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MiE is a facial involuntary reaction that reflects the real emotion and thoughts of a human being. It is
very difficult for a normal human to detect a Micro-Expression (MiE), since it is a very fast and local
face reaction with low intensity. As a consequence, it is a challenging task for researchers to build
an automatic system for MiE recognition. Previous works for MiE recognition have attempted to use
the whole face, yet a facial MiE appears in a small region of the face, which makes the extraction of

relevant features a hard task. In this paper, we propose a novel deep learning approach that leverages
the locality aspect of MiEs by learning spatio-temporal features from local facial regions using a com-
posite architecture of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM).
The proposed solution succeeds to extract relevant local features for MiEs recognition. Experimen-
tal results on benchmark datasets demonstrate the highest recognition accuracy of our solution with
respect to state-of-the-art methods.

1. Introduction

Human face analysis has attracted a wide interest of the
computer vision research community with a potential scope
of applications including healthcare, education, security, etc.
The human face holds essential information for a machine
to understand human reactions and feelings, and also for hu-
mans to better understand each other in interpersonal com-
munication. Recently, particular attention is paid to a spe-
cial type of expression called facial micro-expression (MiE)
which may help to understand the feelings of a person.

The pioneering work on human facial expressions was
published by Charles Darwin and Phillip Prodger [6] in 1872
with a hypothesis that some facial expressions may appear
to reflect the real emotion when someone tries to hide it.
In 1966, Haggard and Isaacs [20] first discovered the phe-
nomenon of MiE when studying films of communication be-
tween a therapist and a patient frame by frame, searching
for non-verbal reactions. Later in 1969, Ekman er al. [15]
proved the existence of MiEs as quick, universal, and spon-
taneous facial expressions of some local regions of the face.

The analysis of MiE can be used for several applications
like lie detection, pain or stress detection, and teaching as-
sistance. MiEs, like any other facial expression, is a repre-
sentation of facial muscles movements. Yet, they are hard to
analyze since they are local and lasting only from 1/25s to
1/5s according to the study conducted in [14]. A precision
of 40% in MIE recognition was reported in [12] for people
who had passed professional training. To help reading these
movements and encoding MiEs, a Facial Action Coding Sys-
tem (FACS) is used by P. Ekman based on the combination
of Action Units (AUs). An AU is a small region of the face,
controlled by one muscle or a group of muscles that react to-
gether producing a basic movement in the face. The FACS
system was originally developed by Hjortsjo [22] in 1969
and then adopted in 1978 by Ekman et al. [13]. Figure 1
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illustrates the FACS as defined by Ekman er al. in [16].
Ekman has also shown in [11] that human emotions can be
categorized into 7 basic classes including disgust, surprise,
happiness, fear, anger, contempt, and sadness.
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Figure 1: Face and some Action Unit locations according to the
Facial Action coding System proposed by Ekman [16]. Images
from http://www.cs.cmu.edu/~face/facs.htm.

Figures 2(a) and 2(b) show examples of emotions in Macro-
Expression (MaE) and MiIE and their corresponding AU’s
code according to the FACS system. The deformation of
AUs defines the facial expression. This deformation goes
through three main steps: Onset, Apex, and Offset [12]. The
Onset represents the starting point of the expression, the Apex
represents the maximum or the peak that the expression reaches
in deformation, and the Offset is the instant when the ex-
pression vanishes away. Hence, the period of any facial ex-
pression is the time spent between the beginning of the On-
set period and the end of the Offset period. Figure 3 shows
an example of a deformation evolution through time (only 5
frames out of the sequence are shown') for disgust emotion.
In the Apex frame, where the peak of the deformation oc-
curs, we can notice a clear contraction of muscles between

'A Micro-Expression sequence labeled disgust in CASME I
dataset [47]
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Fear
AU: 1+4+7+20

Disgust
AU: 4+5+15+17

Surprise Happiness
AU: 142+5+425+27 AU: 6+12+25

(a) Examples of Macro-Expressions with their corresponding action units

(AUs). The images are from Cohn-Kanade (CK) dataset.

Fear
AU: 14+4+7+20

Disgust
AU: 9+10

Surprise
AU: 1+2+45+27

Happiness
AU: 6+12+25

(b) Examples of Micro-Expressions with their corresponding action units

(AUs). Figures from [5].

Figure 2: Macro- and Micro-Expressions in FACS system.

eyebrows and eyes, which refers to the AU9.

Analogously to the progress of MaE recognition, which
has been first tackled by handcrafted features then modern
deep neural networks, MiE recognition methods have also
evolved from hand-designed approaches [49, 28, 8] to deep
spatiotemporal neural networks [24, 37, 43, 42] and hybrid
approaches [17, 27, 45, 19]. However, while MaE recogni-
tion has seen dramatic gains in accuracy, improvements in
MiE recognition have been more moderate.

