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ABSTRACT
With the advent of the new video coding standard Versatile Video Coding (VVC), there is now a need
for converting current multimedia content from the High Efficiency Video Coding (HEVC) standard
to the new format. VVC is focused on ultra-high definition (UHD) content, and is expected to be ready
by 2020. Therefore, a traditional transcoding pipeline composed of a sequential cascaded HEVC de-
coder and a VVC encoder is not effective due to the exorbitant computational complexity of VVC. In
this regard, this paper proposes a fast HEVC-VVC transcoder composed of a probabilistic classifier
based on Naïve-Bayes in the first partitioning level (128×128 pixels), and a model that determines the
partitioning of subsequent VVC coding depth levels on the basis of the HEVC partitioning. The pro-
posed Naïve-Bayes classifier uses the features extracted from the 128×128 size blocks of the residual
and reconstructed frames in HEVC, and their correlation with the block partitioning structure. The
evaluation of the algorithm shows that it achieves a 44.07% time saving with a BD-rate penalty of
2.11% in the random access scenario.

1. Introduction
The High Efficiency Video Coding (HEVC) standard is

the latest video coding project launched on the market by
the Joint Collaborative Team on Video Coding (JCT-VC) in
2013 [16]. HEVC is gradually replacing its predecessor, the
H.264/Advanced Video Coding (AVC) standard, which has
been the most widely used codec in recent years in many
applications, such as streaming or broadcasting [17]. On
average, HEVC doubles the compression performance of
H.264/AVC, especially for high definition (HD) and ultra-
high definition (UHD) content, but at the cost of a great in-
crease in processing times [24].

The most recent user demands introduce new challenges
that require even more efficient compression techniques,
since 75% of total Internet traffic is video traffic, and is
predicted to reach 82% in 2022 [7]. For this reason, the
international organizations ITU-T, through the Video Cod-
ing Expert Group (VCEG), and ISO/IEC, through the Mov-
ing Picture Expert Group (MPEG), have jointly created
a new collaboration framework under the name of Joint
Video Experts Team (JVET). Since the creation of the JVET
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Table 1
VTM 2.0.1 performance over HM 16.19 [26].

Scenario PSNR (%) Time increase (%)
Y U V Encoder Decoder

All Intra −18.0 −23.7 −24.5 1812 166
Random Access −23.1 −34.6 −33.0 373 126
Low Delay B −18.3 −27.6 −28.1 317 129
Low Delay P −21.9 −30.7 −31.4 288 132

group in October 2015, the development of the new coding
standard began under the name of Versatile Video Coding
(VVC), with a compression capability that significantly sur-
passes the one achieved by HEVC, especially for streaming
UHD, panorama video, sports events, concerts, 360° omni-
directional immersive multimedia and high-dynamic-range
(HDR) video content.

Table 1 shows a comparison of both standards through
their reference encoding and decoding software, namely
HEVC Test Model (HM) [19], and VVC Test Model
(VTM) [20]. It should be noted that VVC improves the com-
pression performance of HEVC, yet at the same time, in-
troduces high computational cost in the encoding process.
Therefore, considering the superior compression perfor-
mance of VVC and, at the same time, the large amount of ex-
isting content currently encoded under HEVC, a transcoder
that converts bitstreams fromHEVC toVVC is of great value
for many applications, providing interoperability between
the HEVC standard and the format of the future video com-
pression standard. However, due to the high computational
cost of VVC, a simple cascade transcoding system composed
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Figure 1: Average percentage of unsplit 128×128 blocks per
class and QP.

of an HEVC decoder and a VVC encoder is not sufficiently
effective. Therefore, strategies for accelerating the HEVC to
VVC transcoding process are needed.

In this context, this work presents a fast transcoding
approach between HEVC and VVC, called HEvc-based
QUadtree Splitting (HEQUS) algorithm, which aims to ex-
ploit the information gathered in the HEVC decoder in order
to assist decisions on the VVC encoder quadtree (QT) parti-
tioning, taking advantage of the similarities in the splitting
scheme between the two standards. The maximum block
size is 128×128 pixels in VVC, while in HEVC the maxi-
mum size is 64×64 pixels. Therefore, there is no direct rela-
tionship between a block of 128×128 pixels in VVC and any
block in HEVC. In this regard, Fig. 1 shows the percentage
of 128×128 blocks that remain unsplit in VVC with respect
to the quantization parameter (QP) for high-resolution se-
quences [21]. This highlights the relevance of the new block
size, especially in low-bitrate scenarios.

On the basis of the above, the present work introduces a
probabilistic model based on Naïve-Bayes to analyze statis-
tical information obtained from the HEVC bitstream with
the aim of accelerating the splitting decision of 128×128
pixel blocks. Since the most demanded applications are on-
demand video and live streaming, which use the random
access (RA) scenario, the Naïve-Bayes model is built from
information of sequences encoded under RA configuration.
For subsequent levels, i.e., block sizes ranging from 64×64
to 8×8 pixels, the QT partitioning structures of VVC and
HEVC share many similarities. Therefore, the splitting de-
cisions in the QT structure of VVC can be taken on the basis
of the coding unit (CU) partitioning of HEVC, avoiding the
brute force scheme of rate-distortion optimization (RDO).

The experimental results show that the proposed algo-
rithm achieves time savings of up to 59.13% on average us-
ing the full set of the JVET common test sequences com-
pared with the anchor cascade transcoder [21]. With respect
to the coding efficiency of the proposed scheme, the results

show a penalty lower than 3.15% in terms of the Bjøntegaard
delta rate (BD-rate), which measures the increment in bitrate
while maintaining the same objective video quality [2].

The remainder of this paper is organized as follows. Sec-
tion 2 includes relevant related work. Section 3 highlights
key features of the VVC coding design compared to HEVC.
The proposal is described in Sect. 4, and an analysis of the
results is presented in Sect. 5. Finally, Sect. 6 concludes the
paper by proposing possible lines of future work.

2. Related Work
The topic of video content transcoding between stan-

dards, also called heterogeneous transcoding, has been
widely studied, given that the simplest transcoding process,
i.e., cascade transcoding, is not effective because of the high
computational cost involved [28]. A number of proposals
in the literature include fast transcoders that accelerate the
process of transcoding through different techniques. In this
section, some transcoding studies based on similarity of the
coding structure between different standards are analyzed.

In [8], a complete transcoding algorithm between stan-
dards H.264/AVC and HEVC was presented by Diaz-
Honrubia et al. in 2016. A total of 8 probabilistic mod-
els were built based on a Naïve-Bayes classifier for each
level of partitioning (64×64 and 32×32 pixels) and tempo-
ral layer. In addition, each model was constructed with the
information of 26 variables extracted from the decoder of
H.264/AVC. These variables were calculated for 1,000 in-
stances for each of the 4 sequences trained and QPs. The
full implementation of the algorithm achieved a quantitative
speed-up of around 2.31× on average, with a time reduction
of 56.7% and a BD-rate penalty of around 3.4%, compared
with the anchor transcoder.

