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Abstract

In the compressive spectral imaging (CSI) framework, different architectures have been proposed to recover

high-resolution spectral images from compressive measurements. Since CSI architectures compactly capture

the relevant information of the spectral image, various methods that extract classification features from

compressive samples have been recently proposed. However, these techniques require a feature extraction

procedure that reorders measurements using the information embedded in the coded aperture patterns. In

this paper, a method that fuses features directly from dual-resolution compressive measurements is proposed

for spectral image classification. More precisely, the fusion method is formulated as an inverse problem that

estimates high-spatial-resolution and low-dimensional feature bands from compressive measurements. To

this end, the decimation matrices that describe the compressive measurements as degraded versions of the

fused features are mathematically modeled using the information embedded in the coded aperture patterns.

Furthermore, we include both a sparsity-promoting and a total-variation (TV) regularization terms to the

fusion problem in order to consider the correlations between neighbor pixels, and therefore, improve the

accuracy of pixel-based classifiers. To solve the fusion problem, we describe an algorithm based on the

accelerated variant of the alternating direction method of multipliers (accelerated-ADMM). Additionally,

a classification approach that includes the developed fusion method and a multilayer neural network is

introduced. Finally, the proposed approach is evaluated on three remote sensing spectral images and a set

of compressive measurements captured in the laboratory. Extensive simulations show that the proposed

classification approach outperforms other approaches under various performance metrics.
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1. Introduction

Hyperspectral (HS) images are three-dimensional (3-D) datasets that capture the spectral information

of bidimensional (2-D) scenes across a large number of spectral bands. These images have been used in

different applications such as precision agriculture, urban planning, and disaster management [1, 2]. In

particular, the rich spectral information provided by HS images has been extensively considered to identify

materials. However, HS sensors acquire low-spatial-resolution images to ensure measurements with a high

signal-to-noise ratio (SNR) [3]. On the other hand, multispectral (MS) images are high-spatial-resolution

datasets with poor spectral information. Therefore, to exploit the information embedded in multi-resolution

data, image fusion has emerged as a class of techniques that combines the information in HS and MS images

for building high-resolution datasets [4].

Notice that the large sizes of both HS and MS images challenge the storing and processing capabilities of

the acquisition systems. To overcome this drawback, compressive spectral imaging (CSI) has emerged as an

alternative acquisition framework that captures the relevant information of spectral images by sampling a

reduced number of measurements [5]. In this regard, the coded aperture snapshot spectral imaging (CASSI)

is the most representative architecture whose functioning consists of capturing projections of an encoded

and spectrally-dispersed version of the input image onto an imaging detector [6]. Multiple CASSI based

architectures have been proposed such as the three-dimensional CASSI (3D-CASSI) [5], the colored CASSI

[7], and the snapshot colored compressive spectral imager (SCCSI) [8]. Moreover, various architectures that

combine different kinds of measurements have been recently proposed to recover high-resolution spectral

images [9, 10, 11].

Feature fusion from spectral images is a research field that focuses on exploiting the spectral and spatial

information embedded in spectral images to improve identification and detection tasks. More precisely,

this research area attempts to complement the spectral information with spatial features such as local

smoothness, shape, and texture with the aim of improving the scene analysis [12]. In this context, feature

fusion from CSI compressive measurements has become a challenging task due to the random nature of the

coded aperture patterns and the nonlinearity of the encoding operation. In this sense, various feature fusion

methods from CSI compressive measurements have been proposed. Specifically, a method that applies a

compressive sensing reconstruction algorithm to recover the image PCA bands from CASSI measurements

was developed in [13]. Recently, a feature extraction algorithm for spectral image classification from single-

pixel measurements has been presented in [14] using a low-rank matrix approximation model. Furthermore,

various feature fusion methods from dual-resolution compressive measurements have been recently proposed

[15, 16, 17]. These methods exploit the fact that CSI systems can obtain the relevant information of the

high-resolution image in a low dimensional space. Additionally, these approaches require a feature extraction

stage that reorders measurements using the information embedded in the coded aperture patterns. More
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Figure 1: Flowchart of the spectral image classification approach based on the proposed feature fusion method.

precisely, the method reported in [15] stacks an interpolated version of the HS features and a superpixel

map yielded by the MS features. Furthermore, the methods proposed in [16] and [17] fuse the extracted

features by solving regularized optimization problems. Notice that the main difference with respect to the

previous works relies on that the proposed approach obtains the fused features directly from compressive

measurements without resorting to a feature extraction stage.

This paper proposes a method that fuses features directly from HS and MS compressive measurements.

In particular, the compressive measurements are obtained from a dual-arm optical architecture consisting

of two 3D-CASSI branches. The contributions of this work are described as follows.

1. First, we focus on deriving the expressions of the projection matrices that describe the compressive

measurements as degraded versions of the fused features. Notice that these expressions incorporate

the information embedded in the coded aperture patterns, therefore, a feature extraction procedure

that reorders the measurements is not required.

2. From the observational model, the feature fusion is formulated as a regularized least-squares problem.

Specifically, a sparsity-inducing term and a total-variation (TV) term are included in the cost function

as regularizers. The sparsity-inducing term considers the spatial structures in spectral images while

the TV term minimizes noise effects on the classification performance. Furthermore, an algorithm

under an accelerated approach of the alternating direction method of multipliers [18] is described to

numerically solve the feature fusion problem.

3. Finally, a deep multilayer neural network is used as a supervised pixel-based classifier for labeling

high-resolution spectral images.

Figure 1 illustrates the flowchart of the proposed feature fusion method in a spectral image classification

framework. The proposed approach is evaluated on three datasets and a set of compressive measurements

captured in the laboratory. Extensive simulations show that the proposed approach outperforms other
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Figure 2: Schematic of the dual-arm optical architecture.

methods that obtain features from dual-resolution compressive measurements. Furthermore, the developed

method exhibits a remarkable performance when the projections are contaminated with additive noise.

The paper is organized as follows. Section 2 illustrates the acquisition system and the proposed feature

fusion approach is developed in Section 3. To evaluate the performance of the proposed feature fusion

approach, the results of extensive simulations are shown in Section 4. Finally, the concluding remarks are

synthesized in Section 5.

