A signal adaptive diffusion filter for video coding: Mathematical framework and complexity reductions

https://doi.org/10.1016/j.image.2020.115861Get rights and content
Under a Creative Commons license
open access

Highlights

  • Novel iterative prediction filter methods are constructed for video compression.

  • Two types of diffusion filters are introduced: a uniform and a signal adaptive one.

  • The presented method achieves average bitrate savings of 2.27% for Random Access.

  • The coding complexity is reduced by up to 70% while maintaining over 80% of the gain.

  • For individual test sequences, results of 7.36% for Random Access are accomplished.

Abstract

In this paper we combine video compression and modern image processing methods. We construct novel iterative filter methods for prediction signals based on Partial Differential Equation (PDE) based methods. The mathematical framework of the employed diffusion filter class is given and some desirable properties are stated. In particular, two types of diffusion filters are constructed: a uniform diffusion filter using a fixed filter mask and a signal adaptive diffusion filter that incorporates the structures of the underlying prediction signal. The latter has the advantage of not attenuating existing edges while the uniform filter is less complex. The filters are embedded into a software based on HEVC with additional QTBT (Quadtree plus Binary Tree) and MTT (Multi-Type-Tree) block structure. In this setting, several measures to reduce the coding complexity of the tool are introduced, discussed and tested thoroughly. The coding complexity is reduced by up to 70% while maintaining over 80% of the gain. Overall, the diffusion filter method achieves average bitrate savings of 2.27% for Random Access having an average encoder runtime complexity of 119% and 117% decoder runtime complexity. For individual test sequences, results of 7.36% for Random Access are accomplished.

Keywords

High efficiency video coding (HEVC)
Intra prediction
Inter prediction
PDEs
Adaptive filtering
Edge detection
Linear diffusion
Linear filtering
Video compression

Cited by (0)

Jennifer Rasch received her Diploma in Mathematics from the Humboldt University of Berlin, Germany in 2012. Her thesis was awarded as the best thesis in the field Numerics by the Deutsche Mathematiker Vereinigung (German Mathematical Union). Since 2014, she is as a research associate in the Video Coding & Analytics department at the Heinrich Hertz Institute in Berlin, Germany. She actively participated in the standardization process of the ITU-T Video Coding Experts Group since 2018. She submitted her PhD thesis at the Technical University of Berlin in 2019.

Jonathan Pfaff received his Diploma and his Dr. rer. nat. degree in Mathematics from Bonn University in 2010 resp. 2012. After a postdoctoral research stay at Stanford University, he joined the Video Coding & Analytics Department at the Heinrich Hertz Institute in Berlin, Germany in 2015. He has contributed to the efforts of the ITU-T Video Coding Experts Group in developing the Versatile Video Coding standard since 2018.

Michael Schäfer received the M.Sc. degree in Mathematics from the Freie Universität Berlin, Germany, in 2017. During his studies in 2015, Schäfer joined the Fraunhofer Heinrich Hertz Institute, Berlin, Germany as an associate of its Image and Video Coding research group. He has contributed to the efforts of the ITU-T Video Coding Experts Group in developing the Versatile Video Coding standard since 2018.

Anastasia Henkel received the Dip.-Ing. degree in Telecommunications/Communication Techniques at the Hochschule für Technik und Wirtschaft Berlin-University of Applied Sciences in Berlin, Germany in 2010. In 2010, Anastasia Henkel joined the Fraunhofer Heinrich Hertz Institute, Berlin, Germany. Since then, she has been a research associate in the Video Coding & Analytics department. She participated in the standardization process of the ITU-T Video Coding Experts Group and was involved in the development of the High Efficiency Video Coding (HEVC) and the Versatile Video Coding (VVC) standards.

Heiko Schwarz received the Dipl.-Ing. degree in electrical engineering and the Dr.-Ing. degree, both from the University of Rostock, Germany, in 1996 and 2000, respectively. In 1999, Heiko Schwarz joined the Fraunhofer Heinrich Hertz Institute, Berlin, Germany. Since then, he has contributed successfully to the standardization activities of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Pictures Experts Group. Since 2010, he is heading the research group ”Image and Video Coding” at the Fraunhofer Heinrich Hertz Institute. In October 2017, he became Professor at the FU Berlin.

Detlev Marpe received the Dipl.-Math. degree (Hons.) from Technical University of Berlin, Germany, in 1990 and the Dr.-Ing. degree from University of Rostock, Germany, in 2004. He joined Fraunhofer Institute for Telecommunications-Heinrich Hertz Institute, Berlin, in 1999, where he is currently the Head of the Video Coding & Analytics Department and of the Image and Video Coding Research Group. He was a major Technical Contributor to the entire process of the development of the H.264/MPEG-4 Advanced Video Coding (AVC) standard and the H.265/MPEG High Efficiency Video Coding (HEVC) standard.

Thomas Wiegand received the Dipl.-Ing. degree in electrical engineering from Technical University of Hamburg-Harburg, Germany, in 1995 and the Dr.-Ing. degree from University of Erlangen–Nuremberg, Germany, in 2000. He served as a Consultant to several start-up ventures. He has been an active participant in standardization for video coding multimedia with many successful submissions to ITU-T and ISO/IEC. He is an Associated Rapporteur of ITU-T VCEG. He is currently a Professor with the Department of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany, and is jointly heading the Fraunhofer Heinrich Hertz Institute, Berlin.