gradient maps as well as the phase congruency maps are purely derived from the luminance
channel Y in FSIMC and FSIM alike.

2 The Haar Wavelet-Based Perceptual Similarity Index

The basic idea of the HaarPSI is to construct feature maps in the spirit of (1) as well as a weight
function similar to (2) by considering a single wavelet filterbank. The response of any high-frequency
wavelet filter will look similar to the response yielded by a gradient filter like the Sobel operator. Fur-
thermore, the phase congruency measure used as a weight function in the FSIM is computed directly
from the output of a multi-scale complex-valued wavelet filterbank, as illustrated by Equation (2).
This gives a strong intuition that it should be possible to define a similarity measure derived from
the response of a single set of discrete wavelet filters that at least matches the performance of the
FSIM on benchmark databases but requires significantly less computational effort.

The wavelet chosen for this endeavor is the so-called Haar wavelet, which was already proposed
in 1910 by Alfred Haar [25] and is arguably the simplest and computationally most efficient wavelet
there is. The one-dimensional Haar filters are given by

h1D
1 =

1√
2
· [1, 1] and g1D

1 =
1√
2
· [−1, 1], (8)

where h1D
1 denotes the low-pass scaling filter and g1D

1 the corresponding high-pass wavelet filter. For
any scale j ∈ N, we can construct two-dimensional Haar filters by setting

g
(1)
j = g1D

j ⊗ h1D
j ,

g
(2)
j = h1D

j ⊗ g1D
j ,

where ⊗ denotes the outer product and the one-dimensional filters h1D
j and g1D

j are given for j > 1
by

g1D
j = h1D

1 ∗ (g1D
j−1)↑2,

h1D
j = h1D

1 ∗ (h1D
j−1)↑2,

where ↑ 2 is the dyadic upsampling operator, and ∗ denotes the one-dimensional convolution oper-

ator. Note that g
(1)
j responds to horizontal structures, while g

(2)
j picks up vertical structures. The

six Haar filters used to define the HaarPSI are shown in Figure 1a.

(a) Haar wavelet filters (b) S(x, y, C) (c) lα(x)

Figure 1: (a) The six Haar wavelet filters whose responses build the core of the HaarPSI. (b) The
function S(x, y, C) for C = 30. (c) The logistic function lα(x) for α = 4.2.

The local similarity map FSf1,f2 multiplicatively combines gradient-based and phase congruency-
based similarities whose contributions are weighted by the exponents α, β > 0. The HaarPSI does
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not consider different types of similarities. However, to correctly predict the perceptual similarity
experienced by human viewers, it can be useful to apply an additional non-linear mapping to the
local similarities obtained from high-frequency Haar wavelet filter responses. This non-linearity is
chosen to be the logistic function, which is widely used as an activation function in neural networks
for modeling thresholding in biological neurons and is given for a parameter α > 0 as

lα(x) =
1

1 + e−αx
. (9)

For two grayscale images f1, f2 ∈ `2(Z2), the local similarity measure used to compute the
HaarPSI is based on the first two stages of a two-dimensional discrete Haar wavelet transform and
given by

HS
(k)
f1,f2

[x] = lα

1

2

2∑
j=1

S
(∣∣∣(g(k)

j ∗ f1)[x]
∣∣∣ , ∣∣∣(g(k)

j ∗ f2)[x]
∣∣∣ , C)

 , (10)

where C > 0, k ∈ {1, 2} selects either horizontal or vertical Haar wavelet filters, S denotes the
similarity measure (3), and ∗ is the two-dimensional convolution operator. The local similarity

measure HS
(k)
f1,f2

can be seen as an analog to FSf1,f2 . However, HS
(k)
f1,f2

does not mix different
different concepts like gradients and phase congruency and is computed straightforwardly on the
responses of two high-frequency discrete Haar wavelet filters. A visualization of the local similarity

map HS
(k)
f1,f2

is shown in Figure 2.
Analogous to the phase congruency map PCf in the definition of the FSIM, the HaarPSI considers

a weight map which is derived from the response of a single low-frequency Haar wavelet filter:

W
(k)
f [x] =

∣∣∣(g(k)
3 ∗ f)[x]

∣∣∣ , (11)

where k ∈ {1, 2} again differentiates between horizontal and vertical filters. Figure 2 shows an

example of the weight map W
(k)
f computed from a natural image.

The Haar-wavelet based perceptually similarity index for two grayscale images f1, f2 is eventually

given as the weighted average of the local similarity map HS
(k)
f1,f2

, that is,

HaarPSIf1,f2 = l−1α


∑
x

2∑
k=1

HS
(k)
f1,f2

[x] ·W(k)
f1,f2

[x]

∑
x

2∑
k=1

W
(k)
f1,f2

[x]


2

, (12)

with
W

(k)
f1,f2

[x] = max(W
(k)
f1

[x],W
(k)
f2

[x]) (13)

for k ∈ {1, 2}. The function l−1α (·) maps the weighted average from the interval [12 , lα(1)] back
to [0, 1]. Applying (·)2 further spreads the HaarPSI in the unit interval and helps to linearize the
relationship between the HaarPSI and human opinion scores. In particular, this procedure aims to
increase the readability of the HaarPSI in the sense that a single value should be ’meaningful on its
own’ and not only relative to other HaarPSI values. Please note that, due to the monotonicity of
the logistic function, applying l−1α (·)2 cannot improve or worsen the rank order-based correlations
with human opinion scores reported in Section 3.