In 2017, X. Li et al. proposed four models for dif-
ferent depth and QP values using Naïve-Bayes classifiers
implemented in a machine-learning-based VP9 to HEVC
transcoder [22]. VP9 is an open source royalty-free codec
developed by Google to join the competition for video cod-
ing, and was mainly designed for web video applications
scenarios, as it is supported by multiple browsers for prac-
tical consumer use [11]. VP9 divides large coding units of
64×64 all the way down into 4×4 blocks. This, along with
subblock counting and depth map, is the input information
for the trained models. With an averaged BD-rate penalty of
2.8%, this proposal achieves a 44% time reduction compared
with the full VP9-HEVC transcoder.

In 2018, J.-F. Franche and S. Coulombe proposed a fast
H.264/HEVC transcoder composed of a motion propagation
algorithm and a fastmode decision framework [10]. Themo-
tion propagation algorithm creates amotion vector candidate
list at coding tree unit (CTU) level, and then selects the best
candidate at prediction unit (PU) level. By pre-computing
the prediction error of each candidate at CTU level and
by reusing the information for various partition sizes, this
method avoids computational redundancies. The fast mode
decision framework is based on a post-order traversal of the
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CTU, which includes several mode reduction techniques.
Moreover, a novel method exploits the data provided by the
motion propagation algorithm to determine whether a CU
has to be split. Compared with a cascaded pixel-domain
transcoding approach, this solution is on average 8.5× faster
using one reference frame with a 2.63% BD-rate penalty.
For a configuration with four reference frames, the average
speed-up is 11.77× and the penalty is 3.82% BD-rate.

In [23], a moving object tracker is used to track objects
in input compressed domain and remove the need to do most
of the complex inter prediction in an H.264/H.265 to AV1
transcoder. In this proposal, presented in 2018, the encoder
motion estimation block is supplied with a refined motion
vector field from an object tracker that can skip a massive
portion of the inter prediction module, which results in a sig-
nificant reduction in coding time. The results estimate that
the run time achieved by reusing motion data is between 3
and 4 times lower than that of the anchor transcoder, but with
a greater visual quality decrease.

Finally, a transcoder based on CU depth inheritance be-
tween HEVC and AV1 was presented in 2019 [3]. AV1 is
the codec developed by AOMedia group, in which different
companies are involved in the creation of a royalty-free video
coding format [1]. In this proposal, a set of experiments were
performed aiming to identify possible correlations between
CUs and block size decisions performed by the two codecs.
After this analysis, the proposal consists in inheriting the de-
coded CU size information from the HEVC bitstream to infer
decisions taken during the AV1 re-encoding process. When
the proposal is compared to the unmodified AV1 transcoder
flow, an average time saving of 35.41% is achieved, with a
compression efficiency loss of 4.54% in terms of BD-rate.

With the analysis of these works, some aspects can be
improved. For example, in the case of [8] and [22], multiple
prediction models are defined. These proposals can be im-
proved by using the lambda (�) encoding parameter, which
depends on the QP and temporal layer of the frame, simpli-
fying these models into a single model with good results. In
addition, some of these works introduce high BD-rate penal-
ties in the transcoding process, which should be avoided in
order to have a good compression performance.

The features, models and algorithms analyzed in the
literature are specific to the standards involved in each
proposal, and are thus not applicable to an HEVC-VVC
transcoder. For this reason, this article presents a new
algorithm for fast transcoding between HEVC and VVC.
To the best of the authors’ knowledge, there are no other
HEVC-to-VVC transcoding schemes in the state of the art
at the moment of writing. Therefore, it opens a new line of
research in this field.

3. Technical Background
The development of VVC began with the Joint Explo-

ration Test Model (JEM) [5], which was in turn built on
top of HM, thus inheriting many features and coding tools
from previous standards. VVC has introduced many new
encoding tools and has improved existing ones [4]. As a re-

Figure 2: Example of an MTT structure.

sult, while VVC maintains the hybrid block-based scheme
of HEVC, it achieves significant improvements in terms of
coding efficiency. This section highlights the details of the
tools introduced in VVC, comparing them to HEVC.

Regarding the block partitioning structure, HEVC intro-
duced the so-called CTUs, which are square regions of up to
64×64 pixels that can be recursively split into four square-
shaped CUs down to 8×8 pixels using a QT structure. Each
CU is encoded using either inter-picture (temporal) or intra-
picture (spatial) prediction. In this regard, each block can
contain one ormore PUs, and is encoded using aQT of trans-
form units (TUs). VVC, in turn, increases the maximum
CTU size to 128×128 pixels, and enables multiple possible
partitioning schemes in what is known as a multi-type tree
(MTT) structure, leaving the concepts of PUs and TUs aside.
MTT is based on two splitting stages: firstly, a QT is used
to split a CU into four sub-CUs of equal size, and secondly,
the leaf nodes of the QT are split horizontally or vertically
by the use of binary trees (BTs) and ternary trees (TTs), re-
spectively. In the case of leaf nodes in QT of size 128×128
pixels, only the BT partitioning is evaluated, since the TT is
not allowed at this level. An example of MTT partitioning is
shown in Fig. 2, which shows that this approach makes the
encoder much more adaptive to the local characteristics of
the input video sequence.

With regard to intra prediction, VVC introduces 65 pre-
diction modes, which are depicted in Fig. 3, as opposed
to the 33 modes defined by HEVC. This extension of di-
rectional modes allows us to capture finer edge directions
present in natural videos in both luma and chroma compo-
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Figure 3: Intra prediction modes in VVC.

nents, whereas the Planar and DC modes remain the same.
Another technique incorporated in the intra module is called
the cross-component linear model (CCLM), which reduces
redundancies between luma and chroma components, con-
sidering that VVC enables separate chroma encoding from
the luma component.

As far as inter prediction is concerned, the VVC affine
motion compensated prediction has been extended to two
motion compensation models, based on a 4-parameter
model, which uses information from two motion vectors
(MVs), and a 6-parameter model that uses up to three MVs.
TheMV of the center sample of each sub-block is calculated
according to these models, using 1/16 fraction accuracy. In
addition, the subblock-based temporal MV prediction (SbT-
MVP) technique is similar to the temporal MV prediction
(TMVP) tool used in HEVC, but has two main differences.
On the one hand, the motion prediction is performed at sub-
CU level. On the other hand, SbTMVP applies amotion shift
before the temporal motion information is referenced in the
collocated picture. The last tool implemented in this module
is the adaptive MV resolution (AMVR), where motion vec-
tor differences can be coded in units of quarter-luma-sample,
integer-luma-sample or four-luma-sample. To determine the
motion vector resolution for the current CU, the encoder per-
forms rate-distortion checks.

