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Abstract

The growing interest in using the three dimensional information in various appli-

cation fields has led to the generation of huge color stereo image databases. As

a result, it becomes necessary to design efficient content-based image retrieval

system well adapted to the indexing of such large databases. To this end, we

propose in this paper different statistical-based retrieval approaches where the

associated estimated model parameters are considered as a feature vector in

the indexing process. More precisely, the Gaussian copula based multivariate

Generalized Gaussian model will be used to capture the different correlations

existing in color stereo images. While the first strategy aims at exploiting the

cross-view as well as the cross-color channel redundancies, the second one re-

sorts to a more general joint statistical model exploiting the correlation between

the texture and depth information. Experimental results, performed on various

datasets, confirm the benefits that can be drawn from the proposed approaches.
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1. Introduction

One of the most useful 3D acquisition technologies is the stereoscopic vi-

sion system which consists in generating two images, called left and right views,

by recording two slightly different angles of the same scene. The main advan-

tage of these images is their ability to provide the 3D information (called also

depth information) of the perceived scene. For this reason, such data has been

extensively used in various application fields such as obstacle detection for au-

tonomous vehicle navigation [1] and laparoscopic surgery planning in medicine

[2]. Moreover, the color information plays a crucial role in the binocular vision.

Indeed, in [3, 4], the authors proved that, compared to the use of luminance

information only, chromatic features revealed an interesting gain in the stereo-

scopic correspondence process. Thus, such gain results in improving the dispar-

ity estimation step, and so, yielding a more accurate 3D reconstruction of the

scene. The benefits of exploiting color information in enhancing the amount of

binocular perceived depth data is also shown in [5].

The growing interest in color stereo imaging has led to the generation of huge

stereo image (SI) databases. In this context, the first challenge is to facilitate

the access to the database images given a query image presented by the user.

To this end, Content-Based Image Retrieval (CBIR) systems have been exten-

sively employed, and are mainly composed of two stages. The first one is the

extraction of relevant visual features characterizing the color, texture and/or

shape contained in both query and database images. At the second stage, the

database images whose features are closest to those of the query one, according

to a predefined similarity measure, are identified. It is worth pointing out that

very few works have recently been reported in the literature for color SI retrieval.

The first one, developed by Feng et al. [6], consists in extracting the MPEG-7

edge histograms from the left image. Then, a refinement of the resulting image

candidates is performed using a re-ranking procedure based on the disparity

cues. The major drawback of this approach is that it favors only one view while

ignoring the other one. In [7], a retrieval method devoted to high-resolution
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optical satellite SI is proposed. It aims at comparing features extracted from

digital surface models and ortho-images. In [8], an object-based stereo image

retrieval method is designed for color SI. Note that unlike the aforementioned

works, the objective is to find in the database images containing objects similar

to the query objects. Thus, to handle such partial queries, a prior segmentation

of the views is performed. Then, salient features (typically, the MPEG-7 color

layout descriptor, the pyramid histogram of visual words and local binary pat-

tern) are computed.

However, it should be noted that most of the reported works were interested

in retrieving either color images (i.e. mono-view) or gray level stereo images.

More precisely, it has been shown that, among these works, statistical-based ap-

proaches lead to high retrieval performance. The main idea behind them consists

in resorting to a parametric modeling of the distributions of the coefficients re-

sulting from an image decomposition such as the Wavelet Transform (WT), and

then taking the fitted parameters as features. Such approach presents two main

advantages: the accuracy of the parametric model and, the availability of met-

rics such as the Kullback-Leibler divergence allowing a fast computation of the

similarity measure between the distribution parameters. For instance, regard-

ing the mono-view color images, multivariate statistical models with different

margins, such as the Gamma, Gaussian, Laplacian and Generalized Gaussian

(GG) distributions, have been used to capture the correlations existing between

three color channels [9, 10]. More sophisticated models based on copula have

also been used in [11, 12]. In the gray level SI context, Chaker et al. resorted to

a Bivariate GG distribution model of the wavelet subbands of both views com-

bined with an univariate GG model of the wavelet coefficients of the disparity

map [13]. Recently, Karine et al. have captured the cross-view dependencies

through a Gaussian copula-based multivariate model [14] and, have shown that

such modeling approach outperforms the BGG-based one [13].

In this paper, we propose to extend such statistical-based approaches to the

context of color SI retrieval. Indeed, while the existing works devoted to color

mono-view images (resp. gray level SI) could be easily generalized to the context
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of color SI by applying them independently to each view of the stereo pairs (resp.

to each channel of the color space), our main contributions aim at designing new

retrieval strategies exploiting simultaneously the cross-view redundancies as well

as the color channel dependencies. This is first achieved through copula-based

multivariate approaches for modeling the wavelet coefficients of the color SI.

Moreover, in addition to the stereo pairs, the depth information is exploited

in two ways. In the first one, it is modeled using an univariate model and its

resulting distribution parameters are combined with those modeling the color SI

wavelet coefficients. However, in the second one, we propose to resort to a more

general joint statistical model to capture the dependencies existing between the

texture (i.e two color views) and depth information.

The remainder of this paper is organized as follows. In Section 2, an overview

of the univariate and bivariate modeling based SI retrieval approaches is given.

Then, the proposed multivariate-based SI retrieval approaches are described in

Section 3. Finally, experimental results, carried out on different natural color

stereo image databases, are shown and discussed in Section 4, and some conclu-

sions are drawn in Section 5.