Analogous to the FSIM, the HaarPSI can be extended to color images in the YIQ color space by

considering a third local similarity map based on the chroma channels I and Q. The map HS
(3)
f1,f2

is

computed analogous to (10) by averaging local similarities obtained from comparing f I
1 with f I

2 and
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fQ
1 with fQ

2 . In contrast to HS
(1)
f1,f2

and HS
(2)
f1,f2

, the chromatic information used for HS
(3)
f1,f2

is not

based on orientation sensitive filters. The corresponding weight map W
(3)

fY
1 ,f

Y
2

is thus also computed

by averaging W
(1)

fY
1 ,f

Y
2

and W
(2)

fY
1 ,f

Y
2

. Formally, the generalization of the HaarPSI to color images is given

by

HaarPSICf1,f2 = l−1α


∑
x

3∑
k=1

HS
(k)
f1,f2

[x] ·W(k)

fY
1 ,f

Y
2
[x]

∑
x

3∑
k=1

W
(k)

fY
1 ,f

Y
2
[x]


2

, (14)

with HS
(1)
f1,f2

and HS
(2)
f1,f2

defined as in (10),

HS
(3)
f1,f2

[x] = lα

(
1
2

(
S
(∣∣(m ∗ f I

1)[x]
∣∣ , ∣∣(m ∗ f I

2)[x]
∣∣ , C)+ S(

∣∣∣(m ∗ fQ
1 )[x]

∣∣∣ , ∣∣∣(m ∗ fQ
2 )[x]

∣∣∣ , C))), (15)

with a 2× 2 mean filter m and

W
(3)

fY
1 ,f

Y
2
[x] =

1

2

(
W

(1)

fY
1 ,f

Y
2
[x] +W

(2)

fY
1 ,f

Y
2
[x]
)
. (16)

(a) reference f1

(b) distorted f2

(c) HS
(1)
f1,f2

(d) HS
(2)
f1,f2

(e) W
(1)
f1,f2

(f) W
(2)
f1,f2

Figure 2: (a) An undistorted reference image. (b) The reference image distorted by the JPEG

compression algorithm. (c) The horizontal local similarity map HS
(1)
f1,f2

. (d) The vertical local

similarity map HS
(2)
f1,f2

. (e) The (normalized) horizontal weight function W
(1)
f1,f2

. (f) The (normalized)

vertical weight function W
(2)
f1,f2

. The images (a) and (b) are part of the CSIQ database [8].

2.1 Parameter Selection

The HaarPSI as well as the HaarPSIC require only two parameters to be selected, namely C and
α. Both parameters were optimized on randomly chosen subsets of four large publicly available
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All databases TID only LIVE & CSIQ only
C 30 30 20
α 4.2 4.2 5.8

Spearman Rank Order Correlations (SROCC)

LIVE 0.9683 0.9683 0.9677
TID2008 0.9097 0.9097 0.9031
TID2013 0.8732 0.8732 0.8651

CSIQ 0.9604 0.9604 0.9625

The highest correlation in each row is written in boldface.

(a) (b)

Figure 3: (a) Values for the parameters C and α which maximize the mean SROCC with respect to
randomly selected subsets of the considered databases. The values in the first column were obtained
by including all four databases in the optimization procedure. For the results depicted in columns 2
and 3, the optimization was restricted to the TID 2008 & TID 2013 respectively the LIVE & CSIQ
databases. The SROCC values shown in the last four rows are with respect to the full databases.
(b) The mean SROCC with respect to the subsets of all four databases plotted as a function of the
parameters C and α.

databases, where each subset was a quarter the size of the original database. Each of the databases,
which will be described in more detail in Section 3, contains large numbers of differently distorted
images and their corresponding MOS values. The parameters C and α were selected to maximize the
mean of the four Spearman rank order correlation coefficients (SROCC) obtained from comparing
HaarPSIC and MOS values from subsets of the TID 2008 [26], TID 2013 [27], LIVE [28] and CSIQ [8]
image databases. The optimization was carried out in two steps. First, a grid search was performed
in which the parameter C took values in the interval [5, 100] and α in the range between 2 and 8.
The best (C,α) pair was then used as the initial value of the Nelder-Mead algorithm. The thus
refined parameters were eventually rounded to the nearest integer in the case of C and to the nearest
tenth in the case of α. This procedure resulted in the choices of C = 30 and α = 4.2. To verify the
generality of the HaarPSI, the same optimization procedure was repeated once only considering the
TID 2008 and TID 2013 databases and once restricted to the LIVE and the CSIQ image databases.
The results of all three optimizations are compiled in Figure 3.

3 Experimental Results

The consistency of the HaarPSI with the human perception of image quality was evaluated and
compared with most of the image quality metrics discussed in Section 1 on four large publicly
available benchmark databases of quality-annotated images. Those databases differ in the number
of reference images, the number of distortion magnitudes and types, the number of observers, the
level of control of the viewing conditions, and the stimulus presentation procedure.

The LIVE database [28] contains 29 reference color images and 779 distorted images that were
perturbed by JPEG compression, JPEG 2000 compression, additive Gaussian white noise, Gaussian
blurring as well as JPEG 2000 compressed images that have been transmitted over a simulated
Rayleigh fading channel. Each distortion is introduced at five to six different levels of magnitude.
On average, about 23 subjects evaluated the quality of each image with respect to the reference
image. The viewing conditions were fairly controlled for in terms of viewing distance. Ratings were
collected in a double stimulus manner.
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The TID 2008 database [26] comprises 25 colored reference images and 1700 degraded images,
that had been subject to a wide range of distortions, including various types of noise, blur, JPEG
and JPEG 2000 compression, transmission errors, local image distortions, as well as luminance and
contrast changes. Subjective ratings were gathered by comparisons. The results from several viewing
conditions of experiments in three different labs and on the internet were averaged. TID 2008 was
later extended to TID 2013 [27], which added new types of distortions, which are mostly of a
chromatic nature. In total, TID 2013 contains 3000 differently distorted images.