In VVC, a high-precision MV storage is included, with
up to 1/16 fraction accuracy for merge, affine and MV stor-
age. In this regard, in AMVR, for which the highest accuracy
is 1/4, the precision is also shifted to 1/16.

Finally, regarding the modifications to the transform,
which allows the encoder to compact the residual informa-
tion, VVC defines a multiple transform selection (MTS) pro-
cedure, which is used for residual coding both inter and intra
coded blocks. With this tool, the encoder can choose among
a set of different transform functions, namely DCT-II, DCT-
VIII and DST-VII.

4. Proposed Transcoding Approach
This section describes the HEVC-VVC transcoding ap-

proach using the HEQUS algortihm. At the first partitioning
level, a probabilistic model based on Naïve-Bayes classifiers

Figure 4: Encoding process of the HEQUS algorithm in the
proposed HEVC-VVC transcoder.

is used to assist the splitting decision on the basis of previ-
ously coded information and statistical data. At the remain-
ing levels, the QT partitioning used in VVC is based on the
block structure used in HEVC.
4.1. Description of the HEQUS Algorithm

This proposal aims to speed up the decision making
of the QT partitioning in the context of an HEVC-VVC
transcoding scenario to replace the brute-force scheme used
in typical encoder implementations. However, the first par-
titioning level in VVC involves 128×128 pixel blocks, while
the maximum block size in HEVC is 64×64 pixels. For
this reason, there is no direct relationship between the first
level of the VCC partitioning and partitioning carried out by
HEVC. To address this, the proposed approach implements
a mathematical model to predict the partitioning of the first
level in the transcoding process. This approach, which is
depicted in Fig. 4, is detailed step by step in the following
paragraphs.

The source HEVC video stream contains valuable infor-
mation that can be used as features and statistical informa-
tion following a knowledge discovery from data (KDD) ap-
proach [9]. In this process, the decoded frames and their cor-
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responding residual information are divided into 128×128
pixel blocks to extract useful information for the transcod-
ing. This information is preprocessed and later processed us-
ing machine learning techniques to create a decision model
that accelerates the transcoding by deciding whether the
128×128 blocks must be split or not. If the model decides to
split the block, it is divided into 4 CUs of 64×64 pixels each,
thus reducing the total computation time, since the evalua-
tion of QT and BT is skipped for this level. On the contrary,
if the model decides not to split the 128×128 block, the eval-
uation of lower levels in the partitioning tree is completely
omitted, resulting in significant time savings.

To prevent the evaluation of the entire MTT structure
for the second partitioning level onward when a 128×128
block is split, our transcoding approach makes use of the
original HEVC partitioning structure to accelerate the eval-
uation of 64×64, 32×32, 16×16 and 8×8 CUs. In this re-
gard, our proposed HEQUS algorithm is based on the QT
structure of HEVC so that the VVC encoder only needs to
evaluate the BT and the TT of the resulting tree structure.
However, the VTM encoder implementation includes early
skip techniques, and, given that the decisions of the HEQUS
algorithm are implemented on top of these techniques of the
VVC encoder, a second implementation called Fast HEQUS
is presented, where this method overrides the fast checks
in QT blocks, so that the QT partitioning adopted by the
transcoder in 64×64 blocks and lower is completely iden-
tical to that of HEVC.

The following subsections outline the steps carried out in
the development of the proposal. The first step consists on
data understanding by describing the features used to con-
struct the model of the first partitioning level, the generation
of the training model, and the model building process itself.
Additional subsections, in turn, indicate how the HEVC par-
titioning structure is used in VVC to accelerate the QT par-
titioning of the remaining levels.
4.2. Data Understanding

Features are individual independent variables that act as
input information for decision models to make predictions.
In the case of our proposal, this information is taken from
the HEVC stream or from the transcoding process itself, and
is used to predict the partitioning decision of the 128×128
blocks in VVC. In this regard, we selected a large set of fea-
tures, numbered from V1 to V16, that potentially describe thedistinctive characteristics of the input sequences, and thus
help predict the partitioning of the first level [14]. Many of
them rely on the existing correlation between the texture of
a region or its residual, and its most efficient partitioning.
Among the proposed features, some are known to provide
useful information in a transcoding process [8, 25, 12]. The
initial set of features contains the following variables:

• Average of the block (x): calculated for the samples in
the 128×128 residual block (V1), which can describe
the complexity of the prediction obtained for the cur-
rent block.

• Variance of the block (�2): variance of the samples
in the 128×128 block, both in the residual frame (V2)and in the reconstructed image (V9).

• Variance of the means in sub-blocks: since the QT di-
vides a block into four sub-blocks of equal size, it is in-
teresting to know information about these sub-blocks.
Thus, the 128×128 residual block is divided into four
blocks of size 64×64. The mean of the residual values
of each 64×64 is calculated, and then the variance of
these means (V3).

• Variance of the variances in sub-blocks: similar to the
previous statistic, the 128×128 residual block is di-
vided into four blocks of size 64×64. In this case,
variance of the residual values of each 64×64 block
is calculated, and then the variance of these variances
(V4).

• Fisher coefficient of skewness (
): measure of skew-
ness, or more precisely, the lack of symmetry, of a set
of values based on their distribution around the aver-
age. In the case of a normal distribution, the skewness
must be close to zero, or on the contrary the distribu-
tion is asymmetric to the left or right. This statistic
has been calculated for the 128×128 block in both the
residual frame (V5) and the reconstructed image (V7).The following expression represents 
 , where P is the
value of each sample and N is the total of samples
contained in a block of size 128×128 pixels.


 =
∑N
i=1(Pi − x)

3

N ⋅ �3

• Mean absolute deviation (MAD): this feature shows
the amount of deviation that occurs around the mean
in a set of values by calculating the average distance
between each value and the central value. It has also
been calculated for the 128×128 block in both the
residual frame (V6) and the reconstructed image (V8).

MAD =
∑N
i=1

|

|

Pi − x||
N

• Number of zero values: with the amount of zero val-
ues in the residual block of 128×128 samples (V10),the complexity of the prediction for that block can be
estimated, since a good prediction for the first level of
partitioning may mean that it is not necessary to carry
out further checks at lower levels.

• Coefficient of Kurtosis (�): this defines how heavily
the tails of a distribution differ from the tails of a nor-
mal distribution, depending on how the values are dis-
tributed around the average, so that a greater kurtosis
implies a higher concentration of values close to the
average. In this case, the kurtosis has been calculated
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for the 128×128 block in both the residual frame (V11)and the reconstructed image (V12).