2. Related works

2.1. Wavelet-based stereo image retrieval methods

As mentioned in Section 1, wavelet-based image retrieval methods have at-

tracted a considerable attention over the last years. In this context, a WT is

often applied to the database images, resulting in one approximation subband

and J detail subbands for each image [15]. The generated detail subbands rep-

resent the image edges at different orientations and scales, and their statistical

properties are very often exploited in the indexing process. For instance, the

detail coefficients wj , for each subband j with j ∈ {1, . . . , J}, are often viewed

as realizations of a zero-mean continuous random variable whose probability

density function f is approximated by a specific distribution. While Lapla-

cian and Gamma distributions have already been used in the literature [16, 17],
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the GG distribution [18, 19] has been extensively employed for modeling the

wavelet coefficients. Let us recall that the probability density function of the

GG distribution is given by:

∀wj ∈ R, fGG(wj ; pj) =
bj

2ajΓ(1/bj)
exp(−(

| wj |
aj

)bj ), with pj = (aj , bj)

(1)

where Γ(z) ,
∫ +∞
0

tz−1e−tdt and aj and bj are two positive reals, called the

scale and shape parameters, that can be estimated using the maximum likeli-

hood method [18, 20].

Then, the estimated parameters pj = (aj , bj) of the different detail subbands

are merged to construct the final feature vector of each image. Finally, during

the retrieval procedure, the similarity between a database image I(db) and a

query one I(q) is measured through the computation of an appropriate metric.

While several metrics have been reported in the literature [21], the Kullback-

Leibler Divergence (KLD) is an appealing tool to assess the similarity between

two probability density functions [22]. It is widely used in content-based image

retrieval systems since it has a closed form for a great number of model distri-

butions. By considering two GG probability density functions of a given query

and database image subbands, characterized respectively by p
(q)
j and p

(db)
j , the

KLD is expressed as:

D̃GG(p
(q)
j ‖ p

(db)
j ) = KLDGG(p

(q)
j ‖ p

(db)
j )

= log
( b(db)j a

(q)
j Γ(1/b

(q)
j )

b
(q)
j a

(db)
j Γ(1/b

(db)
j )

)
− 1

b
(db)
j

+ (
a
(db)
j

a
(q)
j

)b
(q)
j

Γ((b
(q)
j + 1)/b

(db)
j )

Γ(1/b
(db)
j )

, (2)

where p
(q)
j = (a

(q)
j , b

(q)
j ) and p

(db)
j = (a

(db)
j , b

(db)
j ) represent respectively the

estimated model parameters of the j-th subband of the query image I(q) and

the database one I(db).

Thus, by adding the resulting KLD terms across the different detail subbands,

the global similarity measure D̄GG between the query and database images is
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obtained as follows:

D̄GG(I(q), I(db)) =

J∑
j=1

D̃GG(p
(q)
j ‖ p

(db)
j ). (3)

When dealing with gray level SI retrieval, a straightforward solution may consist

in applying the wavelet-based image retrieval approach described above to each

view of the stereo pairs. More precisely, at the retrieval stage, the query SI

(I(l,q), I(r,q)) is compared to any database SI (I(l,db), I(r,db)) by evaluating the

sum of the global KLDs (i.e D̄GG given by Eq. (3)) of the left and right images:

Ď(I(l,q), I(r,q), I(l,db), I(r,db)) = D̄GG(I(r,q), I(r,db)) + D̄GG(I(l,q), I(l,db)). (4)

Despite its simplicity, this approach has the shortcoming of ignoring the cross-

view dependencies existing between the left and right images. This fact has

motivated the design of more efficient solutions for gray level SI retrieval [13, 14].

For instance, in addition to the statistical features extracted from the left and

right images, the first strategy proposed in [13] consists in extracting similar

statistical features from the disparity (or depth) map u. Thus, the closeness

between the query and database SI scenes is assessed through the sum of the

global KLDs related to the two views as well as the disparity maps u(q) and

u(db):

DGG = D̄GG(I(r,q), I(r,db)) + D̄GG(I(l,q), I(l,db)) + D̄GG(u(q), u(db)). (5)

While this strategy exploits explicitly the cross-view dependencies through the

use of the depth information, the second strategy developed in [13] as well as the

method proposed in [14] aim to exploit implicitly these inter-view redundancies

by resorting to bivariate statistical modeling approaches.

2.2. Bivariate statistical modeling-based approaches

2.2.1. Bivariate Generalized Gaussian model

The second strategy described in [13] involves a bivariate parametric model

of the joint distribution of the two views to reflect the cross-view redundancies.

To this end, a Bivariate Generalized Gaussian (BGG) distribution has been
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employed. Indeed, let us denote by wj = (w
(l)
j , w

(r)
j )> the bivariate vector

composed of the wavelet coefficients of the left subband w
(l)
j and those of the

right one w
(r)
j . The latter can be viewed as the realization of a zero-mean

random vector whose probability density function is given by:

∀wj ∈ R2, fBGG(w) =
2

πΓ(1 + 1
bj

)2
1+ 1

bj

| Sj |−1/2 exp

(
−1

2
(wTS−1j w)bj

)
,

(6)

where bj > 0 is the shape parameter and Sj represents the scaling matrix of

size 2× 2, which can be estimated using the maximum likelihood criterion [23].

With this BGG model, it is important to note that a closed form expression of

the KLD exists and can be found in [13], which will allow to measure easily the

similarity between the query and database SI.