The CSIQ database [8] is based on 30 reference color images and contains 866 distorted im-
ages. Six different types of distortions (JPEG compression, JPEG 2000 compression, global contrast
decrements, additive pink Gaussian noise, and Gaussian blurring) at four to five different degradation
magnitudes were applied to the reference images. The viewing distance was controlled. Images were
presented on a monitor array and subjects were asked to place all distorted versions of one reference
image according to its perceived quality.

The main goal of most computational image similarity measures is to yield a monotonic relation-
ship with human mean opinion scores across different databases and distortion types. To ensure a
fair evaluation, different computational measures are typically compared with respect to rank order-
based correlations or after performing nonlinear regression. Throughout the numerical evaluation of
the HaarPSI, we apply the rank order-based SROCC to measure correlations between human mean
opinion scores and different computational similarity and distortion indexes. We also considered
applying Kendall’s τ and the Pearson product-moment correlation after performing a four parameter
logistic regression as alternatives for the SROCC. We found that these correlation coefficients es-
sentially duplicate the results reported in this section. The corresponding versions of Tables 1 and 3
were thus not included here but can be found at www.haarpsi.org.

Following the ITU guidelines for evaluating quality prediction models [29], we also tested the
statistical significance of the results reported in this section. Correlation coefficients for which the
H0 hypothesis that they are not significantly different than the respective HaarPSI correlation can
be refuted with p < 0.05 are highlighted in color in Tables 1, 3 and 4. In accordance with [30], the
variance of the z-transforms were approximated by 1.06/(N − 3), where N denotes the degrees of
freedom (i.e. the number of samples in the considered database or distortion specific subset).

Table 1: Spearman Rank Order Correlations of IQA Metrics With Human Mean Opinion Scores

Grayscale Images

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI
LIVE 0.8756 0.9636 0.9479 0.9513 0.9561 0.9672 0.9619 0.9634 0.9534 0.9690

TID2008 0.5531 0.7491 0.7749 0.8542 0.8504 0.8340 0.8913 0.8804 0.8830 0.9043
TID2013 0.6394 0.6769 0.7417 0.7859 0.7946 0.7807 0.8075 0.8022 0.8048 0.8094

CSIQ 0.8058 0.9195 0.8756 0.9133 0.9108 0.9466 0.9319 0.9242 0.9372 0.9546

Color Images

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI
LIVE 0.8756 0.9636 0.9479 0.9513 0.9561 0.9672 0.9619 0.9645 0.9524 0.9683

TID2008 0.5531 0.7491 0.7749 0.8542 0.8504 0.8340 0.8913 0.8840 0.8979 0.9097
TID2013 0.6394 0.6769 0.7417 0.7859 0.7946 0.7807 0.8075 0.8510 0.8965 0.8732

CSIQ 0.8058 0.9195 0.8756 0.9133 0.9108 0.9466 0.9319 0.9310 0.9423 0.9604

Lower correlation than HaarPSI. The difference is statistically significant with p < 0.05.

Higher correlation than HaarPSI. The difference is statistically significant with p < 0.05.

The highest correlation in each row is written in boldface.

The four databases used in the numerical evaluation only contain color images. However, out
of the metrics considered in our experiments, only the FSIM and the HaarPSI are defined for both
grayscale and color images, while the visual saliency-based index (VSI) was specifically designed
for color images. All other similarity measures considered in our experiments only accept grayscale
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images as input or perform an RGB to grayscale conversion as a first processing step. To reflect
these differing designs, all methods were tested on all databases once with the original color images
and once with grayscale conversions obtained from the Matlab rgb2gray function. To obtain the
VSI for pairs of grayscale images, corresponding RGB images were created by setting the values for
all three color channels to the values of the given grayscale channel. The correlation coefficients
of all ten considered similarity measures with the human mean opinion scores for the LIVE image
database, TID 2008, TID 2013 and the CSIQ database are compiled in Table 1.

Table 2 provides a quick impression of the overall performance of each metric. It depicts the
average SROCC of each metric with respect to all four databases as well as the mean execution time
in milliseconds. The average execution time was measured on a Intel Core i7-4790 CPU clocked at
3.60 GHz. To measure the execution time, each quality measure was computed ten times for ten
different pairs of randomly generated 512× 512 pixel images. All computations and measurements
were carried out in Matlab using implementations made freely available by the respective authors.
Note that due to an additional conversion step, metrics that are only defined for grayscale images
can have slightly higher execution times when evaluated on color images.