2. Dual-arm optical system

In this work, a method that fuses features directly from dual-resolution compressive measurements is

proposed for spectral image classification. More precisely, the proposed feature fusion method is developed

for a dual-arm optical architecture, where each arm conssists of a multi-frame 3D-CASSI sensor. Figure 2

illustrates a schematic of the dual-arm optical architecture that obtains the compressive measurements. As

can be seen in this figure, one branch is a 3D-CASSI sensor equipped with imaging lenses, a low-resolution

colored coded aperture, and a low-resolution imaging detector. This branch, referred to as compressive

hyperspectral imaging (CHSI), projects rich spectral information of the scene onto low-spatial resolution de-

tectors. The second branch, referred to as compressive multispectral imaging (CMSI), is a 3D-CASSI sensor

that includes imaging lenses, a high-spatial-resolution colored coded aperture, and a high-resolution camera
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Figure 3: Model of the acquisition process in the 3D-CASSI architecture.

detector. In general, this system obtains high-spatial-resolution snapshots with poor spectral information.

Notice that the dual-arm optical systems have been widely used to acquire the high-resolution information

of spectral images and spectral videos [19, 20, 21]. More precisely, these systems exploit the high and the

low resolution coding masks to acquire dual-resolution compressive measurements, and thus, to capture the

relevant information of the image of interest.

2.1. Multi-frame 3D-CASSI architecture

Basically, the 3D-CASSI architecture projects an encoded version of the input image onto an imaging

detector [5]. Figure 3 illustrates the model of the acquisition process. To describe 3D-CASSI measurements,

consider F as a discrete version of the input image with a spatial resolution of N×M and L spectral bands.

Furthermore, let F(m,n,ℓ) be an element of the spectral image F , where (m, n) denotes the spatial coordinate

and ℓ represents the ℓ-th spectral band. In this context, the input spectral image is encoded by a coded

aperture that can be described as an array of optical filters with dimensions M×N . Notice that each optical

filter modulates the spectral signature at the spatial coordinate (m, n). In general, the coded aperture is

modeled as a discrete cube C with dimensions M ×N ×L and entries C(m,n,ℓ) ∈ {0, 1}. In consequence, the

encoded image G is obtained by applying an element-wise product between the input image and the model of

the coded aperture, i.e. G = F ⊙ C, where ⊙ denotes the element-wise tensor multiplication. Subsequently,

the encoded image is integrated along the sensor spectral sensitivity before it is projected onto a detector

with dimensions M ×N [5]. Assuming a perfect registration between each encoded spectral signature and

the corresponding detector pixel, the intensity captured at the spatial coordinate (m, n) can be expressed

as

(Y)(m,n) =

L
∑

ℓ=1

F(m,n,ℓ)C(m,n,ℓ), (1)

for m = 1, . . . ,M amd n = 1, . . . , N .
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Multiple snapshots are required to properly reconstruct the image from compressed measurements, where

each snapshot is captured using a different coded aperture pattern. Various algorithms have been developed

for designing coded aperture patterns under the restricted isometry property (RIP) constraint [7, 22, 23].

In this work, we assume that a reduced set of optical filters are available with non-overlapping responses

covering the entire wavelength spectrum. Furthermore, consider ΘΘΘ a binary matrix with dimensions L× P

whose columns {θθθi ∈ {0, 1}
L}Pi=1 contain the responses of the available optical filters, where P is the number

of available optical filters. Therefore, the intensity captured by the imaging detector at the spatial location

(m, n) and acquired at the k-th snapshot (Y(k))(m,n) can be described as

(Y(k))(m,n) =

L
∑

ℓ=1

F(m,n,ℓ)

(

θθθS(m,n,k)

)

ℓ
(2)

for m = 1, . . . ,M , n = 1, . . . , N , k = 1, . . . ,K, where K denotes the number of captured snapshots, θθθS(m,n,k)

represents the filter response used to encode the spectral signature at the coordinate (m, n) and the k-th

snapshot with S(m,n,k) ∈ {1, 2, . . . , P}. To improve the performance of the spectral image recovery methods

from multiple snapshots, the coded apertures should be designed such that projections capture the entire

information of the spectral image [7]. In this sense, Algorithm 1 has been introduced in [16] to optimally

design coded apertures. Specifically, to capture the entire information of the image, each spectral signature

should be modulated by all available filters. To this end, for every spatial coordinate (m,n), the design

algorithm randomly distributes the optical filters across the snapshots. This distribution is included in

α that contains a random permutation of the set {1, . . . , P}, where each component indexes a particular

optical filter. In consequence, this algorithm generates a data cube S with dimensions M × N × K that

contains the filter patterns to capture measurements. The optical filter response used at the spatial location

(m, n) and the snapshot k is denoted as θθθS(m,n,k)
. In this work, we consider the information provided by

the coded aperture patterns to build the decimation matrices of the proposed feature fusion algorithm.

3. Feature fusion method

3.1. High-resolution features

The fused features should exploit both the high-spatial-resolution acquired by the CMSI sensor and the

rich spectral information captured by the CHSI system. In this work, each fused feature is modeled as the

projections of the spectral signature of the high-resolution image modulated by the set of optical filters used

by the CHSI sensor, in other words,

(X )(m,n,k) =

L
∑

ℓ=1

F(m,n,ℓ)

(

θθθ
(hs)
S(m,n,k)

)

ℓ
(3)

for k = 1, . . . ,K, where K is the number of captured snapshots, and {θθθ
(hs)
i }P

(hs)

i=1 are column vectors of the

matrix ΘΘΘ(hs) that contains the optical filter responses used to obtain the HS compressive measurements.
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Algorithm 1 Design of the colored coded apertures patterns [16]

Input: ΘΘΘ ∈ {0, 1}

Output: S(m,n,k), θθθS(m,n,k)
for m = 1, . . . ,M ; n = 1, . . . , N ; and k = 1, . . . ,K

1: for m = 1 to M do

2: for n = 1 to N do

3: α = randperm(K)

4: for k = 1 to K do

5: S(m,n,k) = α(k)

6: θθθS(m,n,k)
= θθθ

α(k)

7: end for

8: end for

9: end for

On the other hand, the CSI measurements do not offer discriminative properties required by pixel-based

classification methods. This is because each CSI projection is acquired using a distinct coded aperture

pattern. In previous works, a feature extraction procedure has been proposed before performing the feature

fusion method [15, 16, 17]. This feature extraction procedure reorders measurements such that each band

corresponds to the spectral image response to a single optical filter. Conversely, in this work, we consider

the information embedded in the coded aperture patterns to build the decimation matrices that describe

the feature fusion model. Therefore, both feature extraction and feature fusion are included in a unique

optimization problem.