2.2.2. Copula-based bivariate modeling

The recent approach developed in [14] is based on the copula tool which

presents the advantage of exploiting the dependencies between many random

variables independently of their marginal distributions. Note that the basic

concepts behind copula theory can be found in [24]. Such modeling approach

is completely defined once the appropriate marginal distributions and the cop-

ula are fixed. Among the several copula families proposed in the literature,

the authors in [14] retain the Gaussian copula, which has been extensively em-

ployed due to the following reasons. First, it is a good fit to the statistics of

the wavelet coefficient subbands allowing an accurate capture of both marginal

and joint distributions [11, 12]. Moreover, its related hyperparameters can be

easily estimated using maximum likelihood technique and its associated KLD

has a closed form. In [14], Karine et al. have considered the Gaussian copula

with GG as well as Gamma marginal distributions, and the resulting marginal

parameters are combined with the copula ones to construct the feature vector

for the indexing step.

Based on the aforementioned recent works, we first propose in the following to

extend them, and then, design novel Gaussian copula-based multivariate mod-
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eling approaches adapted to the context of color stereo images.

3. Proposed depth-based retrieval approaches through bivariate and

multivariate models

3.1. Motivation

Let us first assume that RGB cameras have been used to acquire the color

stereo images. Thus, the resulting images will be denoted by I(c,v) with v ∈ {l,r}

represents either the left or the right view, and c ∈ {R,G,B} represents the

red, green and blue color components. When dealing with color stereo images

retrieval, a straightforward solution would consist in applying simple univariate

statistical approaches to each color component of each view, as well as to the

depth map u. More precisely, by considering again the GG distribution for

modeling the wavelet coefficient subbands of both color views and the depth

maps, the scale and shape parameters are used to construct the following feature

vector:

∀j ∈ {1, . . . , J}, VUGG,j =
(
p
(c,v)
j ,p

(u)
j

)
,

with v ∈ {l,r}, and c ∈ {R,G,B}. (7)

Once the feature vectors are extracted from the query and database color SI

as well as their associated depth maps, which will be denoted respectively by(
p
(c,v,q)
j ,p

(u,q)
j

)
,
(
p
(c,v,db)
j ,p

(u,db)
j

)
, the sum of the KLDs over all the subbands

of the color channels of the left and right views and those of the depth maps is

computed as a similarity measure:

DUGG =

J∑
j=1

∑
v∈{l,r}

∑
c∈{R,G,B}

KLDGG(p
(c,v,q)
j ||p(c,v,db)

j )

+KLDGG(p
(u,q)
j ||p(u,db)

j ). (8)

However, such approach is not so efficient since the statistical modeling step is

performed in an independent way while the stereo images as well as their color

components present strong correlations. For this reason, we propose to capture
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these dependencies by resorting to bivariate modeling approaches as it will be

addressed in what follows.

3.2. Gaussian copula-based bivariate modeling approach

Inspired by the previous work of Karine et al. [14] for gray level SI retrieval,

we propose first to extend it by resorting to Gaussian Copula based Bivariate

Generalized Gaussian model (GC-BGG) to capture the cross-view dependencies

for each color channel. Thus, as it can be seen in Fig. 1, each color channel of

the SI is considered independently from the other ones by defining the following

vector:

∀ c ∈ {R,G,B}, w
(c)
j =

(
w

(c,l)
j , w

(c,r)
j

)>
. (9)

By assuming that each vector w
(c)
j is the realization of a stochastic vector, the

GC-BGG probability density function is given by:

∀ c ∈ {R,G,B}, ∀ w
(c)
j =

(
w

(c,l)
j , w

(c,r)
j

)>
∈ R2,

fGC-BGG(w
(c)
j ) = |Σ(c)

j |
−1/2 exp

(
−

(ŵ
(c)
j )>((Σ

(c)
j )−1 − I)ŵ

(c)
j

2

)
× fGG(w

(c,l)
j ; p

(c,l)
j )fGG(w

(c,r)
j ; p

(c,r)
j ), (10)

where ŵ
(c)
j =

(
φ−1(w

(c,l)
j ), φ−1(w

(c,r)
j )

)>
with φ−1 is the inverse cumulative

distribution function of the normal distribution N (0, 1), Σ
(c)
j is the covariance

matrix of the vector ŵ
(c)
j (i.e with size 2 × 2), and p

(c,v)
j is the parameters

vector of the GG margins used to model the wavelet coefficients of the color

components of both views. The latter parameters (i.e Σ
(c)
j and p

(c,v)
j ) can be

estimated using the method described in [24].

For the indexing step, the estimated parameters resulting from modeling each

stereo pair channel of the database will represent the following texture feature

vector:

∀c ∈ {R,G,B}, ∀j ∈ {1, . . . , J},

V
(c)
GC-BGG,j =

(
p
(c,v)
j ,Σ

(c)
j

)
v∈{l,r}

=
(
p
(c,l)
j ,p

(c,r)
j ,Σ

(c)
j

)
. (11)
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Then, the feature vectors associated to the query and database SI, denoted

by (p
(c,v,q)
j ,Σ

(c,q)
j ) and (p

(c,v,db)
j ,Σ

(c,db)
j ), are compared using the KLD. It is

important to note that the latter has a closed form for such GC-BGG, and is

given by [24]:

D̃(c)
GC-BGG,j(p

(c,v,q)
j ,Σ

(c,q)
j ||p(c,v,db)

j ,Σ
(c,db)
j ) =

∑
v∈{l,r}

KLDGG(p
(c,v,q)
j ||p(c,v,db)

j )

+
1

2

(
tr((|Σ(c,q)

j |)−1|Σ(c,db)
j |) + log

|Σ(c,q)
j |

|Σ(c,db)
j |

− 2

)
. (12)

Therefore, the global distance DGC-BGG between a query color SI and a database

one is computed through summing the above similarity measure D̃GC-BGG over

the three spectral channels and across the different wavelet subbands.