Table 2: Mean SROCC and Execution Time

Color Images Grayscale Images
SROCC Time (ms) SROCC Time (ms)

HaarPSI 0.9279 24 0.9093 10
VSI 0.9223 79 0.8946 80

FSIM 0.9076 142 0.8925 121
SRSIM 0.8982 10 0.8982 10
MAD 0.8821 892 0.8821 891
GSM 0.8780 8 0.8780 7

MSSSIM 0.8762 30 0.8762 24
SSIM 0.8350 6 0.8350 5
VIF 0.8273 459 0.8273 453

PSNR 0.7185 2 0.7185 1

A high correlation with the mean opinion scores annotated to the distorted images of a large
database containing many different types and degrees of distortions is arguably the best indicator of
an image quality measure’s consistency with human perception. However, for certain applications
like compression or denoising, it could be more important to know if an image quality metric has
a high correlation with the human experience within a single distortion class. Table 3 depicts the
SROC coefficients for all image quality metrics when only subsets of databases containing specific
distortions like Gaussian blur or JPEG transmission errors are considered.

Single correlation coefficients provide a useful means of objectively evaluating and comparing
different computational models of image quality. However, they only measure a specific aspect of
the relationship between an image similarity metric and human opinion scores, like linearity in the
case of the Pearson correlation coefficient or monotonicity in the case of the SROCC. In an attempt
to better visualize the relationship between the HaarPSI and human opinion scores, Figure 4 shows
scatter plots of the HaarPSI against difference mean opinion scores (DMOS) for all four databases.
To provide as much insight as possible, the plots are categorized by specific distortion types.

It should be noted that for all results reported in this section, the HaarPSI, as well as other image
quality metrics such as the SSIM, the FSIM or the VSI, were preprocessing each image by convolving
it with a 2 × 2 mean filter as well as a subsequent dyadic subsampling step. This preprocessing
approximates the low-pass characteristics of the optical part of the human visual system [31] by a
simple model.
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Table 3: Spearman Rank Order Correlations of IQA Metrics With Human Mean Opinion Scores

Color Images

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI

LIVE

jpg2k 0.8954 0.9696 0.9614 0.9627 0.9700 0.9692 0.9700 0.9724 0.9604 0.9684
jpg 0.8809 0.9846 0.9764 0.9815 0.9778 0.9786 0.9823 0.9840 0.9761 0.9832
gwn 0.9854 0.9858 0.9694 0.9733 0.9774 0.9873 0.9812 0.9716 0.9835 0.9845
gblur 0.7823 0.9728 0.9517 0.9542 0.9518 0.9510 0.9660 0.9708 0.9527 0.9676

ff 0.8907 0.9650 0.9556 0.9471 0.9402 0.9589 0.9466 0.9519 0.9430 0.9527

TID2008

gwn 0.9070 0.8797 0.8107 0.8086 0.8606 0.8386 0.8989 0.8758 0.9229 0.9177
gwnc 0.8995 0.8757 0.8029 0.8054 0.8091 0.8255 0.8957 0.8931 0.9118 0.8982
scn 0.9170 0.8698 0.8145 0.8209 0.8941 0.8678 0.9084 0.8711 0.9296 0.9271
mn 0.8515 0.8683 0.7795 0.8107 0.7452 0.7336 0.7881 0.8264 0.7734 0.7909
hfn 0.9270 0.9075 0.8729 0.8694 0.8945 0.8864 0.9195 0.9156 0.9253 0.9155
in 0.8724 0.8327 0.6732 0.6907 0.7235 0.0650 0.7678 0.7719 0.8298 0.8269
qn 0.8696 0.7970 0.8531 0.8589 0.8800 0.8160 0.8348 0.8726 0.8731 0.8842

gblr 0.8697 0.9540 0.9544 0.9563 0.9600 0.9196 0.9551 0.9472 0.9529 0.9001
den 0.9416 0.9161 0.9530 0.9582 0.9725 0.9433 0.9666 0.9618 0.9693 0.9711
jpg 0.8717 0.9168 0.9252 0.9322 0.9393 0.9275 0.9393 0.9294 0.9616 0.9417

jpg2k 0.8132 0.9709 0.9625 0.9700 0.9758 0.9707 0.9809 0.9780 0.9848 0.9860
jpgt 0.7516 0.8585 0.8678 0.8681 0.8790 0.8661 0.8881 0.8756 0.9160 0.8921

jpg2kt 0.8309 0.8501 0.8577 0.8606 0.8936 0.8394 0.8902 0.8555 0.8942 0.8963
pn 0.5815 0.7619 0.7107 0.7377 0.7386 0.8287 0.7659 0.7514 0.7699 0.8010

bdist 0.6193 0.8324 0.8462 0.7546 0.8862 0.7970 0.7798 0.8464 0.6295 0.8026
ms 0.6957 0.5096 0.7231 0.7338 0.7190 0.5163 0.5704 0.6554 0.6714 0.6051

ctrst 0.5859 0.8188 0.5246 0.6381 0.6691 0.2723 0.6475 0.6510 0.6557 0.6209

TID2013

gwn 0.9291 0.8994 0.8671 0.8646 0.9064 0.8843 0.9251 0.9101 0.9460 0.9368
gwnc 0.8981 0.8299 0.7726 0.7730 0.8175 0.8019 0.8562 0.8537 0.8705 0.8593
scn 0.9200 0.8835 0.8515 0.8544 0.9158 0.8911 0.9223 0.8900 0.9367 0.9311
mn 0.8323 0.8450 0.7767 0.8073 0.7293 0.7380 0.7855 0.8094 0.7697 0.7858
hfn 0.9140 0.8972 0.8634 0.8604 0.8869 0.8876 0.9131 0.9040 0.9200 0.9069
in 0.8968 0.8537 0.7503 0.7629 0.7965 0.2769 0.8280 0.8251 0.8741 0.8656
qn 0.8808 0.7854 0.8657 0.8706 0.8841 0.8514 0.8497 0.8807 0.8748 0.8893