3.2. Multispectral downsampling model

A CMSI measurement at the spatial coordinate (m, n) and the snapshot w can be expressed as

(

X(ms)

)

(m,n,w)
=

L
∑

ℓ=1

F(m,n,ℓ)

(

θθθ
(ms)
S(m,n,w)

)

ℓ
, (4)

for w = 1, . . . ,W , where W represents the number of snapshots captured by the CMSI system, and

{θθθ
(ms)
i }P

(ms)

i=1 are columns of the matrix ΘΘΘ(ms) containing the responses of the optical filters used by the CMSI

sensor. Without loss of generality, consider that the response of an optical filter used by a CMSI sensor, at

the spatial coordinate (m,n) and the w-th snapshot, can be obtained as the summation of q responses of

optical filters used by a CHSI sensor, i.e.

θθθ
(ms)
S(m,n,w)

=

q
∑

a=1

θθθ
(hs)
S(m,n,(w−1)q+a)

. (5)

Substituting (5) in (4), we obtain

(

X(ms)

)

(m,n,w)
=

q
∑

a=1

L
∑

ℓ=1

F(m,n,ℓ)

(

θθθ
(hs)
S(m,n,(w−1)q+a)

)

ℓ
. (6)
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(a) (b)

Figure 4: (a) An example of the projection matrix HHH(ms) for M = 6, N = 6, P = 8, and q = 4; (b) an example of the projection

matrix HHH(hs) for M = 6, N = 6, P = 8, and p = 2.

As can be observed in (6), a CMSI measurement can be expressed as the linear expansion of q components

of the fused features, in other words,

(

X(ms)

)

(m,n,w)
=

q
∑

a=1

(X )(m,n,(w−1)q+a) , (7)

for m = 1, . . . ,M ; n = 1, . . . , N ; and w = 1, . . . ,W . Indeed, the model for the entire set of measurements

can be synthesized in matrix form as follows

xxx(ms) = HHH(ms)xxx + η(ms) (8)

where xxx(ms) ∈ R
MNW are the CMSI measurements in vector form, HHH(ms) ∈ R

MNW×MNK is the projection

matrix that includes both downsampling operation and the information of the coded aperture patterns,

xxx ∈ R
MNK is the fused feature vector, and η(ms) ∈ R

MNW is the noise vector that contaminates the

CMSI measurements. In general, the noise perturbations are characterized as random samples that follow

a common statistical model. From the observational model (8), each element of the projection matrix is

obtained as

(HHH(ms))(u,v) =







1, if u = m+ (n− 1)M + (w − 1)MN and v = m+ (n− 1)M +
((

S
(ms)

(m,n,w) − 1
)

∗ q + z
)

MN

0, otherwise

(9)

for z = 1, . . . , q, where S(ms) contains the coded aperture patterns generated to obtain the CMSI measure-

ments. The projection matrix HHH(ms) includes the information of the coded aperture patterns, therefore,

the proposed method does not require a feature extraction procedure. Upon a closer examination of the

sensing matrix dimensions, it can be observed that the measurement rate with respect to the fused features

is reduced to ε(ms) = MN(K/q)
MNK = 1

q . Figure 4a illustrates an example of the projection matrix structure for

M = 6, N = 6, P = 8, and q = 4.

3.3. Hyperspectral downsampling model

On the other hand, a low-spatial-resolution measurement acquired by a CHSI system at the spatial

coordinate (µ,ν) and snapshot k can be described as

(

X(hs)

)

(µ,ν,k)
=

L
∑

ℓ=1

F(µ,ν,ℓ)

(

θθθ
(hs)
S(µ,ν,k)

)

ℓ
, (10)
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with µ = 1, . . . ,M/p and ν = 1, . . . , N/p, where p is the spatial decimation factor. In this case, each CHSI

measurement can be obtained by averaging p2 entries of the high-resolution features, this is,

(

X(hs)

)

(µ,ν,k)
=

1

p2

p−1
∑

a=0

p−1
∑

b=0

L
∑

ℓ=1

F(m+a,n+b,ℓ)

(

θθθ
(hs)
S(µ,ν,k)

)

ℓ
, (11)

therefore, a CHSI sample can be expressed as

(

X
(hs)
)

(µ,ν,k)
=

1

p2

p−1
∑

a=0

p−1
∑

b=0

(X )(m+a,n+b,k) . (12)

The model for the entire set of CHSI measurements in matrix form can be compactly described as

xxx(hs) = HHH(hs)xxx + η(hs) (13)

where xxx(hs) ∈ R
(M/p)(N/p)K is the vector that contains the CHSI measurements, HHH(hs) ∈ R

(M/p)(N/p)K×MNK

is the projection matrix that includes the spatial downsampling, xxx ∈ R
MNK are the fused features in vector

form, and η(hs) ∈ R
(M/p)(N/p)K is the additive noise vector corrupting the CHSI measurements. Notice

that the projection matrix HHH(hs) also includes the information of the coded aperture patterns generated to

capture the CHSI samples, therefore, a feature extraction stage is not required. Particularly, each component

(u,v) of the projection matrix can be obtained as

(HHH(hs))(u,v) =







1
p2

, if u = µ+ (ν − 1)(M/p) + (k − 1)(M/p)(N/p) and v = µ+ (ν − 1)(M/p) + tM + z + d

0, otherwise

(14)

for z = 1, . . . , p and z = 1, . . . , p; where d = ⌊µpM ⌋ + mod(µ, (M/p))p +
(

S
(hs)
(µ,ν,t) − 1

)

MN , S(hs) contains

the coded aperture patterns used for acquiring the CHSI measurements. Furthermore, ⌊·⌋ is the floor

operator that extracts the integer part of its argument, mod(µ, (M/p))and outputs the reminder after

division between µ and M/p. In this case, the measurement rate with respect to the fused features is

reduced to ε(hs) = (M/p)(N/p)K
MNK = 1

p2 . Figure 4b displays an example of the projection matrix structure for

M = 6, N = 6, P = 8, and p = 2.

3.4. Feature fusion algorithm

Let assume the entries of ηηη(ms) and ηηη(hs) are described as random samples that follow a Gaussian dis-

tribution with variance σ2
(ms) and σ2

(hs), respectively, for a = 1, . . . ,MNW and b = 1, . . . , (M/p)(N/p)K.