DGC-BGG =

J∑
j=1

∑
c∈{R,G,B}

D̃(c)
GC-BGG,j(p

(c,v,q)
j ,Σ

(c,q)
j ||p(c,v,db)

j ,Σ
(c,db)
j ). (13)

3.3. Gaussian copula-based multivariate modeling approaches

3.3.1. Accounting for cross-channel dependencies

In the previous approach, the cross-view redundancies are exploited by pro-

cessing the three color channels separately. A dual approach would consist in

exploiting the cross-channel dependencies while processing the left and right

views independently. This approach is illustrated in Fig. 2. More precisely, for

each view of the stereo pair, a 3-dimensional vector is defined as follows:

∀ v ∈ {l,r}, w
(v)
j =

(
w

(c,v)
j

)>
c∈{R,G,B}

=
(
w

(R,v)
j , w

(G,v)
j , w

(B,v)
j

)>
. (14)

Then, for each view, the wavelet coefficients of the three color channels are

modeled by a 3-dimensional Gaussian Copula-based Multivariate Generalized

Gaussian distribution, denoted in the following by GC-MGG-3. Thus, by as-

suming that w
(v)
j is a realization of a random vector, the GC-MGG-3 probability
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density function is given by:

∀ v ∈ {l,r}, ∀ w
(v)
j =

(
w

(R,v)
j , w

(G,v)
j , w

(B,v)
j

)>
∈ R3,

fGC-MGG-3(w
(v)
j ) = |Σ(v)

j |
−1/2 exp

(
−

(ŵ
(v)
j )>((Σ

(v)
j )−1 − I)ŵ

(v)
j

2

)
× fGG(w

(R,v)
j ; p

(R,v)
j )fGG(w

(G,v)
j ; p

(G,v)
j )fGG(w

(B,v)
j ; p

(B,v)
j ), (15)

where ŵ
(v)
j =

(
φ−1(w

(R,v)
j ), φ−1(w

(G,v)
j ), φ−1(w

(B,v)
j )

)>
, Σ

(v)
j is the covariance

matrix of the vector ŵ
(v)
j (i.e with size 3× 3), and p

(c,v)
j is the parameters vec-

tor defined previously. The latter parameters (i.e Σ
(v)
j and p

(c,v)
j ) can be again

estimated used the method described in [24].

The estimated hyperparameters resulting from modeling the cross-channel de-

pendencies for each view constitute the following texture feature vector:

∀ v ∈ {l,r}, ∀ j ∈ {1, . . . , J},

V
(v)
GC-MGG-3,j =

(
p
(c,v)
j ,Σ

(v)
j

)
c∈{R,G,B}

. (16)

Then, for each subband view of the query and database SI, the associated feature

vectors (p
(c,v,q)
j ,Σ

(v,q)
j ) and (p

(c,v,db)
j ,Σ

(v,db)
j ) are compared using again the

KLD [24]:

D̃(v)
GC-MGG-3,j(p

(c,v,q)
j ,Σ

(v,q)
j ||p(c,v,db)

j ,Σ
(v,db)
j ) =∑

c∈{R,G,B}

KLDGG(p
(c,v,q)
j ||p(c,v,db)

j )

+
1

2

(
tr((|Σ(v,q)

j |)−1|Σ(v,db)
j |) + log

|Σ(v,q)
j |

|Σ(v,db)
j |

− 3

)
. (17)

By computing the above similarity measure across all the detail subbands, and

applying it independently on each view, the resulting global distance between a

query and database SI yields:

DGC-MGG-3 =

J∑
j=1

∑
v∈{l,r}

D̃(v)
GC-MGG-3,j(p

(c,v,q)
j ,Σ

(v,q)
j ||p(c,v,db)

j ,Σ
(v,db)
j ). (18)

3.3.2. Accounting for cross-view and channel dependencies

After separately exploiting the cross-view dependencies and the cross-channel

ones, we propose now to combine these two kinds of dependency in one mul-
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tivariate statistical model. Thus, in this new modeling approach, shown in

Fig. 3, we will consider a 6-dimensional vector w
(r,l)
j which gathers the wavelet

coefficient subbands of the three channels of the left and right views:

w
(r,l)
j =

(
w

(c,v)
j

)>
v∈{l,r}

c∈{R,G,B}

=
(
w

(R,l)
j , w

(G,l)
j , w

(B,l)
j , w

(R,r)
j , w

(G,r)
j , w

(B,r)
j

)>
. (19)

These wavelet subbands are modeled using a 6-dimensional Gaussian copula-

based MGG, which will be designated in what follows by GC-MGG-6. Its related

probability density function is expressed as:

∀ w
(r,l)
j =

(
w

(c,v)
j

)>
v∈{l,r}

c∈{R,G,B}
∈ R6,

fGC-MGG-6(w
(r,l)
j ) = |Σ(r,l)

j |−1/2 exp
(
−

(ŵ
(r,l)
j )>((Σ

(r,l)
j )−1 − I)ŵ

(r,l)
j

2

)
×

∏
v∈{l,r}

∏
c∈{R,G,B}

fGG(w
(c,v)
j ; p

(c,v)
j ), (20)

where ŵ
(r,l)
j =

(
φ−1(w

(c,v)
j )

)>
v∈{l,r}

c∈{R,G,B}
, Σ

(r,l)
j is the covariance matrix of the

vector ŵ
(r,l)
j (i.e with size 6× 6), and p

(c,v)
j is the parameters vector of the GG

margins. The latter parameters (i.e Σ
(r,l)
j and p

(c,v)
j ) can be again estimated

using the method described in [24].