gblr 0.9149 0.9650 0.9668 0.9673 0.9689 0.9319 0.9622 0.9551 0.9612 0.9149
den 0.9480 0.8911 0.9254 0.9268 0.9432 0.9252 0.9398 0.9330 0.9484 0.9456
jpg 0.9189 0.9192 0.9200 0.9265 0.9284 0.9217 0.9396 0.9339 0.9541 0.9512

jpg2k 0.8840 0.9516 0.9468 0.9504 0.9602 0.9511 0.9672 0.9589 0.9706 0.9704
jpgt 0.7685 0.8409 0.8493 0.8475 0.8512 0.8283 0.8543 0.8610 0.9216 0.8938

jpg2kt 0.8883 0.8761 0.8828 0.8889 0.9182 0.8788 0.9165 0.8919 0.9228 0.9204
pn 0.6863 0.7720 0.7821 0.7968 0.8130 0.8315 0.7967 0.7937 0.8060 0.8154

bdist 0.1552 0.5306 0.5720 0.4801 0.6418 0.2812 0.4722 0.5532 0.1713 0.4471
ms 0.7671 0.6276 0.7752 0.7906 0.7875 0.6450 0.6562 0.7487 0.7700 0.7152

ctrst 0.4400 0.8386 0.3775 0.4634 0.4857 0.1972 0.4696 0.4679 0.4754 0.4382
ccs 0.0766 0.3099 0.4141 0.4099 0.3578 0.0575 0.3117 0.8359 0.8100 0.6735

mgn 0.8905 0.8468 0.7803 0.7786 0.8348 0.8409 0.8781 0.8569 0.9117 0.8902
cn 0.8411 0.8946 0.8566 0.8528 0.9124 0.9064 0.9259 0.9135 0.9243 0.9275

lcni 0.9145 0.9204 0.9057 0.9068 0.9563 0.9443 0.9608 0.9485 0.9564 0.9622
icqd 0.9269 0.8414 0.8542 0.8555 0.8973 0.8745 0.8810 0.8815 0.8839 0.8953
cha 0.8872 0.8848 0.8775 0.8784 0.8823 0.8310 0.8758 0.8925 0.8906 0.8599
ssr 0.9042 0.9353 0.9461 0.9483 0.9668 0.9567 0.9613 0.9576 0.9628 0.9651

CSIQ

gwn 0.9363 0.9575 0.8974 0.9471 0.9440 0.9541 0.9628 0.9359 0.9636 0.9666
jpeg 0.8881 0.9705 0.9546 0.9634 0.9632 0.9615 0.9671 0.9664 0.9618 0.9695

jpg2k 0.9362 0.9672 0.9606 0.9683 0.9648 0.9752 0.9773 0.9704 0.9694 0.9815
gpn 0.9339 0.9511 0.8922 0.9331 0.9387 0.9570 0.9520 0.9370 0.9638 0.9594
gblr 0.9291 0.9745 0.9609 0.9711 0.9589 0.9682 0.9767 0.9729 0.9679 0.9783
ctrst 0.8621 0.9345 0.7922 0.9526 0.9354 0.9207 0.9528 0.9438 0.9504 0.9450

Lower correlation than HaarPSI. The difference is statistically significant with p < 0.05.

Higher correlation than HaarPSI. The difference is statistically significant with p < 0.05.

The highest correlation in each row is written in boldface.
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(a) LIVE (b) TID 2008

(c) TID 2013 (d) CSIQ

Figure 4: Scatter plots of HaarPSIC values against difference mean opinions scores (DMOS) from
the LIVE, TID 2008, TID 2013 and CSIQ image databases.

4 Conclusion

The HaarPSI is a novel and computationally inexpensive image quality measure based solely on the
coefficients of three stages of a discrete Haar wavelet transform. Its validity with respect to the
human perception of image quality was tested on four large databases containing more than 5000
differently distorted images, with very promising results. In a comparison with 9 popular state-of-the-
art image similarity metrics, the HaarPSI yields significantly higher or statistically indistinguishable
Spearman correlations when restricted to grayscale conversions. For color images, it only comes
second to the VSI when tested on the TID 2013 (see Table 1). Along with its simple computational
structure and its comparatively short execution time, this suggests a high applicability of the HaarPSI
in real world optimization tasks. In particular, image quality metrics like PSNR, SSIM, or SR-
SIM, that outperform the HaarPSI with respect to speed achieve considerably inferior correlations
with human opinion scores (see Table 2). Regarding the applicability of the HaarPSI in specific
optimization tasks, we would like to mention that the HaarPSI has consistently high correlations
with human opinion scores throughout all databases with respect to distortions caused by the JPEG
and JPEG 2000 compression algorithms (see Table 3).

The results reported in Tables 1 and 3 might seem contradictory at first glance. In many cases,
the HaarPSI yields the highest SROCC for a complete database but is outperformed by other metrics
like the VSI when restricting the same database to a single distortion type. However, taking into
account statistical significance, it is apparent that only when tested on the TID databases restricted
to Gaussian blur, the performance of the HaarPSI is consistently lower than the performance of
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other similarity metrics. This particular shortcoming can be explained by the fact that the HaarPSI
is almost exclusively relying on high-frequency information and thus maybe too sensitive in the case
of distortions purely based on low-pass filtering.