Furthermore, without loss of generality, we assume that σ2
(ms) = σ2

(hs). This leads to the minimization of

the sum of squared errors as the optimization approach to describe the fusion problem. Two regularization

terms are aggregated to this formulation to improve the quality of the fused features. The feature fusion

problem is formulated as

x̂xx = arg min
xxx

{

1

2
‖yyy −HHHxxx‖22 + λ1‖Ψ

⊤xxx‖1 + λ2‖xxx‖TV

}

, (15)
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where λ1 and λ2 are the regularization parameter that control the trade-off between the sum of squared

errors and the regularization terms, with

yyy = [xxx⊤

ms,xxx
⊤

hs]
⊤, (16)

HHH = [HHH⊤

ms,HHH
⊤

hs]
⊤. (17)

As shown in Section 3.1, each band of the high-resolution features can be considered as the response

of the input spectral density to a particular optical filter. To preserve the spatial structure of the scene,

the sparsity-inducing term λ1‖Ψ
⊤xxx‖1 is included. In other words, we assume that the merged features can

be sparsely described in an orthogonal transform Ψ. This approach has been widely exploited in image

denoising, improving thus, the quality of the recovered images. On the other hand, the total-variation (TV)

term λ2‖xxx‖TV exploits the local spatial information present in spectral image features. Specifically, the used

TV norm is described as follow

‖xxx‖TV =
∑

(i,j,k)

{

|x(i,j,k) − x(i+1,j,k)|+ |x(i,j,k) − x(i,j+1,k)|+ |x(i,j,k) − x(i,j,k+1)|
}

, (18)

where x(i,j,k) is the spectral image voxel at the location (i, j, k). The total variation norm is typically

rewritten as

‖xxx‖TV = ‖Φxxx‖1 (19)

where Φ is the first-order difference operator. This term induces piece-wise spatial smoothness on the

recovered features preserving, in turn, the edges of the scene [24]. It is worth noting that TV norm has been

considered in various feature extraction methods to improve the classification accuracy [25, 26].

The feature fusion problem can be also described as

x̂xx = arg min
xxx

{

1

2
‖yyy −HHHxxx‖22 + λ1‖γγγ1‖1 + λ2‖γγγ2‖1

}

s.t. Ψ⊤xxx− γγγ1 = 0, Φxxx− γγγ2 = 0,

(20)

with γγγ1 and γγγ2 as auxiliary variables in a alternating direction optimization approach. Thus, the augmented

Lagrangian for (20) can be expressed as

L(xxx,γγγ1, γγγ2) =
1

2
‖yyy −HHHxxx‖22 + λ1‖γγγ1‖1 + λ2‖γγγ2‖1 +

ρ

2
‖Ψ⊤xxx− γγγ1 − δδδ1‖

2
2 +

ρ

2
‖Φxxx− γγγ2 − δδδ2‖

2
2, (21)

where ρ > 0 is a penalty parameter, and (δδδ1 , δδδ2) are Lagrange multiplier vectors. To estimate the fused

features, the minimization of the augmented Lagrangian is performed. Algorithm 2 displays the pseudocode

to fuse features using the accelerated approach of ADMM [27]. Notice that we aim at minimizing (21) with

respect to xxx, γγγ1, and γγγ2. As can be seen in steps 4, 7, and 8 of Algorithm 2, the update of each variable

is computed as a weighted sum of previous estimates (xxx(), γγγ
()
1 , γγγ

()
2 ) and current approximations (xxx(+1),

γγγ
(+1)
1 , γγγ

(+1)
2 ). To compute the current estimate xxx(+1), we focus on minimizing the augmented Lagrangian

10



with respect to the target variable. Under this approach, the estimation of xxx at the iteration ( + 1) is

obtained by solving the minimization problem

xxx(+1) ←− arg min
xxx

{

1

2
‖yyy −HHHxxx‖22 +

ρ

2
‖Ψ⊤xxx− γγγ

()
1 − δδδ

()
1 ‖

2
2 +

ρ

2
‖Φxxx− γγγ

()
2 − δδδ

()
2 ‖

2
2

}

. (22)

Notice that the analytical solution of (22) involve computationally expensive operations, therefore, a

rough estimation is obtained by using the first-order approximation of the cost function around xxx(), in

other words,

1

2
‖yyy −HHHxxx‖22 +

ρ

2
‖Ψ⊤xxx− γγγ

()
1 − δδδ

()
1 ‖

2
2 +

ρ

2
‖Φxxx− γγγ

()
2 − δδδ

()
2 ‖

2
2 ≈

1

2
‖yyy −HHHxxx()‖22 +

ρ

2
‖Ψ⊤xxx() − γγγ

()
1 − δδδ

()
1 ‖

2
2

+
ρ

2
‖Φxxx() − γγγ

()
2 − δδδ

()
2 ‖

2
2 +

〈

xxx− xxx(), ϑ(xxx())
〉

+
β

2
‖xxx− xxx()‖22

≈
1

2
‖yyy −HHHxxx()‖22 +

ρ

2
‖Ψ⊤xxx() − γγγ

()
1 − δδδ

()
1 ‖

2
2

+
ρ

2
‖Φxxx() − γγγ

()
2 − δδδ

()
2 ‖

2
2

+
β

2
‖xxx− xxx() +

1

β
ϑ(xxx())‖22, (23)

where ϑ(xxx()) is the gradient of the cost function around xxx() that is computed as follows

ϑ(xxx()) = HHH⊤

(

yyy −HHHxxx()
)

+ ρ
(

xxx() −Ψ⊤

(

γγγ
()
1 − δδδ

()
1

))

+ ρ
(

Φ⊤

(

Φxxx() − γγγ
()
2 − δδδ

()
2

))

, (24)

with β as a step parameter. By substituting (24) in (23), and setting the derivative to zero, the current

approximation xxx(+1) is obtained by

xxx(+1) = xxx() −

(

1

β

)

(

HHH⊤
(

yyy −HHHxxx()
)

+ ρ
(

xxx() −Ψ
⊤
(

γγγ
()
1 − δδδ

()
1

))

+ ρ
(

Φ
⊤
(

Φxxx() − γγγ
()
2 − δδδ

()
2

)))

. (25)

Additionally, to update the auxiliary variables γγγ1 and γγγ2 at the iteration ( + 1), the optimization

problems should be solved

γγγ
(+1)
1 ←− arg min

γγγ1

{ρ

2
‖Ψ⊤xxx(+1) − γγγ1 − δδδ

()
1 ‖

2
2 + +λ1‖γγγ1‖1

}

(26)

γγγ
(+1)
2 ←− arg min

γγγ2

{ρ

2
‖Φxxx(+1) − γγγ2 − δδδ

()
2 ‖

2
2 + λ2‖γγγ2‖1

}

(27)

whose solutions are obtained basically applying soft-threholding operators, as shown as follows

γγγ
(+1)
1 = soft

(

Ψ⊤xxx(+1) + δ
()
1 , λ1/ρ

)

(28)

γγγ
(+1)
2 = soft

(

Φxxx(+1) + δ
()
2 , λ2/ρ

)