� =
∑N
i=1

(

Pi − x
)4

N ⋅ �4
− 3

• Spatial index of the 128×128 block: the spatial index
feature defines the level of detail in the block, that is to
say, wether it is a complex region of the frame or a ho-
mogeneous zone, so it has been calculated only in the
reconstructed image (V13), using the Sobel filter (SF ).
SF is the convolution (∗) of the Sobel matrices as in-
dicated bellow, with a 3×3 matrix, Ap, surroundingthe pixel to which the filter is being applied. The spa-
tial index (SI) is calculated as the standard deviation
of the value of the pixels contained in the 128×128
size block after applying the SF .

SFx =
⎡

⎢

⎢

⎣

−1 0 1
−2 0 2
−1 0 1

⎤

⎥

⎥

⎦

∗ Ap

SFy =
⎡

⎢

⎢

⎣

−1 −2 −1
0 0 0
1 2 1

⎤

⎥

⎥

⎦

∗ Ap

SFp =
√

SF 2
x + SF 2

y

SI = �(SFi)

• Cost in bits of the block in the HEVC stream (V14).
• Number of pixels in the frame (width × height) of the

sequence to which the 128×128 block belongs (V15).
• The � value used to encode the frame (V16): Since �depends on the QP and the temporal layer of the frame

in the hierarchy established by the group of pictures
(GOP), it can be obtained directly from the VVC en-
coder.

4.3. Generation of the Dataset
Having defined the features used in the construction of

the proposed decision model, it is necessary to describe the
process followed to generate the instances of the dataset.
Ideally, a dataset should contain instances from as many dif-
ferent scenarios as possible to ensure the adaptivity of the
model to any context and input sequence.

The JVET published a document that defines different
reference configurations used to establish a common test
framework among proposals [21]. Within these configura-
tions, the document specifies a wide set of sequences, mainly
grouped by resolution, which comprise many different sce-
narios, such as regular footage, computer-generated content
and videoconferencing. This variety ensures a wide spec-
trum of use cases. The list of sequences is as follows:

• Class A1 (3840×2160 pixels): Tango2, Drums100,
Campfire and ToddlerFountain2.

Figure 5: SI and TI of the test sequences. Classes: A (Red),
B (Yellow), C (Green), D (Black) and E (Purple).

• Class A2 (3840×2160 pixels): CatRobot, TrafficFlow,
DaylightRoad2 and Rollercoaster2.

• Class B (1920×1080 pixels): Kimono, ParkScene,
Cactus, BQTerrace and BasketballDrive.

• Class C (832×480 pixels): RaceHorsesC, BQMall,
PartyScene and BasketballDrill.

• Class D (416×240 pixels): RaceHorses, BQSquare,
BlowingBubbles and BasketballPass.

• Class E (1280×720 pixels): FourPeople, Johnny and
KristenAndSara.

To build our model, we selected five of the sequences
for the training set. The criterion used in the selection con-
sisted of taking one sequence per class on the basis of their
spatial index (SI) and temporal index (TI) [18]. Based on
Fig. 5, which shows the distribution of these indices for all
sequences, we selected Campfire (Class A), BasketballDrive
(Class B), BQMall (Class C), BQSquare (Class D), andKris-
tenAndSara (Class E), given that they cover a wide range of
distinctive cases. However, with the aim of homogenizing
the number of instances per class and avoiding overfitting
due to the significant difference in resolution, only 1,000 in-
stances per temporal layer and sequence were selected. The
instances not used for training and those corresponding to
the remaining sequences were left for validation.

In addition to the type of content being transcoded, it
is also important to consider configuration parameters that
may affect the prediction. In particular, on the basis of the
JVET document, we considered four QP values to gener-
ate the dataset, namely 22, 27, 32 and 37, which cover a
wide range of rate-distortion scenarios [21]. Additionally,
we considered RA configuration, which sets the GOP size
to 16 frames, and the interval at which I frames are used to
1 second. It should be noted, however, that I frames were
omitted from the analysis due to the new features introduced
in VVC compared with HEVC, such as separate luma and
chroma encodings. Therefore, only B frames were consid-
ered to build the model.
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The specific HEVC implementation selected to encode
and decode the streams used for feature extraction and con-
struction of the proposed classifier was the HM version
16.16 [19]. This fully-featured HEVC reference software of-
fers significant coding efficiency by using strategies that pro-
vide near-optimal results compared with other implementa-
tions. Regarding VVC, we selected its matching implemen-
tation, i.e., the VVC test model (VTM) version 2.0.1 [20],
to perform the encoding of the HEVC streams with the aim
of determining the class of the instances in the dataset. The
class attribute, which represents the value to be predicted by
the model, was obtained from each 128×128 block. If the
block was split in four CUs using a QT, its value would be
1, and 0 otherwise.

Based on the above considerations, the total number of
instances in the dataset was almost 6 million instances, of
which only 1.40% were used for training the model, and the
remaining 98.60% for validation and evaluation.
4.4. Construction of the Decision Model

The decision model used in the first partitioning level of
the QT was generated using the WEKA software [15]. This
tool, whichwas developed in Java, supports well-known data
mining algorithms and operations such as clustering, regres-
sion and visualization. With this aim, we used the infor-
mation obtained from the 128×128 blocks to generate the
model.

For a better understanding of the model creation process,
Fig. 6 depicts a flowchart of the different stages in the data
processing, from the extraction of input information from
the HEVC stream to the generation of the model. As can
be seen, the first step is the characterization of each variable
and attribute by its type. Different data types include nu-
meric, nominal, string or dates. In our case, all the informa-
tion extracted from the blocks is numeric in all cases except
for the class attribute. The second step consists in splitting
the instances in training and testing datasets as specified in
the above subsection.

Once the datasets have been created, the next step is the
creation of the model from the training set. Among all the
possible classifiers, we selected Naïve-Bayes, which is based
on the idea that an event occurs after other events that may
have an influence on the former, but that are independent of
each other once the class is known. Mathematically this is
expressed as the factorization by the probability of the class
multiplied by the probability of each variable given the class,
i.e. given a class Y and a set of variables {X1,… , XN

}, the
following expression is satisfied:

P (Y |X1,… , XN ) ∝ P (Y ) ⋅ P (X1|Y )…P (XN |Y )

This set of frequencies is computed in only one read-
ing, and thus the computational complexity of building a
Naïve-Bayes classifier is (Nn), whereN is the number of
instances and n the number of features [29]. In addition,
Naïve-Bayes is linear in its classification phase, i.e. (n),
becoming one of the fastest classifiers available.

Figure 6: Data processing and model generation flowchart.

To ensure a correct classification of the model, the train-
ing dataset requires prior preprocessing, including feature
discretization and selection. In this regard, it is possible to
measure the performance of the classifier being constructed
by using the accuracy metric defined by the following math-
ematical expression:

Accuracy (%) = True positives + True negatives
Total number of instances ⋅ 100

Without any prior preprocessing, the accuracy of the
model employing a 5-fold cross validation on the training set
using a Naïve-Bayes classifier is only 79.01%. Given that the
input attributes are continuous quantitative variables, which
forces us to assume that they follow a specific distribution,
and given that Naïve-Bayes results in better accuracy with
categorical variables, all attributes are discretized using a
supervised discretization filter. In this way, all numerical at-
tributes are transformed into intervals whose range depends
on their contribution to the class attribute [27]. After the dis-
cretization, the accuracy of the model increases to 84.42%.
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Table 2
Accuracy results of the wrapper algorithm.