When only considering a specific type of distortion, the correlations yielded by the HaarPSI might
be improved by tuning the constants C and α, which have originally been selected to optimize the
overall performance. Increasing C decreases the sensitivity of the HaarPSI to changes in the high-

frequency components measured by the similarity maps HS
(1,2)
f1,f2

relative to the weights W
(1,2)
f , which

are based on a lower frequency band and serve as a rough model of attention-like processes. The
effect of the parameter α on the HaarPSI is qualitatively similar when it is approaching zero. This
could explain the roughly negative linear relationship between C and α in Figure 3. However, for
larger choices of α, the function lα(·) is increasingly mimicking the behavior of a thresholding operator
in the sense that only severe changes in the high-frequency components will have a significant effect
on the HaarPSI. To also provide a quantitative analysis of these relationships, Figure 5 depicts the
influence of C and α on the correlation with human opinion scores in the case of TID 2013 with
respect to six different distortions. Figure 5c indeed suggests that in the case of Gaussian blur, the
performance of the HaarPSI can be improved by attenuating its sensitivity to changes in the high-
frequency components via increasing C and choosing α close to 0. In contrast, Figure 5a indicates
that the HaarPSI achieves the highest correlations in the case of JPEG compression artifacts when
it is tuned to be sensitive to severe changes in the high frequency components at highly salient
locations.

(a) JPEG (b) JP2K (c) Blur

(d) AWGN (e) SCN (f) Denoising

Figure 5: Spearman rank order correlations as functions of the parameters C and α for images
affected by (a) JPEG compression, (b) JP2K compression, (c) Gaussian Blur, (d) additive Gaussien
white noise, (e) spatially correlated noise white noise, and (f) denoising. All correlations are with
respect to TID2013.

It is surprising that the extremely simple computational model of orientation and spatial frequency
selectivity used in the HaarPSI suffices to obtain comparatively high correlations with human opinion
scores. Additionally, these correlations are stable with respect to a wide range of parameters C and
α (cf. Figure 3). This could indicate that the computational structure of the HaarPSI succeeds at
reproducing the functional essence of at least some parts of the human visual system. It is, however,
quite likely that the HaarPSI owes some of its experimental success to the limitations of the used
benchmark databases, which only consider a limited number of reference images and specific types of
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distortions. Certainly, orientation selectivity in the primary visual cortex is not restricted to horizontal
and vertical edges.

Another computational principle that plays an important role in natural neural systems and that
was recently successfully applied in the context of perceptual image similarity measurement is divisive
normalization [32]. While the similarity measure S(a, b, C) introduces some kind of normalization,
divisive normalization is not included in any of the computational stages of the HaarPSI. It re-
mains an open question if and how the HaarPSI could be further improved by incorporating divisive
normalization in a similar fashion as the concepts of orientation selectivity and spatial frequency
selectivity.

Many practical applications demand image similarity metrics to yield values that are easy to
interpret. Ideally, an image similarity of 0.9 would in fact indicate that the average human would
also assess a similarity of 90% between two images or that a decrease in similarity to 0.8 corresponds
to a 10% decrease in perceived quality for a human viewer. Due to the generality and difficulty of
this task, computational models of image similarity typically only aim at establishing a monotonic
relationship with human mean opinion scores, which is also reflected in the choice of the SROCC
as a measure of consistency. In the case of the HaarPSI, applying l−1α (·)2 to the final similarity
score significantly linearizes its relationship with human opinion scores, thereby leading to the strong
linear correlations depicted in the scatter plots in Figure 4. While l−1α (·)2 is monotonically increasing
on [12 , 1) and therefore not affecting the SROCC, we hope that this improves the readability and
applicability of the HaarPSI. To also provide an objective measure of linear correlation, we repeated
the numerical evaluation from Section 3 with the Pearson product-moment correlation instead of
the SROCC (see Table 5 in Appendix A). The results of this analysis indicate that even without
additional nonlinear regression, the HaarPSI has a highly linear relationship with human mean opinion
scores from different databases and across varying types of distortion.

The HaarPSI can conceptually be understood as a simplified version of the FSIM. Both metrics
rely on the construction of two maps, where one map measures local similarities between a reference
image and a distorted image and the other map assesses the relative importance of image areas.
However, in the HaarPSI, these maps are defined only in terms of a single Haar wavelet filterbank,
while the FSIM utilizes an implementation of the phase congruency measure that requires the input
images to be convolved with 16 complex-valued filters and contains several non-trivial computational
steps, like adaptive thresholding. Another difference is that the FSIM uses the phase congruency
measure both as a weight function in (5) and as a part of the local similarity measure (4). In the
HaarPSI, the weight function (11) and the local similarity measure (10) are strictly separated in the
sense that they are based on distinct bands of the frequency spectrum.

These conceptual simplifications lead to a significant decrease in execution time (see Table 2)
and enable a better understanding of how single elements of the measure and properties of the input
images contribute to the final similarity score. In the case of the HaarPSI, it is clear that the local
similarity measure is based on high-frequency information, while the weight map, which provides a
crude measure of visual saliency, is using filters that are tuned to lower frequencies. We suspect that
a similar principle plays an important role in the FSIM, where additional high-frequency filters are
applied to obtain the gradient map used in the local similarity measure (4). However, for the FSIM,
it is difficult to verify this, as filters that are tuned to lower frequencies are only implicitly used in
the computation of the phase congruency measure, which is in turn part of both the local similarity
measure and the weight map.