(29)

where soft(γ, λ) = sign(γ) max(γ − λ, 0). Then, Lagrange multiplier vectors are updated by computing the

operations described in steps 9 and 10 of Algorithm 2. Finally, the computational complexity for computing
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xxx can be determined as O((MN)2K), while the soft-thresholding operations exhibit a complexity O(MNK),

with M×N×K as the size of the fused features. In consequence, the computational complexity per iteration

is obtained as O((MN)2K). The source code for the proposed feature fusion method can be downloaded

from this link: https://github.com/JuanMarcosRamirez/featurefusion_getfund

Algorithm 2 Accelerated ADMM for feature fusion from compressive measurements

Input: yyy, Ψ, Φ, HHH, λ1, λ2, ρ α(0)

xxx(0) → 0, γγγ
(0)
1 → 0, γγγ

(0)
2 → 0, δδδ

(0)
1 → 0, δδδ

(0)
2 → 0

Output: xxx(+1)

1: repeat

2: xxx() =
(

1− α(+1)
)

xxx
()
2 + α(+1)xxx()

3: xxx(+1) ← argminxxx L(xxx,γγγ
()
1 ,γγγ

()
2 ) Eq.(25)

4: xxx
(+1)
2 =

(

1− α(+1)
)

xxx
()
2 + α(+1)xxx(+1)

5: γγγ
(+1)
1 ← argminγγγ1 L(xxx(),γγγ1,γγγ

()
2 ) Eq.(28)

6: γγγ
(+1)
2 ← argminγγγ2 L(xxx(),γγγ

()
1 ,γγγ2) Eq.(29)

7: γγγ
(+1)
1 =

(

1− α(+1)
)

γγγ
()
1 + α(+1)γγγ

(+1)
1

8: γγγ
(+1)
2 =

(

1− α(+1)
)

γγγ
()
2 + α(+1)γγγ

(+1)
2

9: δ
(+1)
1 = δ

()
1 +Ψ⊤xxx(+1) − γγγ

(+1)
1

10: δ
(+1)
2 = δ

()
2 +Φxxx(+1) − γγγ

(+1)
2

11: until a stopping rule is satisfied

3.5. Supervised classification method

The feature fusion method is included in a spectral image classification approach as shown in Fig. 1. To

this end, a multilayer perceptron neural network (MLPNN) is selected as a supervised classification method.

More precisely, an MLPNN is a feed-forward neural network whose structure can learn nonlinear classification

boundaries [28]. This classifier typically exhibits a deep structure that can handle large data sets and it does

not require a huge amount of training data for achieving the desired classification performance compared

to that needed by the convolutional neural networks (CNN). Notice that various methods based on deep

learning have been recently developed for spectral image classification exhibiting remarkable results [29, 30].

However, these methods require a high-resolution spectral image. Furthermore, these techniques involve

complex network structures that consider separately the spectral signature and local spatial information.

Indeed, to achieve the desired classification performance, both a huge amount of training data and a large

number of learning epochs are needed.

A schematic of the supervised classification approach is illustrated in Fig. 5. As can be observed in this

figure, the MLPNN consists of an input layer, a set of hidden layers, and an output layer. Specifically, the

proposed classification approach firstly extracts the vector from the fused features at the coordinate (m, n)
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Figure 5: Schematic of the supervised classification approach.

and its elements reduce to the entries of the MLPNN input layer. Notice that the size of the input layer

depends on the dimensions of the fused vectors, and consequently, it also depends on the compression ratio.

Then, the MLPNN comprises a set of fully-connected hidden layers whose j-th neuron at the k-th layer

outputs

ζkj = f

(

Nn
∑

i=1

Υk−1
i,j ζk−1

i,j + ξk−1
j

)

(30)

where Υk−1
i,j is the weight that connects the i-th neuron at the k − 1 layer with the j-th neuron in layer k,

ξk−1
j is the bias term of the j-th neuron in layer k, and f(·) represents a nonlinear activation function. In this

work, we select ten hidden layers with ten neurons each, where the number of hidden layers and the number

of neurons by layer were determined by implementing a classification performance search. Every neuron is

activated with the rectified linear unit (ReLU) function, i.e. f(u) = max(u, 0). The output layer size depends

on the number of the classes and the network parameters are updated by using the backpropagation algorithm

with the binary cross-entropy loss function [31]. To be more precise, the MLPNN structure attempts to

learn the network parameter set Θ = {Υ, ξ} that basically contains the connection weight matrix Υ and the

bias vector ξ. Under the multiclass classification framework, let zn ∈ {0, 1}
Nc be the n-th ground truth label

vector with Nc as the number of output classes, and consider sn the corresponding input vector, therefore,

the training set can be represented as Γ = {zn, sn}
Nt

n=1 with Nt as the number of training samples. Hence,

the training stage attempts learn the network parameters Θ that minimize the loss function given by

E(Θ) = −

Nt
∑

n=1

Nc
∑

c=1

(zn)c log ((pn(Θ, sn))c) (31)

where (zn)c is the c-th element of the ground truth label vector and (pn(Θ, sn))c is the probability predicted

by the network at the c-th output layer node. Notice that the network parameters are randomly initialized.
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(a) (b) (c) (d)

(e) λ2 = 0 (f) λ2 = 1 × 10−4 (g) λ2 = 2 × 10−4 (h) λ2 = 5 × 10−4

Figure 6: Pavia University spectral image. RGB composite of (a) the original image, (b) the multispectral image, and (c) the

hyperspectral image; (d) reference feature band; (e)-(h) feature bands obtained by the proposed fusion method for different

values the TV regularization parameter λ2 with of λ1 = 0.001 × ‖H⊤y‖.

4. Results and analysis

4.1. Pavia University

This spectral image was acquired by the airborne sensor known as Reflective Optics Spectrographic

Imaging System (ROSIS-03) over the University of Pavia, Italy [32]. This data set exhibits a high-spatial-

resolution (1.3 m per pixel) with dimensions 610× 340 pixels and 96 spectral bands in the wavelength range

from 0.43 to 0.86 µm. Figure 6a displays the RGB composite of the Pavia University image.

Notice that the proposed fusion method is directly applied to compressive measurements of the MS image

and the HS image. First, we built the MS and the HS versions of the input spectral image. To this end, the

MS image was derived by integrating contiguous spectral bands of the original image with q = 4. Therefore,

the MS image is a high-spatial-resolution data cube with dimensions 610× 340× 24. The RGB composite of

the MS image is shown in Fig 6b. The HS image was obtained by applying spatial downsampling to every

spectral band of the original image with p = 4. The resulting image exhibits dimensions of 152× 85 × 96.