Accuracy of the classifier after
the inclusion of a new attribute

Attribute {∅} {V14} {V14, V12}

+V1 83.22 89.98 89.77
+V2 84.39 89.99 89.89
+V3 81.91 89.97 90.10
+V4 84.30 89.95 89.84
+V5 84.06 89.97 89.90
+V6 84.40 90.00 89.91
+V7 73.43 92.32 92.20
+V8 78.12 92.13 92.04
+V9 77.96 92.15 92.05
+V10 84.37 89.99 89.91
+V11 84.40 89.99 89.90
+V12 73.51 92.34 -
+V13 75.45 92.05 91.93
+V14 92.33 - -
+V15 71.03 92.18 91.82
+V16 72.14 91.45 91.76

Building on the preprocessing of the training set, Naïve-
Bayes classifiers, like any other probabilistic classifier, are
sensitive to the feature sets used to induce them. Therefore, it
is necessary to discern the attributes that actually contribute
to the prediction of the class variable from those that are ir-
relevant or redundant. This process is called feature subset
selection and, among all possible selection algorithms, we
selected Wrapper with forward selection to generate the cor-
responding training subset [13]. Forward selection is an iter-
ative algorithm that adds variables to a set which is initially
empty. To determine which attribute must be added in each
iteration, the algorithm evaluates which of the remaining at-
tributes contributes most to the accuracy of the algorithm. If
none of the attributes increase the accuracy achieved by the
current set of variables at a given iteration, the algorithm fin-
ishes prematurely. Considering this method evaluates only
a few subsets of variables, it is computationally efficient and
robust against overfitting.

Table 2 shows the evolution of the Wrapper algorithm
executed on the original training set. The resulting subsets
are evaluated using Naïve-Bayes classifiers and 5-fold cross-
validation. On the basis of the partial results of each itera-
tion, it can be seen that the variable selection algorithm fin-
ishes after three iterations:

• In the first iteration, all variables are tested individu-
ally. As a result, variable V14, which represents the
cost in bits to encode the 128×128 block in the HEVC
stream, obtains the greatest accuracy, that is 92.33%.

• In the second iteration, all possible pairs formed by
V14 and any other variable are tested. The accuracy
results show that only V12, which is the coefficient of
kurtosis in the reconstructed block, achieves a slight
increase in the accuracy of the current set, which rises
to 92.34%.

Figure 7: Partitioning example of HEQUS (left) and Fast
HEQUS (right) on the basis of the original HEVC partition-
ing (differences shaded in gray).

• Finally, the third iteration provides no subset for which
the accuracy exceeds the one of the previous iteration.

As a result of the variable selection process, only two
of the variables were selected to build the model, namely
V14 and V12, omitting the remaining ones. In this regard,
it is worth noting the difference in terms of accuracy of the
model before and after the preprocessing of the dataset. The
validation of the model using the testing set, however, will
be shown as part of the evaluation of the proposal.
4.5. Partitioning Decisions in the Remaining

Levels
The proposed Naïve-Bayes classifier enables the predic-

tion of the partitioning of the first QT level in 128×128
blocks. This prediction may result in not splitting the block,
in which case the QT evaluation is finished, and the encoder
can either encode the block as is, or split it using BT and
TT structures. By contrast, if the proposed model decides
to split the 128×128 block, any rate-distortion evaluation for
such a block is omitted, and the transcoder evaluates the cor-
responding subblocks.

The size of the blocks generated after partitioning a
128×128 block in the QT is 64×64 pixels, whichmatches the
maximum CTU size in HEVC. In this way, and considering
that the original HEVC stream went through an exhaustive
RDO procedure to compress the source media, our proposal
uses the existing QT structure of the input stream to encode
the VVC stream. Therefore, it is assumed that the same
QP is used for both input and output sequences. As men-
tioned previously, a set of early termination checks are per-
formed in the VTM encoder, which can affect the brute-force
scheme, since some rate-distortion evaluations and partition-

D. García-Lucas et al.: Preprint submitted to Elsevier Page 8 of 15



Cost-Efficient HEVC-based quadtree splitting (HEQUS) for VVC Video Transcoding

ing modes can be skipped. The behavior of these implemen-
tations is shown with shaded blocks in Fig. 7: the main dif-
ference is that the HEQUS algorithm is implemented on top
of existing early QT splitting techniques, whereas the Fast
HEQUS algorithm adopts the exact HEVC partitioning at
64×64 and lower levels. The two implementations presented
in this proposal are detailed below:

• Implementation of the HEQUS algorithm: VTM im-
plements several early termination techniques that al-
low the encoder to omit some rate-distortion evalua-
tions and partitioning modes [6]. These techniques,
which can be applied to any block type and level of
partitioning, can influence the partitioning decisions
of the HEQUS algorithm and its evaluation. In partic-
ular, the most important fast coding techniques are:

– A technique that enables the caching of coding
information, such as the best BT cost, the best
TT cost, the best non-split cost, and the number
of splits in QT, BT and TT. If the encoder needs
to reuse information from other CUs, it can ac-
cess the costs stored in cache.

– A fast coding decision algorithm for CU depth
called fast large CTU used to accelerate the en-
coding process when the maximum CTU size is
set larger or equal to 128×128 pixels. In such a
case, intra prediction is skipped for the current
block when the area (width×height) of the luma
component is greater than 4096 samples.

– Before evaluating a splitting decision, a skip-
history rule is checked. According to this rule,
if the skip mode was selected for the three past
blocks in previous levels, then the block is no
longer split.

Therefore, QT partitioning decisions are provided by
HEVC, unless an early check prevents the same de-
cision. In this case, the decision of the technique is
taken into account, ending the QT when it is signaled.
Next, BT and TT partitioning is performed without
anymodification with respect to the default VTM cod-
ing flow.

• Implementation of the Fast HEQUS algorithm: In this
proposed transcoding method, the VTM fast checks
are ignored inQT blocks, that is to say, the partitioning
decisions in the transcoder are completely forced to be
the same as in HEVC. Therefore, the computational
time of checking more prediction modes is saved and,
since the QT scheme reaches deeper levels, fewer di-
visions are made in the BT and TT structures, result-
ing in greater time savings in the transcoding process.
As a result, the transcoder avoids the evaluation of the
QT, and only needs to evaluate the resulting 64×64,
32×32, 16×16, and 8×8 blocks along with their BT
and TT structures.