During the indexing step, the resulting estimated hyperparameters set is used

as texture feature vector:

∀j ∈ {1, . . . , J}, V
(r,l)
GC-MGG-6,j =

(
p
(c,v)
j ,Σ

(r,l)
j

)
v∈{l,r}

c∈{R,G,B}
. (21)

Then, the similarity between the feature vectors of the query and database

SI wavelet subbands, (p
(c,v,q)
j ,Σ

(r,l,q)
j ) and (p

(c,v,db)
j ,Σ

(r,l,db)
j ), is computed as

12



follows:

D̃(r,l)
GC-MGG-6,j(p

(c,v,q)
j ,Σ

(r,l,q)
j ||p(c,v,db)

j ,Σ
(r,l,db)
j ) =∑

v∈{l,r}

∑
c∈{R,G,B}

KLDGG(p
(c,v,q)
j ||p(c,v,db)

j )

+
1

2

(
tr((|Σ(r,l,q)

j |)−1|Σ(r,l,db)
j |) + log

|Σ(r,l,q)
j |

|Σ(r,l,db)
j |

− 6

)
. (22)

Finally, by adding the above measure over all the wavelet subbands, the global

distance used to compare a given query and database SI is obtained:

DGC-MGG-6 =

J∑
j=1

D̃(r,l)
GC-MGG-6,j(p

(c,v,q)
j ,Σ

(r,l,q)
j ||p(c,v,db)

j ,Σ
(r,l,db)
j ). (23)

3.4. Improved depth modeling based retrieval approaches

In the previous described approaches, only texture features have been ex-

tracted from the left and right color images to compare the query and database

SI. However, in order to improve the indexing process, it would be interesting

to exploit another relevant feature of stereo data which is the 3D information.

This can be achieved by using the depth maps of the SI database. To this end,

and after performing a wavelet transform on these maps, we propose to resort

to the following two strategies.

3.4.1. Independent univariate depth modeling approach

In the first one, an independent univariate modeling of the depth maps

will be performed. Indeed, as shown in [13, 14], the wavelet coefficients of the

depth maps can be modeled using the GG distribution. Thus, in addition to

the texture feature vector, the depth one is constructed by taking the shape

and distribution parameters p
(u)
j = (a

(u)
j , b

(u)
j ). Then, for each stereo pair, the

KLD between their associated query u(q) and database u(db) depth maps, whose

features are denoted by p
(u,q)
j and p

(u,db)
j , can be computed as follows:

D(u(q)||u(db)) =

J∑
j=1

KLDGG(p
(u,q)
j ||p(u,db)

j ). (24)
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Finally, in order to compare a given query SI and the database one, the above

depth similarity measure (i.e. Eq. (24)) will be added to the previous image

similarity measures resulting from the Gaussian copula based bivariate and mul-

tivariate modeling of both views (i.e. the measures given by Eqs. (13), (18) and

(23)).

3.4.2. Joint texture and depth information modeling

The depth wavelet coefficients may share some similarities with those of the

color components in both views. For instance, recent studies have already shown

the existence of such correlation and exploited it in the context of stereo image

quality assessment [25, 26]. In order to confirm such dependencies between the

color stereo images and their corresponding depth maps, we resort to a Chi-plot

[27], which is similar to the scatterplot but with more explicit information. Fig.

4 displays an example of Chi-plot for each color channel and the depth map

of a given database SI. The deviation of the points from the tolerance band

indicates the dependence behavior between this data. For this reason, we have

proposed to investigate a more general joint statistical modeling framework to

simultaneously exploit the cross-view/channel and depth map redundancies. To

this end, the detail wavelet subbands of all these inputs are considered to define

the following 7-dimensional vector:

w
(r,l,u)
j =

(
w

(c,v)
j , w

(u)
j

)>
v∈{l,r}

c∈{R,G,B}

=
(
w

(R,l)
j , w

(G,l)
j , w

(B,l)
j , w

(R,r)
j , w

(G,r)
j , w

(B,r)
j , w

(u)
j

)>
. (25)

Then, the wavelet coefficients of this vector are modeled using a 7-dimensional

Gaussian copula based MGG, which will be denoted by GC-MGG-7, whose
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probability density function is given by:

∀ w
(r,l,u)
j =

(
w

(c,v,u)
j

)>
v∈{l,r}

c∈{R,G,B}
∈ R7,

fGC-MGG-7(w
(r,l,u)
j ) = |Σ(r,l,u)

j |−1/2 exp
(
−

(ŵ
(r,l,u)
j )>((Σ

(r,l,u)
j )−1 − I)ŵ

(r,l,u)
j

2

)
× fGG(w

(u)
j ; p

(u)
j )

∏
v∈{l,r}

∏
c∈{R,G,B}

fGG(w
(c,v)
j ; p

(c,v)
j ), (26)

where ŵ
(r,l,u)
j =

(
φ−1(w

(c,v)
j ), φ−1(w

(u)
j )
)>

v∈{l,r}
c∈{R,G,B}

, Σ
(r,l,u)
j is the covariance

matrix of the vector ŵ
(r,l,u)
j (i.e with size 7 × 7), and p

(c,v)
j and p

(u)
j are the

parameter vectors of the GG margins.