Figure 6c shows the RGB composite of the HS image. For comparison purposes, Fig. display a band of the

high-resolution features using the model described in (3).

Then, compressive measurements were obtained by simulating the 3D-CASSI dual-arm optical system.
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# Samples High-resolution spectral image Proposed feature fusion method

Classes Train Test SVM-RBF RF CNN MLPNN SVM-RBF RF CNN MLPNN

Asphalt 661 5944 88.04 91.14 40.81 90.55 95.54 94.55 39.86 95.98

Meadows 1865 16784 98.13 97.60 96.26 96.78 99.41 99.01 95.89 99.48

Gravel 210 1889 65.08 68.68 19.34 72.92 69.18 74.42 20.01 80.22

Trees 304 2736 70.26 88.94 5.54 90.95 95.43 93.35 8.98 95.61

Metal 135 1210 59.73 98.66 43.74 99.32 99.08 99.15 58.41 99.42

Bare Soil 503 4526 56.46 63.07 94.73 87.30 94.28 91.19 96.14 98.07

Bitumen 133 1197 75.22 76.30 13.80 81.62 80.00 70.33 15.47 82.45

Bricks 368 3314 84.82 87.53 12.61 89.04 90.30 87.30 20.31 86.69

Shadows 95 852 92.69 99.77 21.95 99.39 96.85 97.92 19.39 96.58

Overall accuracy (%)
84.87 ± 89.05 ± 64.21 ± 92.11 ± 94.73 ± 93.87 ± 65.46 ± 95.98 ±

0.30 0.34 1.85 0.87 0.20 0.29 1.82 0.50

Average accuracy (%)
76.71 ± 85.74 ± 38.76 ± 89.76 ± 90.23 ± 89.69 ± 41.61 ± 92.72 ±

0.68 0.57 2.74 1.19 0.40 0.41 2.06 0.79

Kappa statistic
0.790 ± 0.852 ± 0.491 ± 0.895 ± 0.930 ± 0.918 ± 0.516 ± 0.945 ±

0.005 0.005 0.028 0.012 0.002 0.004 0.021 0.008

Table 1: Performance of the feature fusion method using different supervised classifiers on the Pavia University data set.

More precisely, the compressive measurements of the MS image comprise 6 high-spatial-resolution snapshots

(compression ratio: 25%) while the compressive measurements of the HS image are 24 low-spatial-resolution

projections (compression ratio: 25%). Subsequently, the proposed feature fusion method was applied directly

to the compressive measurements. Figures 6e-6h display the bands recovered by the proposed feature fusion

algorithm for different values of the TV regularization parameter λ2. For this experiment, the sparsity

regularization parameter was set to λ1 = 0.001× ‖H⊤y‖∞. As can be seen in these figures, the recovered

bands preserve the spatial structures of the underlying scene. It is relevant to notice that the fused cube is

estimated directly from compressive measurements without applying a previous feature extraction stage.

The bands of the fused features exhibit smoother regions as λ2 increases, preserving, in turn, the spatial

structure and the edges of the scene. Additionally, image noise is minimized as λ2 increases, and this effect

efficiently improve the labeling performance. To evaluate this behavior, the classification maps obtained for

different values of the TV parameter are illustrated in Fig. 7. The ground truth map is shown in Fig. 7a.

As can be seen in this figure, the classification noise is reduced as λ2 increases.

To evaluate the performance of the proposed feature fusion method, Table 1 shows the labeling accuracy

results obtained by different supervised classification methods: support vector machines with radial basis

function (SVM-RBF) kernel, random forest (RF), the convolutional neural network (CNN) and the multi-

layer perceptron neural network (MLPNN). To be more precise, the labeling accuracy is determined for each

class, where each value is obtained by averaging ten realizations of the respective experiment. For each trial,

a different pattern of the coded aperture is generated and a set of 10% of features are randomly selected

as training samples. For testing the corresponding classification method, the remaining 90% of features are

used. Furthermore, Table 1 displays the overall accuracy (OA), the average accuracy (AA), and the Kappa

statistic (κ) [33]. For comparison purposes, the accuracy results obtained from the high-resolution image
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(a) (b) (c) (d) (e)

Figure 7: Pavia University spectral image. (a) The classification map of the ground truth; classification maps obtained by

proposed approach for different TV regularization parameters (b) λ2 = 0 (c) λ1 = 5×10−6 (d) λ1 = 5×10−5 (e) λ1 = 5×10−4.

are also included, where spectral signatures are considered classification features. The best accuracy values

obtained from either the high-resolution image and the fused features are in bold font. The fused features

were estimated using λ1 = 0.01 and λ2 = 5× 10−4.

For this experiment, the parameters of SVM-RBF classifier were set to σ = 1 and C = 1, where one-

against-one multi-classification rule was implemented [34]. The number of trees of the RF classifier was

fixed to 300. The CNN approach reduces the dimensionality of the input data via principal component

analysis (PCA). Then, the first three principal components are used as input data of the CNN architecture.

For each pixel, a patch of size 27 × 27 × 3 is obtained with the aim of building the training and test sets.

The CNN architecture consists of four convolutional layers of 16, 32, 64, and 128 filters, respectively, with

a kernel size of 5 × 5. Furthermore, each hidden layer includes a max-pooling layer with a size of 2 × 2.

Finally, a fully connected layer is aggregated at the output end. As can be seen in Table 1, the accuracy

results obtained from fused features outperform those yielded from the high-resolution image. In addition,

the results obtained by the MLPNN classifier are, in general, better than those yielded by the other labeling

methods.

4.2. Indian Pines

This data set was captured by an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over

an agricultural region in Indiana, USA. This Pines spectral image consists of a dataset with 145× 145 pixels

and 200 spectral bands recording the wavelength range from 0.40 to 2.50 µm [36]. Furthermore, this data

set exhibits a spatial-resolution of 20 m per pixel. The RGB composite of this spectral image is shown in

Fig. 8a and the ground truth map is displayed in Fig. 8b.
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Method Input Description

OTVCA [25] High-resolution spectral image A feature extraction method for hyperspectral images that solves a TV

penalized optimization problem.

SSLRA [26] High-resolution spectral image A feature extraction method based on a low-rank model. This approach

decomposes the hyperspectral image into smooth and sparse components.

EP [35] High-resolution spectral image A feature extraction method based on the technique referred to as

extended extinction profiles.

FES [15] Dual-resolution compressive measurements Extracts features by reordering the compressive data yielding HS features

and MS features. The method stacks an interpolated version of the HS

features and a superpixel map of the MS features.