In both implementations, in the case of blocks that ex-
ceed the bottom or right frame boundary, the block is forced
to be split until the samples are located inside the frame
boundaries. In VVC, if a portion of a block exceeds a bound-
ary, it is forced to split in one direction using the BT struc-
ture. An implicit horizontal split is used if the block exceeds
the bottom boundary, or vertical split in case of the right
boundary is surpassed. Therefore, since our proposal infers
only on the QT partitioning decisions, these blocks would
not be affected, as they belong to the BT partitioning struc-
ture.

5. Performance Evaluation
This section presents the results obtained by the pro-

posed HEVC-VVC transcoding approach. Firstly, the
transcoding scenario and metrics used to measure its per-
formance are presented, in terms of both computational cost
and coding efficiency. Subsequently, the model in the first
partitioning level is analyzed, followed by the results of the
HEQUS and Fast HEQUS implementations.
5.1. Experimental Setup and Metrics

Although the model was generated using information
from blocks encoded using RA configuration, the evaluation
was performed with RA, low delay B (LB), and low delay P
(LP) configurations [21]. The QP values used for the en-
coding were 22, 27, 32, and 37. Input and output sequences
were encoded using 10-bit encoding and 4:2:0 chroma sub-
sampling. The transcoding process followed to evaluate our
approach is summarized as follows:

1. First, the original raw sequence is encoded using HM
version 16.16 for each QP and configuration [19].

2. Then, each HEVC sequence is decoded back to raw
format. Simultaneously, the decoder exports the sta-
tistical information used as input by the proposed
model on a 128×128 block basis.

3. Once the decoded sequences and the statistical infor-
mation are available, each raw video file is encoded
with both the baseline transcoder and the proposed
transcoding scheme. The former is an unmodified ver-
sion of the VTM 2.0.1 encoder that does not make use
of the statistical information, while the HEQUS algo-
rithm is implemented on top of it [20].

Once the sequences are finally in VVC format, the re-
sults are analyzed in terms of processing time and coding
efficiency by comparing both our proposal and the baseline
transcoder. For this aim, we used the BD-rate and the time
reduction (TR) metrics. The BD-rate is a measure of coding
efficiency that represents the percentage of bitrate variation
between two sequences with the same objective quality [2].
Therefore, a negative BD-rate means the obtained bitrate of
our proposal is lower than the bitrate obtained with the an-
chor version of VTM. The TR metric, in turn, enables the
assessment of time savings, and is calculated using the fol-
lowing expression:
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Table 3
Accuracy of the proposed model.

Class Sequence Accuracy (%)
QP 22 QP 27 QP 32 QP 37

A1

Tango2 92.60 87.44 85.98 85.91
Drums100 96.53 87.75 85.66 85.22
Campfire 96.66 92.23 91.46 92.93
ToddlerFountain2 99.17 97.91 97.16 94.98

A2

CatRobot 90.46 86.47 85.66 86.97
TrafficFlow 90.07 83.43 85.26 88.90
DaylightRoad2 95.47 85.40 81.42 85.40
Rollercoaster2 91.60 85.90 82.97 81.66

B

Kimono 93.92 90.40 87.88 86.09
ParkScene 94.86 86.35 83.76 84.57
Cactus 91.90 91.40 88.92 87.77
BasketballDrive 93.42 88.44 87.54 88.29
BQTerrace 97.41 86.72 81.14 84.51

C

BasketballDrill 97.26 93.92 91.57 89.28
BQMall 94.76 92.15 91.81 89.52
PartyScene 99.24 96.60 90.56 84.74
RaceHorsesC 99.29 98.26 97.89 96.67

D

BasketballPass 98.43 96.80 93.80 86.91
BQSquare 99.94 93.56 80.96 84.52
BlowingBubbles 98.50 92.23 86.43 82.07
RaceHorses 99.66 99.20 98.51 97.24

E
FourPeople 88.23 91.97 93.20 94.20
Johnny 88.83 90.66 92.42 95.32
KristenAndSara 88.34 88.36 91.35 93.60

Class A1 96.24 91.33 90.06 89.76
Class A2 91.90 85.30 83.83 85.73
Class B 94.30 88.66 85.85 86.24
Class C 97.64 95.23 92.96 90.05
Class D 99.13 95.44 89.92 87.69
Class E 88.47 90.33 92.32 94.37

Average 94.86 90.98 88.89 88.64

TR (%) =
Treference − Tproposal

Treference
⋅ 100

It should be noted that the time required to obtain the
statistics used by the model is included in Tproposal, and rep-resents only approximately 0.1% of the total encoding time,
which is negligible compared with the time saved.

Regarding the experimental setup, the hardware plat-
form used in the tests was composed of an Intel® Xeon®
E5-2630L v3 CPU running at 1.80 GHz and 16 GB
of main memory. The encoders were compiled with
GCC 5.4.0-6 and executed on Ubuntu 16.04.3 LTS (GNU/
Linux 4.4.0-143). Turbo Boost was disabled to achieve the
reproducibility of the results.
5.2. Analysis of the Decision Model

As indicated in the previous section, the JVET defined
a document with a set of sequences that should be used in

(a) Original HEVC encoding.

(b) Baseline transcoding scheme. (c) Proposed Fast HEQUS algo-
rithm.

Figure 8: Comparison of the partitioning between the baseline
transcoder and the Fast HEQUS transcoding approach.

the evaluation of proposals. The dataset used to generate the
proposed model was elaborated from such sequences, and
later divided into training and testing sets. While the former
was used to build the decision model, the latter was left aside
for its validation.

Table 3 shows the accuracy of themodel using the testing
set. To facilitate the understanding of the results, and to an-
alyze the adaptivity of the model in deeper detail, the results
are shown separately for each sequence and QP. It should be
noted that the instances used in the training set were removed
from the testing set for the Campfire, BasketballDrive, BQ-
Mall, BQSquare, and KristenAndSara sequences. In this
way, the results show that the accuracy achieved is signif-
icantly higher for lower QPs, while still near 90% in the case
of higher QPs. Moreover, it can be seen that there is no over-
fitting with respect to any QP, sequence, or class, since high
accuracy is achieved in all cases.

When considering all the instances of the testing set, the
average accuracy achieved by the proposedmodel is 89.42%.
While it is slightly lower than the accuracy obtained from the
training set, it is still significantly high, and thus confirms
the validity of the model. In addition, the results in Table 4
show the performance of a transcoder where QT partition-
ing decisions at level 128×128 are given by the Naïve-Bayes
model built in this proposal and, once the decision is made
at the first level, the coding flow is maintained by default
at the lower levels. The results related to the time reduc-
tion show that the model performs better in high-resolution
classes (A1, A2, B and E), where greater time savings are
achieved. For the low resolution of the test sequences be-
longing to classes C and D, where a block of 128×128 pix-
els represents a large part of the frame and, therefore, the
chances of splitting this block in QT are higher, it can be
seen that the time reduction is lower compared with the rest
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Table 4
Performance results of the Naïve-Bayes model for the 128×128 pixel blocks over the anchor
transcoder (VTM 2.0.1).