We do not have a straightforward explanation as to why the HaarPSI outperforms the FSIM
with respect to correlations with human opinion scores (see Table 1). After all, both measures
have a similar overall structure and implement similar principles such as frequency and orientation
selectivity. We assume that the reduced complexity of the HaarPSI also limits uncontrollable side
effects when accentuating different aspects of the input images by varying the parameters C and
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α. This could improve the chance of successfully fitting subsets of benchmark databases when only
considering two free parameters, but also decrease the generalization error. Furthermore, the principle
of orientation selectivity is implemented differently in the HaarPSI in the sense that measurements
regarding horizontal and vertical structures are only combined at the very end, that is, when taking
the weighted average. It is well known that orientation selectivity is a strong organization principle in
the primary visual cortex, where neurons that are tuned to similar orientations are grouped together
in so-called orientation columns [33]. It thus seems reasonable that a consistent separation of the
information yielded by vertical and horizontal filters has a positive effect on the correlations with
human opinion scores.

From a computational point of view, it is very beneficial to apply discrete Haar wavelet filters
instead of other wavelet filters. However, by changing h1D

1 and g1D
1 in (8) to the respective filters, the

measure given in (12) can easily be defined for other wavelets. Table 4 depicts the performance of
such measures based on selected Daubechies wavelets [34], symlets [35], coiflets [36] and the Cohen-
Daubechies-Feauveau wavelet [37] with respect to the four databases considered in Section 3. It is
interesting to see that Haar filters not only seem to be the computationally most efficient but also
the qualitatively best choice for the measure (12).

Table 4: SROCC With Human Mean Opinion Scores for Different Wavelet Filters

Grayscale Images

Daub2PSI Daub4PSI Sym4PSI CDFPSI Coif1PSI HaarPSI
LIVE 0.9620 0.9530 0.9552 0.9604 0.9603 0.9690

TID2008 0.8971 0.8796 0.8915 0.8836 0.8965 0.9043
TID2013 0.8064 0.7982 0.8022 0.7965 0.8055 0.8094

CSIQ 0.9492 0.9442 0.9454 0.9404 0.9485 0.9546

Color Images

Daub2PSI Daub4PSI Sym4PSI CDFPSI Coif1PSI HaarPSI
LIVE 0.9659 0.9610 0.9630 0.9675 0.9644 0.9683

TID2008 0.8992 0.8804 0.8950 0.8932 0.8986 0.9097
TID2013 0.8724 0.8643 0.8696 0.8633 0.8716 0.8732

CSIQ 0.9603 0.9577 0.9592 0.9596 0.9593 0.9604

Lower correlation than HaarPSI. The difference is statistically significant with p < 0.05.

Higher correlation than HaarPSI. The difference is statistically significant with p < 0.05.

The highest correlation in each row is written in boldface.

A Matlab function implementing the HaarPSI can be downloaded from www.haarpsi.org.

Acknowledgements

R. Reisenhofer would like to thank Eero Simoncelli, Johannes Ballé and the members of the Lab-
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A Pearson Product-Moment Correlations

Table 5: Pearson Correlations of IQA Metrics With Human Mean Opinion Scores
Color Images

PSNR VIF SSIM MSSSIM GSM MAD SRSIM FSIM VSI HaarPSI
LIVE 0.8585 0.9411 0.8290 0.7670 0.7799 0.9559 0.7758 0.8595 0.7647 0.9592

TID2008 0.5190 0.7769 0.7401 0.7897 0.7779 0.8290 0.8242 0.8341 0.8107 0.9032
TID2013 0.4785 0.7335 0.7596 0.7773 0.7966 0.8074 0.7984 0.8322 0.8373 0.8904

CSIQ 0.7512 0.9219 0.7916 0.7720 0.7471 0.9500 0.7520 0.8208 0.8392 0.9463

Color Images

LIVE

jpg2k 0.8747 0.9476 0.8925 0.8697 0.8564 0.9725 0.8800 0.9036 0.8662 0.9673
jpg 0.8650 0.9600 0.9279 0.9184 0.9131 0.9742 0.9028 0.9117 0.9037 0.9779
gwn 0.9792 0.9632 0.9583 0.9181 0.8904 0.9764 0.8684 0.9263 0.9171 0.9791
gblur 0.7744 0.9575 0.8881 0.8450 0.8565 0.9486 0.8411 0.9086 0.8544 0.9576

ff 0.8753 0.9560 0.8619 0.8113 0.7925 0.9461 0.7837 0.8515 0.8151 0.9444

TID2008

gwn 0.9336 0.8657 0.7494 0.7433 0.8078 0.8165 0.8284 0.8076 0.8719 0.9029
gwnc 0.9208 0.8928 0.7758 0.7772 0.7833 0.8267 0.8625 0.8671 0.9045 0.9131
scn 0.9526 0.8578 0.7678 0.7583 0.8422 0.8598 0.8492 0.8217 0.8862 0.9283
mn 0.8627 0.8900 0.7496 0.7849 0.5512 0.7566 0.7345 0.8106 0.6114 0.7480
hfn 0.9680 0.9441 0.8228 0.8176 0.8452 0.8931 0.8657 0.8597 0.8934 0.9393
in 0.8566 0.8146 0.6202 0.6220 0.6218 0.0417 0.6912 0.7044 0.7651 0.8077
qn 0.8729 0.7442 0.7239 0.7602 0.8090 0.7981 0.7586 0.7986 0.8077 0.8602

gblr 0.8439 0.9388 0.8936 0.8745 0.8761 0.9227 0.9078 0.9078 0.8731 0.8934
den 0.9428 0.8968 0.9208 0.9156 0.9052 0.9612 0.9133 0.9344 0.9162 0.9739
jpg 0.8597 0.9327 0.9319 0.9279 0.9546 0.9487 0.9444 0.9299 0.9566 0.9647