FEF-TR [17] Dual-resolution compressive measurements Implements the feature extraction stage [15]. The extracted features are

fused by solving an inverse problem penalized by the Tikhonov term that

leads a closed-form solution.

FEF-L1TV [16] Dual-resolution compressive measurements Implements the feature extraction stage [15]. The extracted features are

fused by solving an inverse problem regularized by L1 and TV norms. An

ADMM-based algorithm was developed to solve the formulated problem.

Proposed Dual-resolution compressive measurements Fuses features directly from compressive measurements by solving an

inverse problem regularized by L1 and TV norms. An accelerated version

of the ADMM algorithm is developed to solve the problem.

Table 2: General description of the comparison methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Indian Pines spectral image: (a) the RGB composite of the original image and (b) the classification map of the

ground truth. Classification maps obtained by (c) the HR image (HR), OA: 79.40%, (d) the OTVCA method, OA: 79.47%,

(e) the SSLRA method, OA: 81.31%, (f) the EP stacking, OA: 88.42%, (g) the FEF-L1TV method, OA: 92.99%, and (h) the

proposed approach, OA: 96.54%.
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Classes
# Samples

HR [34] OTVCA [25] SSLRA [26]
EP

FEF-L1TV [16] Proposed
Train Test stacking [35]

Alfalfa 9 37 51.08 ± 14.27 18.54 ± 9.60 46.08 ± 12.50 68.35 ± 8.31 89.19 ± 8.55 86.22 ± 8.96

Corn-notill 286 1142 71.18 ± 3.38 75.87 ± 1.40 74.59 ± 2.53 69.57 ± 1.32 95.58 ± 1.26 96.29 ± 1.26

Corn mintill 166 664 54.86 ± 2.56 55.78 ± 2.53 57.24 ± 2.36 87.45 ± 2.91 95.32 ± 1.63 96.45 ± 1.25

Corn 47 190 60.63 ± 6.24 32.76 ± 4.78 39.02 ± 5.42 54.52 ± 11.10 93.42 ± 3.49 95.21 ± 3.27

Grass-pasture 97 386 86.76 ± 2.51 84.70 ± 2.80 88.89 ± 2.19 71.04 ± 9.31 94.61 ± 1.50 92.95 ± 1.64

Grass-trees 146 584 96.23 ± 0.97 95.55 ± 1.30 97.68 ± 0.95 78.16 ± 3.23 99.26 ± 0.31 99.50 ± 0.40

Grass-pasture-mowed 6 22 1.82 ± 5.75 49.86 ± 11.97 69.27 ± 12.43 44.77 ± 11.78 67.73 ± 24.19 42.73 ± 29.00

Hay-windrowed 96 382 99.40 ± 0.35 98.96 ± 0.73 99.19 ± 0.63 99.23 ± 0.38 98.77 ± 0.69 98.95 ± 0.76

Oats 4 16 0.00 ± 0.00 2.56 ± 4.36 3.06 ± 5.65 0.19 ± 1.39 65.00 ± 27.83 52.50 ± 26.55

Soybean-notill 194 778 67.04 ± 1.90 70.55 ± 2.53 71.63 ± 2.18 87.61 ± 1.93 95.66 ± 1.45 96.75 ± 1.06

soybean-mintill 491 1964 87.72 ± 1.30 86.11 ± 1.15 87.22 ± 1.28 95.04 ± 1.35 96.62 ± 0.72 97.56 ± 0.43

Soybean-clean 119 474 69.11 ± 2.86 65.76 ± 3.64 70.54 ± 4.70 72.93 ± 2.58 92.09 ± 2.37 94.66 ± 2.76

Wheat 41 164 93.90 ± 3.76 96.76 ± 1.87 95.04 ± 2.53 94.11 ± 2.25 97.99 ± 1.29 97.62 ± 3.35

Woods 253 1012 97.80 ± 0.28 97.07 ± 0.77 98.12 ± 0.64 92.65 ± 3.23 99.25 ± 0.38 99.16 ± 0.65

Buildings-Drives 77 309 54.95 ± 2.97 64.68 ± 4.02 75.06 ± 3.92 91.16 ± 3.54 96.28 ± 2.16 98.61 ± 1.40

Stone-Steel-Towers 19 74 76.89 ± 4.05 69.03 ± 6.68 74.61 ± 5.90 81.77 ± 6.81 93.65 ± 4.23 94.86 ± 3.48

Overall accuracy (%) 79.66 ± 0.56 79.58 ± 0.41 81.38 ± 0.54 84.80 ± 0.66 96.27 ± 0.24 96.91 ± 0.38

Average accuracy (%) 66.84 ± 1.18 66.53 ± 1.25 71.70 ± 1.37 74.28 ± 1.36 91.90 ± 2.23 90.00 ± 1.93

Kappa Statistic 0.766 ± 0.007 0.765 ± 0.005 0.786 ± 0.006 0.827 ± 0.008 0.965 ± 0.003 0.958 ± 0.004

Table 3: Performance of various spectral image classification methods on the Indian Pines data set.

For comparative purposes, Figs 8c-8h display the classification maps yielded by different types of features

extraction and fusion methods. In particular, these methods obtain the classification features from the

original spectral image. Specifically, we classify the spectral image from the spectral signatures of the

high-resolution image (HR) [34], and the features obtained by the orthogonal total variation component

analysis (OTVCA) [25], the sparse-smooth low-rank analysis (SSLRA) [26], and the extinction profile (EP)

method [35]. Additionally, Fig. 8g includes the labeling map obtained by the feature extraction and fusion

technique with the L1-TV regularization (FEF-L1TV) [16] and the classification map yielded by the proposed

classification approach is illustrated in Fig. 8h. Table 2 include a general description of the involved methods.

For these figures, simulations selected 20% of the classification attributes as training samples and 80% of

the remaining features to test the various labeling approaches. Furthermore, we use the same training and

test sets to evaluate the various approaches. As can be seen, the proposed approach is not affected by the

classification noise compared with respect to the other approaches, yielding homogeneous labeling regions.

Notice that the labeling map obtained by the proposed classification method provides the best OA value.

Table 3 shows the accuracy results obtained by various classification techniques on the labeling of the

Indian Pines dataset. The accuracy values are obtained by averaging ten realizations of the corresponding

experiment. Note that the best accuracy results are in bold font. Furthermore, the overall accuracy (OA),

the average accuracy (AA), and the Kappa Statistic (κ) are included in the last three rows of Table 3. As

can be observed in this table, the classification approach that contains the proposed feature fusion method

exhibits, in general, the best performance.
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(a) (b) (c)

Figure 9: Salinas Valley spectral image: (a) the RGB composite of the original image and (b) the classification map of the

ground truth.