Class Sequence Random Access Low Delay B Low Delay P
BD-rate (%) TR (%) BD-rate (%) TR (%) BD-rate (%) TR (%)

A1

Tango2 1.07 30.38 0.58 31.70 0.36 26.05
Drums100 0.75 16.87 0.31 15.82 0.37 12.21
Campfire 0.06 9.83 0.49 7.52 −0.06 6.71
ToddlerFountain2 −0.05 6.50 −0.02 4.77 −0.04 3.87

A2

CatRobot 0.75 20.11 0.58 20.90 0.64 16.21
TrafficFlow 0.44 24.55 1.18 30.35 0.99 24.47
DaylightRoad2 1.35 25.52 0.11 23.40 0.27 19.20
Rollercoaster2 0.95 30.00 0.52 31.78 −0.08 24.90

B

Kimono 0.23 17.46 0.03 14.85 0.00 11.81
ParkScene 0.17 12.50 −0.02 9.48 0.13 8.33
Cactus 0.08 12.33 0.10 10.46 0.27 7.72
BasketballDrive 0.27 11.86 0.16 9.02 0.22 7.37
BQTerrace 0.02 12.97 0.46 12.80 0.20 8.90

C

BasketballDrill 0.20 6.16 0.23 5.16 0.16 3.32
BQMall −0.06 6.92 0.06 4.91 0.13 4.18
PartyScene −0.11 4.78 0.06 3.20 0.07 2.32
RaceHorsesC −0.01 4.41 0.03 2.74 0.09 1.93

D

BasketballPass 0.66 3.40 0.48 2.62 0.66 1.73
BQSquare −0.19 6.50 −0.02 6.09 −0.15 3.86
BlowingBubbles 0.04 4.27 0.17 3.33 0.04 2.88
RaceHorses 0.23 3.30 0.22 2.48 0.34 2.05

E
FourPeople 0.06 15.15 0.22 15.66 0.31 12.90
Johnny 0.33 16.36 0.32 20.52 0.55 16.28
KristenAndSara 0.35 18.88 0.31 22.47 0.52 18.73

Class A1 0.46 15.90 0.34 14.95 0.16 12.21
Class A2 0.87 25.01 0.60 26.61 0.46 21.20
Class B 0.15 13.42 0.15 11.32 0.16 8.83
Class C 0.01 5.57 0.10 4.00 0.11 2.94
Class D 0.19 4.37 0.21 3.63 0.22 2.63
Class E 0.25 16.80 0.28 19.55 0.46 15.97

Average 0.32 13.38 0.27 13.00 0.25 10.33

of the classes, but with a negligible impact in terms of BD-
rate penalty. Based on these results, we can confirm that the
model applied to the first level provides a computational cost
saving of around 13% with a negligible BD-rate penalty.
5.3. Experimental Results

As a first visual evaluation, Fig. 8 shows a comparison
between the baseline transcoder and the Fast HEQUS algo-
rithm transcoding scheme. This figure displays the parti-
tioning performed in a region of the seventh frame of the
Drums100 sequence for the RA configuration and QP 27.
As can be seen, both QT splittings at the 128×128 level of
the tree structure are virtually identical, which highlights the
accuracy of the prediction of our classification algorithm.
Regarding the remaining levels, the QT structure is inher-
ited from HEVC, whereas the newMTT structure defined in
VVC is still evaluated.

Tables 5 and 6 show the results of the implemented
HEQUS and Fast HEQUS algorithms, respectively, over the

anchor transcoder in terms of the BD-rate and TR for all
test sequences and scenarios. As can be observed, in both
cases, the RA and LP scenarios display better coding effi-
ciency than LB. Regarding the TR, the three scenarios show
equivalent time savings in each implementation, around 45%
in HEQUS and 60% in Fast HEQUS. This shows the homo-
geneity of the model irrespective of the scenario, even when
it was built from information of 128×128 blocks belonging
to sequences encoded under the RA configuration.

Regarding the impact on resolutions, as seen from the
individual results, Class A achieves the highest TR. This is
due to the fact that sequences belonging to this class have
higher resolution compared to other classes, and therefore
128×128 blocks are not split as often. In this regard, the
Naïve-Bayes model can early terminate the evaluation of the
QT by deciding not to split such blocks, resulting in signifi-
cant time savings, in both HEQUS and Fast HEQUS imple-
mentations. As far as coding efficiency is concerned, results
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Table 5
Results of the HEQUS algorithm over the anchor transcoder (VTM 2.0.1).

Class Sequence Random Access Low Delay B Low Delay P
BD-rate (%) TR (%) BD-rate (%) TR (%) BD-rate (%) TR (%)

A1

Tango2 3.22 50.82 2.93 56.05 2.68 54.51
Drums100 4.55 48.16 4.08 50.59 3.59 50.34
Campfire 0.73 50.02 2.89 51.06 1.52 51.90
ToddlerFountain2 0.57 46.57 0.83 47.21 0.82 47.19

A2

CatRobot 4.47 49.42 5.32 54.59 5.06 54.22
TrafficFlow 0.97 30.10 3.20 41.48 2.88 42.70
DaylightRoad2 2.39 52.08 2.72 55.11 2.62 54.96
Rollercoaster2 2.05 51.68 1.62 53.08 0.99 51.95

B

Kimono 1.47 43.58 1.19 46.11 1.28 43.90
ParkScene 2.14 39.31 2.75 44.60 2.92 41.70
Cactus 1.95 45.74 2.35 48.42 2.25 46.51
BasketballDrive 2.62 50.57 2.50 50.77 2.51 50.95
BQTerrace 0.71 34.57 4.48 35.18 1.39 35.13

C

BasketballDrill 2.57 48.15 2.67 48.28 2.66 46.56
BQMall 3.47 47.48 3.54 47.78 3.49 45.91
PartyScene 0.96 45.14 2.04 47.33 1.49 46.22
RaceHorsesC 2.80 50.89 2.75 52.76 2.50 52.19

D

BasketballPass 3.31 50.87 3.16 52.06 2.96 50.92
BQSquare 0.36 35.23 2.20 42.10 0.97 38.68
BlowingBubbles 0.91 41.25 2.34 44.80 1.80 42.81
RaceHorses 3.72 50.05 2.82 53.15 2.98 51.02

E
FourPeople 1.58 36.88 3.45 36.08 3.19 33.78
Johnny 1.41 26.16 4.30 23.09 4.49 18.69
KristenAndSara 1.75 32.88 4.04 31.41 3.73 28.24