For the indexing step, the estimated hyperparameters set resulting from this

joint modeling of texture and depth data are used to build the feature vector:

∀j ∈ {1, . . . , J}, v
(r,l,u)
GC−MGG−7,j =

(
p
(c,v)
j ,p

(u)
j ,Σ

(r,l,u)
j

)
v∈{l,r}

c∈{R,G,B}
. (27)

The associated similarity measure, used to compare the two feature vectors

(p
(c,v,q)
j ,p

(u,q)
j ,Σ

(r,l,u,q)
j ) and (p

(c,v,db)
j ,p

(u,db)
j ,Σ

(r,l,u,db)
j ) of the query and database

SI, is given by:

D̃(r,l,u)
GC-MGG-7,j(p

(c,v,q)
j ,p

(u,q)
j ,Σ

(r,l,u,q)
j ||p(c,v,db)

j ,p
(u,db)
j ,Σ

(r,l,u,db)
j ) =∑

v∈{l,r}

∑
c∈{R,G,B}

KLDGG(p
(c,v,q)
j ||p(c,v,db)

j ) +KLDGG(p
(u,q)
j ||p(u,db)

j )

+
1

2

(
tr((|Σ(r,l,u,q)

j |)−1|Σ(r,l,u,db)
j |) + log

|Σ(r,l,u,q)
j |

|Σ(r,l,u,db)
j |

− 7

)
. (28)

Finally, the resulting measure is obtained by adding the above measure over all

the detail wavelet subbands:

DGC-MGG-7 =

J∑
j=1

D̃(r,l,u)
GC-MGG-7,j(p

(c,v,q)
j ,p

(u,q)
j ,Σ

(r,l,u,q)
j ||p(c,v,db)

j ,p
(u,db)
j ,Σ

(r,l,u,db)
j ).

(29)
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4. Experimental results

4.1. Color stereo image datasets

To evaluate the performance of the proposed retrieval methods, our simula-

tions have been carried out on the following datasets:

1. The standard Tsukuba SI dataset [28]. Due to the lack of the public

availability of huge color SI databases, we propose to use three different

collections of this dataset1, which have been generated under these illu-

mination conditions:

• Fluorescent: The considered default lightening condition, with per-

fect appearance for all the objects and typical contrast between light

and shadow.

• Flashlight: The scene is only lit with a flashlight attached to the

stereo camera. The light condition is low in most of the scene except

the area where the flashlight is pointing.

• Lamps: This illumination is the most darkened one as the scene is

lit only by the subtle moonlight that comes from the window. As a

result, the majority of the scene is dark and contains a wide set of

under exposed objects.

Note that each dataset collection is composed of 1, 800 color stereo scenes,

of size 640 × 480, with their associated ground truth depth maps. This

database has been employed in various stereo vision applications such

as stereo matching, depth super-resolution and ego-motion estimation

[29, 30]. In this work, we adapted it to be exploited and used for retrieval

purpose by assigning the stereo images sharing similar visual contents and

texture to the same class. Thus, 17 classes are obtained where the number

of images per class ranges from 80 to 150. Fig. 6 illustrates some class

samples of the Fluorescent dataset, and Fig. 7 shows one sample obtained

1http://www.cvlab.cs.tsukuba.ac.jp/dataset/tsukubastereo.php
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under the three illumination conditions.

2. Another dataset selected from the large FlyingThings3D2 database [31].

The latter is composed of 1,000 color stereo pairs as well as their associated

ground truth depth maps, of size 960× 540, and contains 100 classes with

10 samples per class. Similarly to Fig. 6, Fig. 8 illustrates some class

examples of this database.

4.2. Comparison methods

To show the relevance of our proposed approaches compared to the existing

ones, we will consider the following methods:

• Re-ranking [6]: This method consists in extracting the MPEG-7 edge his-

togram from the left image. Then, a refinement of the resulting image

candidates is performed using a re-ranking procedure based on the depth

features. To this end, histograms of the depth maps are considered as rel-

evant features and the diffusion distance is used to measure the similarity

between these histograms.

• GC-BGG-LR-D [14]: This very recent state-of-the-art method aims at

using a Gaussian copula-based bivariate GG model to extract texture

features from a grayscale stereo pair [14]. Moreover, depth features are

extracted based on the GG modeling of the depth wavelet coefficients.

It is important to note here that this method has been retained in our

comparison since it has been recently shown in [14] that it outperforms

other state-of-the-art stereo image retrieval methods such as the object-

based stereo image retrieval algorithm [8] and the bivariate GG modeling-

based approach [13].

• M-Laplacian-LR-D [10]: It is a multivariate modeling approach with Lapla-

cian distribution which has been found to be an efficient method for color

2https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
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monoview image retrieval. In our context, it is separately applied to each

view of the stereo pair. Furthermore, and similarly to the previous re-

trieval approach, note that depth features are also extracted through GG

modeling of the depth wavelet coefficients.