jpg2k 0.8629 0.9169 0.9492 0.9365 0.9564 0.9733 0.8965 0.9566 0.9632 0.9856
jpgt 0.6258 0.8720 0.8375 0.8150 0.8441 0.8556 0.8573 0.8446 0.8705 0.8882

jpg2kt 0.8528 0.8307 0.8252 0.7970 0.7958 0.8295 0.7932 0.7883 0.8142 0.8688
pn 0.5831 0.7366 0.6685 0.6637 0.7013 0.8242 0.7381 0.7297 0.7314 0.7936

bdist 0.6277 0.8340 0.8659 0.7861 0.8822 0.8007 0.7864 0.8410 0.6198 0.8069
ms 0.6845 0.5896 0.6834 0.6735 0.7431 0.5709 0.6098 0.6700 0.6420 0.5358

ctrst 0.5819 0.8816 0.5158 0.7686 0.7068 0.2573 0.6978 0.7275 0.6995 0.6446

TID2013

gwn 0.9519 0.9010 0.7954 0.7891 0.8500 0.8732 0.8569 0.8435 0.8928 0.9248
gwnc 0.8948 0.8641 0.7615 0.7629 0.8216 0.8297 0.8603 0.8543 0.8975 0.8998
scn 0.9513 0.8783 0.7840 0.7681 0.8420 0.8804 0.8371 0.8240 0.8714 0.9261
mn 0.8447 0.8772 0.7569 0.7929 0.5934 0.7804 0.7615 0.8214 0.6585 0.7737
hfn 0.9607 0.9454 0.8342 0.8307 0.8575 0.9098 0.8702 0.8669 0.8939 0.9415
in 0.8856 0.8489 0.6625 0.6541 0.6602 0.2741 0.7183 0.7216 0.7776 0.8325
qn 0.8855 0.7805 0.7514 0.7752 0.8199 0.8365 0.7677 0.8096 0.8119 0.8643

gblr 0.8952 0.9530 0.8832 0.8616 0.8565 0.9336 0.8893 0.8922 0.8548 0.9030
den 0.9572 0.8914 0.9199 0.9110 0.9116 0.9602 0.9114 0.9304 0.9187 0.9690
jpg 0.8972 0.9332 0.9278 0.9207 0.9470 0.9510 0.9343 0.9242 0.9479 0.9750

jpg2k 0.9078 0.9184 0.9424 0.9183 0.9462 0.9663 0.8772 0.9360 0.9494 0.9787
jpgt 0.6410 0.9000 0.8721 0.8476 0.8697 0.8537 0.8772 0.8761 0.8972 0.9177

jpg2kt 0.8834 0.8692 0.8260 0.7929 0.7960 0.8648 0.7914 0.8010 0.8179 0.8913
pn 0.6702 0.7686 0.7481 0.7376 0.7718 0.8513 0.8034 0.7957 0.7971 0.8376

bdist 0.1448 0.5027 0.5589 0.4608 0.5939 0.3184 0.4436 0.5237 0.1356 0.4441
ms 0.7482 0.6829 0.7309 0.6823 0.8153 0.6654 0.6364 0.7103 0.7367 0.6365

ctrst 0.4812 0.8730 0.4941 0.7268 0.6701 0.2601 0.6520 0.6838 0.6595 0.5916
ccs 0.1378 0.3404 0.4349 0.4237 0.3739 0.0351 0.2491 0.6069 0.6852 0.6003

mgn 0.9187 0.8559 0.7358 0.7301 0.7903 0.8422 0.8049 0.8008 0.8505 0.8786
cn 0.8548 0.8992 0.8459 0.8105 0.9286 0.9280 0.9260 0.9214 0.9301 0.9571

lcni 0.9372 0.9034 0.9058 0.8917 0.9472 0.9520 0.9439 0.9364 0.9463 0.9686
icqd 0.9227 0.8582 0.8083 0.7767 0.8240 0.8626 0.7574 0.8053 0.8083 0.8826
cha 0.8569 0.9441 0.9519 0.9071 0.9563 0.9560 0.8819 0.9478 0.9498 0.9549
ssr 0.9167 0.9067 0.9528 0.9197 0.9601 0.9658 0.9135 0.9412 0.9449 0.9791

CSIQ

gwn 0.9437 0.9590 0.8043 0.8254 0.8517 0.9486 0.8669 0.7959 0.8875 0.9433
jpeg 0.7898 0.9590 0.9165 0.9064 0.8964 0.9696 0.8731 0.9077 0.8833 0.9780

jpg2k 0.9270 0.9360 0.8967 0.8843 0.8793 0.9808 0.8428 0.9106 0.9008 0.9853
gpn 0.9527 0.9552 0.7844 0.7790 0.8293 0.9548 0.7777 0.8160 0.8698 0.9470
gblr 0.9081 0.9627 0.8692 0.8670 0.8575 0.9713 0.8675 0.8843 0.8761 0.9623
ctrst 0.8888 0.9294 0.7666 0.9003 0.8656 0.9306 0.8878 0.8765 0.8686 0.9229

Lower correlation than HaarPSI. The difference is statistically significant with p < 0.05.

Higher correlation than HaarPSI. The difference is statistically significant with p < 0.05.

The highest correlation in each row is written in boldface.
All correlations were obtained without nonlinear regression.
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