Class A1 2.27 48.89 2.68 51.23 2.15 50.99
Class A2 2.47 45.82 3.22 51.07 2.89 50.96
Class B 1.78 42.75 2.65 45.02 2.07 43.64
Class C 2.45 47.92 2.75 49.04 2.54 47.72
Class D 2.08 44.35 2.63 48.03 2.18 45.86
Class E 1.58 31.97 3.93 30.19 3.80 26.90

Average 2.11 44.07 2.92 46.38 2.53 45.04

are more constant in Classes B, C and D in the HEQUS al-
gorithm, since this implementation is using an HEVC-based
QT scheme in combination with the early termination checks
of the VTM encoder. Therefore, in the Fast HEQUS al-
gorithm, the full transfer of HEVC splitting decisions for
64×64 blocks and lower, generates a different behavior. This
is explained by the fact that HEVCwas mainly developed for
high-definition resolutions, while the VVC standard is tar-
geted at UHD video coding instead, including larger block
sizes andmore efficient tools to encode them. As a result, the
HEVC partitioning may be a suboptimal partitioning for the
VVC standards, which results in deviations in terms of BD-
rate, as seen in CatRobot or DaylightRoad2 sequences. In
spite of this, there are also cases in which the results show
gains in coding efficiency, as is the case of Campfire and
ToddlerFountain2 sequences.

Finally, the performance analysis of theHEQUS and Fast
HEQUS algorithms shows that the latter achieves better re-
sults. In terms of coding efficiency, the BD-rate penalties

are very similar in both proposed algorithms, around 2∼3%.
However, since Fast HEQUS directly provides the HEVC
QT partitioning ignoring VTM early checks, both the num-
ber of rate-distortion evaluations and partitioning modes are
reduced, and therefore it is able to increase the TR up to
13% over HEQUS implementation, achieving time savings
of around 60% on average for all sequences. This shows
the partitioning decisions made by the Fast HEQUS per-
form better than the early skip detection decisions available
in VTM.

6. Conclusions and Future Work
This paper presents a new approach for accelerating the

QT partitioning decisioning of an HEVC-VVC transcoder
using the proposed HEQUS algorithm. To this end, a
Naïve-Bayes classifier model predicts the splitting decision
of 128×128 blocks in VVC on the basis of information ex-
tracted from the HEVC stream. Given that the maximum
CTU size in HEVC is 64×64 pixels, the HEVC QT parti-
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Table 6
Results of the Fast HEQUS algorithm over the anchor transcoder (VTM 2.0.1).

Class Sequence Random Access Low Delay B Low Delay P
BD-rate (%) TR (%) BD-rate (%) TR (%) BD-rate (%) TR (%)

A1

Tango2 3.20 69.22 3.87 73.13 2.68 72.28
Drums100 7.82 63.53 6.69 63.66 5.44 63.14
Campfire −5.41 66.11 −3.99 68.07 −4.85 68.90
ToddlerFountain2 −5.62 58.59 −2.02 59.44 −1.78 59.06

A2

CatRobot 7.39 65.26 7.90 69.49 6.74 67.95
TrafficFlow 1.76 43.44 5.80 56.26 5.18 54.35
DaylightRoad2 6.38 62.81 5.73 66.94 5.51 66.83
Rollercoaster2 5.22 66.36 4.43 66.35 2.30 65.13

B

Kimono 1.66 55.43 1.58 58.03 1.20 56.26
ParkScene 3.76 52.25 3.49 57.24 4.09 52.00
Cactus 1.94 60.72 2.69 62.02 2.24 61.40
BasketballDrive 3.59 66.91 3.82 65.89 3.36 66.68
BQTerrace −1.25 43.07 −0.58 41.73 −2.20 45.60

C

BasketballDrill 3.37 65.70 3.05 66.55 2.92 62.06
BQMall 4.70 62.05 4.13 62.12 4.09 55.53
PartyScene 0.20 54.59 1.28 54.65 0.42 53.19
RaceHorsesC 3.32 63.83 2.88 67.14 2.63 64.65

D

BasketballPass 3.32 66.85 3.55 69.79 3.51 66.07
BQSquare −0.23 35.65 1.01 46.17 −1.37 35.68
BlowingBubbles −0.10 48.20 1.04 53.44 0.51 47.61
RaceHorses 4.19 62.72 3.11 68.56 3.42 63.84

E
FourPeople 3.40 51.97 5.61 47.59 5.02 49.14
Johnny 2.67 35.63 5.40 29.42 5.63 31.59
KristenAndSara 2.41 49.05 5.21 45.55 4.56 48.71

Class A1 0.00 64.36 1.14 66.08 0.37 65.85
Class A2 5.19 59.47 5.97 64.76 4.93 63.57
Class B 1.94 55.68 2.20 56.98 1.74 56.39
Class C 2.90 61.54 2.84 62.62 2.52 58.86
Class D 1.80 53.36 2.18 59.49 1.52 53.30
Class E 2.83 45.55 5.41 40.85 5.07 43.15

Average 2.40 57.08 3.15 59.13 2.55 57.40

tioning has been integrated into the transcoder in two differ-
ent implementations for the QT decisions for those resulting
blocks where the decision of the model has been to split the
128×128 block in QT. On the one hand, the HEQUS im-
plementation has been developed, which is combined with
the early termination techniques evaluated by VTM. On the
other hand, Fast HEQUS ignores these techniques and pro-
vides the transcoder with the QT partitioning, for 64×64
blocks and lower levels, directly from HEVC information.

The results evince the high accuracy of the model,
achieving 89.42% accuracy on all training sequences. The
performance analysis of the transcoder only with model de-
cisions at 128×128 pixel level shows the efficiency of the
Naïve-Bayes classifier, given that a TR of 13% is achieved
with a negligible penalty in terms of BD-rate. More-
over, a comparison between our algorithms and the base-
line transcoder shows a good trade-off in terms of cod-
ing efficiency and computational cost. In particular, the
HEQUS transcoding scheme, which works in combination

with the early termination techniques available in VTM, ob-
tains 44.07% time savings at the expense of only 2.11% BD-
rate for the RA configuration, scenario in which the learning
of the model was performed. The results for LB and LP con-
figurations, in turn, show that themodel is generic, achieving
46.38% and 45.04% time savings, with BD-rate penalties of
2.92% and 2.53%, respectively.

In addition, the Fast HEQUS scheme, where the QT par-
titioning structure of the transcoder is given entirely by the
HEVC QT decisions, provides better results with time sav-
ings of 57.08%, 59.13% and 57.40%, for the RA, LB and LP
scenarios, respectively, with similar BD-rate penalty.

Finally, the decisions made by our transcoder have no
influence on other modules such as intra or inter prediction.
In this regard, as future work, we intend to analyze the rela-
tionship between some PUs in HEVC and non-square sizes
provided by the BT and TT of VVC. In addition, machine
learning techniques may enable the use of information from
HEVC to predict the intra directional modes in VVC.
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