• UGG-LR: This method consists in applying a Univariate GG (UGG) mod-

eling to the wavelet coefficients of each color channel of the left and right

views. Let us recall that this straightforward approach is described in

Section 3.1

• UGG-LR-D: While only the texture information is used in the previous

approach, this one propose to exploit the depth information through its

UGG modeling.

• GC-BGG-LR-D-ext: It corresponds to the proposed extension of the

Gaussian copula-based bivariate model with GG margins [14] exploiting

the cross-view dependencies for each color channel, as described in Sec-

tion 3.2. The UGG modeling of the depth information is also used in the

indexing step.

• GC-MGG-3-LR-D: It is the first version of the proposed 3-dimensional

Gaussian copula-based MGG model exploiting only the cross-channel de-

pendencies while assuming that the two views are independents, as ex-

plained in Section 3.3.1. The UGG modeling of the depth information is

also used in the indexing step.

• GC-MGG-6-LR-D: It corresponds to the second version of the proposed 6-

dimensional Gaussian copula-based MGG model exploiting both the cross-

view and channel dependencies, as presented in Section 3.3.2. The UGG

modeling of the depth information is also used in the indexing step.

• GC-MGG-7-LRD: It designates the third version of the proposed 7-dimensional

Gaussian copula-based MGG model exploiting simultaneously the cross-

view/channel and depth dependencies, as addressed in Section 3.4.2.
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Regarding the wavelet modeling-based retrieval approaches, it should be noted

that the 8 order Daubechies wavelet transform is used for the multiscale de-

composition of the color SI as well as the depth maps. Moreover, three decom-

position levels were considered yielding one approximation and J = 9 detail

subbands for each transformed input.

4.3. Performance evaluation metrics

Several objective criteria were defined to evaluate the performance of the

retrieval procedure. The most widespread metrics are the precision PR versus

recall RC ratios and the the Average Retrieval Rate (ARR):

• The precision PR = Nr/N is the ratio between the number of relevant

images in the returned ones Nr and the number of returned images N ,

whereas the recall RC = Nr/N t is the ratio between Nr and the number

of relevant images in the database N t. These two metrics are used to plot

PR-RC curve in order to illustrate the exhaustive retrieval performance

of the algorithm.

• The ARR is the mean percentage of relevant retrieved images over the

whole database.

Note that a retrieved image is considered as relevant if it belongs to the same

class of the query one.

4.4. Results and discussion

First, the performance of the different aforementioned approaches are com-

pared in terms of precision-recall. Figures 9, 10, 11 and 12 illustrate the PR-RC

curves for the fluorescent, flashlight, lamps and FlyingThings3D datasets. Sev-

eral interpretations could be derived from the obtained results.

Indeed, the re-ranking approach, performed in the spatial domain, has the

lowest performance for the different datasets, while the wavelet-based state-

of-the-art approaches (GC-BGG-LR-D and M-Laplacian-LR-D) lead to better
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results. Moreover, for the Fluorescent, Lamps and FlyingThings3D datasets,

one can observe that the two latter methods outperform the UGG-LR-D ap-

proach. This shows the interest of exploiting the inter-view or inter-channel

dependencies in the retrieval process. It should be noted here that the UGG-

LR-D approach leads to a substantial gain compared to the UGG-LR method

for all the databases. This result confirms the benefits of taking advantages from

both texture and depth information in stereo image retrieval. For this reason,

the next proposed Gaussian copula-based bivariate and multivariate modeling

approaches have been directly shown using the depth features combined with

the texture ones. Thus, it can be noticed that the GC-BGG-LR-D method out-

performs the independent univariate modeling approach (UGG-LR-D), which

corroborates again the interest of the color cross-view correlation in enhancing

the indexing outcomes. An additional gain is achieved using the GC-MGG-3-

LR-D approach. This result shows that the color dependencies in each view of

the stereo pair are higher than the cross-view ones. Now, by exploiting both the

cross-color channel and cross-view dependencies through the GC-MGG-6-LR-D

approach, the PR-RC performance is further improved. Finally, by resorting

to a joint modeling approach of the texture and depth information, the last

proposed approach GC-MGG-7-LRD yields the best retrieval performance for

the four dataset collections.

If we focus now on the performance of the proposed retrieval approaches for

the Tsukuba dataset collections, one can observe that their PR-RC curves are

slightly impacted by the illumination changes and the obtained results are quite

similar. Therefore, it is important to note another advantage of our proposed

retrieval approaches, which is their robustness with respect to the illumination

variations.

In addition to the PR-RC, the performance of the different methods is also

evaluated in terms of average retrieval rates (ARR). While Table 1 provides the

ARR results for the state-of-the-art methods, Tables 2, 3, 4 and 5 illustrate

the results for the fluorescent, flashlight, lamps and FlyingThings3D dataset

collections, respectively. Again, it can be seen that the proposed Gaussian
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copula-based multivariate modeling approaches lead to the best results. More-

over, Tables 2, 3, 4 and 5 show the retrieval performance for different resolution

levels of the multiscale decomposition. While a gain in ARR can be observed

by increasing the number of resolution levels from 1 to 2, a very small gain is

achieved by considering 3 levels. This allows us to deduce that the retrieval

performance becomes more stable from this level and it would be enough to set

it to 3 (i.e. J = 9).