4.3. Salinas Valley

The Salinas Valley spectral image was captured by an AVIRIS sensor over the Valley of Salinas, California,

USA [37]. This spectral image has dimensions 512× 217× 192 in the wavelength interval from 0.24 to 2.40

µm. The RGB composite of this image is shown in Fig. 9a. Furthermore, Figs 9b and 9c display the ground

truth labeling map for 16 different classes, where each class corresponds to a particular kind of crop.

Figure 10a shows the overall accuracy curves as the compression ratio increases for different fusion

methods that obtain features from dual-resolution compressive measurements. We compare the performance

of the proposed method with respect to those yielded by the feature extraction and stacking method (FES)

[15], the feature extraction and fusion technique that uses the Tikhonov regularization (FEF-TR) [17], and

the feature extraction and fusion method that exploits the L1-TV regularization (FEF-L1TV) [16]. In this

work, the information embedded in coded aperture patterns is included in the projection matrices (9) and

(14) leading to an algorithm that fuses spectral image features directly from compressive measurements.

As can be observed in Fig. 10a, the proposed classification approach exhibit a competitive performance

with respect the other methods. Furthermore, Fig. 10b displays the OA curves versus the training rate

for the various feature fusion approaches. For this experiment, the projections were captured by fixing the

compression ratio at 25%. As shown in this figure, the proposed approach outperforms the other methods

at low rates of training samples.

Additionally, Fig. 10c shows the OA curves versus the signal-to-noise ratio (SNR) exhibited by com-

pressive measurements for the various fusion approaches. More precisely, projections are corrupted with

additive noise obeying to a zero-mean Gaussian model. For these curves, five realizations are averaged.

Notice that the proposed approach exhibits a superior performance compared to the remaining methods,

with at least 4% of accuracy gain. In practical scenarios, detectors are affected by signal-dependent noise,

therefore, we test the proposed approach when projections are corrupted by Poisson noise. In this regard,
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Figure 10: Performance on the Salinas Valley data set of the various classification methods: (a) OA versus the compression ratio

and (b) OA versus the rate of training samples. OA on the Salinas Valley spectral image yielded by the various classification

approaches as the SNR increases for (c) Gaussian noise and (d) Poisson noise.

Fig. 10d displays the OA curves versus the Poisson noise level. As can be seen in this figure, the proposed

fusion strategy outperforms the other techniques for the interval under test.

To show the performance gain of the proposed fusion method with respect to other approaches that fuse

features from dual-resolution compressive measurements, Fig. 11a displays the OA versus the compression

ratio for the various fusion techniques using a particular supervised classifier. More precisely, we compare the

proposed method with respect to FEF-TR and FEF-L1TV methods [23, 16]. To this end, we use a support

vector machine with a polynomial kernel as a supervised classifier. Notice that every value of this curve

is obtained by averaging of ten realizations of the corresponding experiment, and for each trial, a different

coded aperture pattern is generated. Furthermore, for each realization of this experiment, we selected the

same 10 % of the features as training samples and the remaining 90 % as test samples. As can be seen in Fig.

11a, the proposed feature fusion approach outperforms the other methods, exhibiting a remarkable accuracy

gain for high compression rates. Finally, Fig. 11b shows the computation time spent by the various feature

fusion methods as the compression rate increases. These values were obtained using a desktop architecture

with an Intel Core i7 CPU, 3.00 GHz, 64-GB RAM, and Ubuntu 18.04 operating system. As can be seen

in this figure, the proposed fusion approach exhibits about ten times lower computation times than those

spent by the FEF-L1TV method. Additionally, the proposed feature fusion approach shows the best trade-off

between labeling accuracy and computation time.

4.4. Real measurements

Finally, the performance of the proposed classification approach from real compressive measurements

is evaluated. To this end, we use data captured by a 3D-CASSI optical setup. More precisely, this data

set was captured in the optics laboratory of the High-Dimensional Signal Processing (HDSP) group at

the Universidad Industrial de Santander, Colombia. Furthermore, this dataset comprises 32 multispectral

snapshots with dimensions 256× 256 and 8 hyperspectral snapshots with dimensions 128× 128. Notice that

these measurements were acquired to evaluate the performance of the FEF-TR method [17]. Figure 12a
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Figure 11: Salinas Valley data set: (a) OA versus the compression ratio yielded by the different compressive fusion approaches

using the same supervised classifier and (b) Computation time versus the compression ratio yielded by the different compressive

fusion approaches.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Real CSI measurements. (a) the RGB image of the scene and (b) the classification map of the ground truth;

compressive projections captured by (c) a CHSI sensor and (d) a CMSI sensor; (e) and (f) a feature band and the labeling

map obtained by the FEF-TR method [17], OA: 96.03; (g) and (h) a feature band and the classification map obtained by the

proposed approach, OA: 98.88 %.
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shows the RGB image of the scene and the ground truth map is displayed in Fig. 12b. Additionally, Figs 12d

and 12c illustrate the camera snapshots captured by both the hyperspectral CSI sensor the multispectral

CSI system, respectively.

For comparison purposes, Figs 12e and 12f illustrate a feature band and the classification map obtained

by the FEF-TR approach [17]. A feature band and the labeling map estimated by the proposed classifica-

tion approach are shown in Figs 12g and 12h, respectively. Note that the proposed approach reduces the

undesirable artifacts due to the acquisition noise. In addition, the proposed labeling approach remarkably

minimize the classification noise providing the best overall accuracy value.

5. Conclusions

In this paper, a method that fuses features directly from compressive data has been developed for

spectral image classification. More precisely, this approach avoids the feature extraction stage by including

the information of the coded aperture patterns to obtain projection matrices. The discrete mathematical

model that characterizes the compressive measurements as degraded versions of the high-resolution features

was presented. Subsequently, the feature fusion was formulated as a least-squares problem regularized by

two penalty terms: a sparsity-promoting term and a total variation (TV) term. Additionally, an accelerated

ADMM-based algorithm has been included to numerically solve the formulated problem. The proposed

feature fusion method was incorporated into an approach that classifies spectral images from compressive

data. The performance of the proposed classification technique was evaluated on four spectral image data

sets under different criteria. Notice that the proposed approach was successfully tested on real compressive

measurements. The proposed classification approach exhibited a superior performance with respect to other

state-of-the-art methods that obtain features from compressive measurements.
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