Finally, we propose to compare the computational complexity of the differ-

ent Gaussian copula-based bivariate and multivariate models. To this end, we

present in Table 6 the length of the feature vectors associated to the different

statistical models as well as the execution time required to compare the fea-

tures of a given query and candidate stereo images. Note that the execution

time is obtained using a computer with an Intel Core i7 processor (2.6 GHz)

and a Matlab implementation. While the smallest computational complexity is

obtained with the GC-BGG-LR-D approach [14] since it is performed using only

the luminance information, it can be noticed that the proposed approaches lead

to a slight increase of the computational complexity due to the joint modeling

of all color channels of both views and depth maps.

Overall, all the obtained results confirm the efficiency of the proposed ap-

proaches for color stereo image retrieval.

5. Conclusion

In this work, we have taken into account the color information as well as the

diverse correlations distinguishing the stereo images for their retrieval purpose.

To this end, we developed various Gaussian copula-based multivariate modeling

approaches, and their corresponding estimated hyperparameters set are used

as relevant features in the indexing process. Experimental results, carried out

on different color stereo datasets, have illustrated the good performance of the

proposed approaches. Let us recall that the main reasons behind the achieved

improvements are twofold. The first one is the simultaneous capture of the
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cross-view and channel dependencies. The second one is the joint statistical

modeling of texture and depth information. In future work, these approaches

could be further extended by taking into account the intra- and inter-subband

correlations in each color channel of each view. Moreover, according to some

obtained preliminary results showing the good performance of a deep neural

network-based approach applied separately to the left and right views, it would

be interesting to investigate the appropriate way(s) of integrating the depth

map in the deep neural network architecture.
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Figure 1: Exploiting cross-view dependencies for bivariate modeling approach.
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Figure 2: Exploiting cross-channel dependencies for 3-dimensional multivariate modeling

approach.
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Color stereo pair
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Figure 3: Exploiting cross-view and channel dependencies for 6-dimensional multivariate

modeling approach.
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Figure 4: Chi-plots illustrating correlations between color and depth components of one view

in the Fluorescent dataset.
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Color stereo pair
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Figure 5: Exploiting cross-view/channel and depth dependencies for 7-dimensional

multivariate modeling approach.
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Figure 6: Some class samples of the Fluorescent Tsukuba database.
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(a) Fluorescent. (b) Flashlight. (c) Lamps.

Figure 7: Example of the three different illuminations.

Figure 8: Some class samples of the FlyingThings3D database collection.
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Figure 9: Precision-Recall curves of the proposed and state-of-the-art approaches for the

Fluorescent illumination.
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Figure 10: Precision-Recall curves of the proposed and state-of-the-art approaches for the

Flashlight illumination.
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Figure 11: Precision-Recall curves of the proposed and state-of-the-art approaches for the

Lamps illumination.
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Figure 12: Precision-Recall curves of the proposed and state-of-the-art approaches for the

FlyingThings3D database collection.
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State-of-the-art methods Fluorescent Flashlight Lamps FlyingThings3D

Re-ranking [6] 56.22 52.14 60.31 64.25

GC-BGG-LR-D [14] 78.01 71.68 80.26 83.25

M-Laplacian-LR-D [10] 80.13 74.23 80.56 86.18

Table 1: ARR rates of the state-of-the-art methods.

1 Scale 2 Scales 3 Scales

UGG-LR 75.71 77.57 78.22

UGG-LR-D 81.43 82.74 82.96

GC-BGG-LR-D-ext 84.28 84.13 84.91

GC-MGG-3-LR-D 85.29 87.35 87.52

GC-MGG-6-LR-D 87.57 88.33 89.26

GC-MGG-7-LRD 88.64 89.68 90.00

Table 2: ARR rates of the proposed methods for the Fluorescent illumination.
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1 Scale 2 Scales 3 Scales

UGG-LR 72.85 74.72 75.29

UGG-LR-D 77.43 78.00 78.82

GC-BGG-LR-D-ext 79.44 80.26 81.09

GC-MGG-3-LR-D 83.60 84.92 85.11

GC-MGG-6-LR-D 85.03 86.23 87.02

GC-MGG-7-LRD 87.61 88.35 88.91

Table 3: ARR rates of the proposed methods for the Flashlight illumination.

1 Scale 2 Scales 3 Scales

UGG-LR 75.56 79.29 80.17

UGG-LR-D 78.71 81.46 82.39

GC-BGG-LR-D-ext 79.84 82.62 83.40

GC-MGG-3-LR-D 81.00 84.63 85.75

GC-MGG-6-LR-D 83.61 87.84 87.96

GC-MGG-7-LRD 84.43 88.90 89.02

Table 4: ARR rates of the proposed methods for the Lamps illumination.
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1 Scale 2 Scales 3 Scales

UGG-LR 80.13 82.54 83.67

UGG-LR-D 82.56 84.09 85.23

GC-BGG-LR-D-ext 83.71 85.83 85.06

GC-MGG-3-LR-D 87.16 88.49 89.28

GC-MGG-6-LR-D 88.78 89.14 90.51

GC-MGG-7-LRD 90.11 92.02 92.83

Table 5: ARR rates of the proposed methods for the FlyingThings3D dataset.

Length of Runtime

feature vector (in seconds)

GC-BGG-LR-D [14] 36 2.19

GC-BGG-LR-D-ext 90 4.21

GC-MGG-3-LR-D 81 4.46

GC-MGG-6-LR-D 72 4.66

GC-MGG-7-LRD 72 5.19

Table 6: Computational cost of the differnet copula-based approaches.
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