» Offset

AU 9: Nose wrinkling

Figure 3: A sequence of 5 frames representing the evolution
of a micro-expression from Onset up to Apex an then Offset.

The main drawback of previous approaches for automatic
MiE recognition is the use of the whole face while a MiE
occurs only in small parts of the face. These solutions have
mainly contributed to the architecture of models for features
extraction and classification, which mostly deal with the low
intensity and short duration characteristics of MiEs and not
the locality character. Nevertheless, recent works [50, 38,
51] pay attention to this locality feature. They apply ei-
ther handcrafted, deep learning or hybrid approaches only
on some selected regions, which may result in better perfor-
mance. Since the MiEs are brief and local, and the avail-

able MiEs datasets are very small and unbalanced between
classes, the result is still less accurate than the results of
MaEs recognition systems.

This paper studies a new model to automatically recog-
nize MiE from local facial regions using a composite archi-
tecture of CNN and LSTM for spatiotemporal features ex-
traction. Our proposed solution differs from other region-
based solutions since it associates a novel label for each re-
gion based on the definition of facial expressions on the FACS
system illustrated in Figure 2. Also, a shallow CNN model is
used instead of deep CNN, because a very deep architecture
may eliminate the spatial features that are helpful for MiE
analysis. The contributions of this work can be summarized
as follows:

e We use a shallow CNN, combined with LSTM to treat
the spatiotemporal information. By this architecture,
we address the low intensity (CNN) and rapidity (LSTM)
characters of facial Micro-Expression.

e The proposed architecture of CNN-LSTM is applied
on 6 regions of the face to address the locality aspect.

o The training process of CNN (spatial part) is done us-
ing specialized labels for each region depending on the
expression to aid the CNN learning more specific and
useful features.

e We test the proposed solution on two different distri-
bution of datasets : the Micro-Expression Grand Chal-
lenge (MEGC) 2019 challenge dataset with 3 com-
bined data bases (CASMEII, SAMM, SMIC) and 3
classes (Positive, Negative and Neutral), and the AU-
based datasets (CASMEII and SAMM) with 5 classes
based on AU.

Experiments on 3 spontaneous MiE datasets demonstrate
the potential of our approach performance that exceeds the
state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the state-of-the-art solutions for MiE recogni-
tion. Section 3 investigates the proposed spatiotemporal ar-
chitecture for MiE recognition. The performance of the pro-
posed solution is assessed and compared to the best-performing
solutions in Section 4. Finally, Section 5 concludes this pa-
per.

2. Related Work

In this section, we review and discuss the state-of-the-art
solutions for MiEs recognition. The overall pipeline, shown
in Figure. 4, has two main parts: spatiotemporal features ex-
traction and classification.

Given a fixed set of k classes cq, ¢, ..., ¢, and a MiE se-
quence .S composed of N frames (Fy, F,, ..., Fy), the goal
of MiE recognition as a video sequence classification prob-
lem is to identify the class to which the MiE sequence be-
longs. In other words, we are interested in the class ¢; with
the highest probability P(c;|.S) among the probabilities of k
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Figure 4: Pipeline of state-of-the-art micro-expression recog-
nition task.

classes. This probability can be parameterized using differ-
ent methods f(S) = f(fg(S)) which leverage at all frames
in the sequence to predict P(c;|.S) as follows:

¢; = argmaxP(c;|S), k € [1, ..., N],
c; = argmax f¢ (fE(S)) . €))

where f represents the model used for spatiotemporal fea-
tures extraction and f. represents the model used for the
classification. Based on the proposed problem formulation,
state-of-the-art works can be grouped into 4 categories in-
cluding handcrafted, deep learning, hybrid, and region-based.
These categories may lead to different approaches for MiE
recognition.

2.1. Handcrafted approaches

The first group of solutions for MiE recognition rely on
handcrafted models. The model includes spatial and tempo-
ral features. The extraction of the features is based either on
appearance face information that describes the variation of
pixel’s intensity (texture) or on geometric face information
like the shapes and the locations of facial landmarks. Zhao
et al. [49] first introduced Local Binary Pattern on Three Or-
thogonal Planes (LBP-TOP) for features extraction from dy-
namic textures to analyze the MiE. The features are defined
in the LBP-TOP histogram which is the concatenation of the
Local Binary Pattern (LBP) histograms of the three orthog-
onal planes: XY, XT, and YT. Concatenating histograms in
the computation of LBP-TOP leads to redundant information
where each neighbor pixel is used more than once. Subse-
quently, Wang et al. [44] proposed an improved version of
LBP-TOP with six intersection points of the three orthogonal
planes XY, XT, and YT. Moreover, LBP Mean Orthogonal
Planes (LBPMOP) computes the LBP of average planes for
three orthogonal planes to reduce the redundancy. Guo et
al. [18] proposed Extended LBPTOP (ELBPTOP) that uses
the second-order discriminative information in the radial and
angular directions of a local path along with the normal LBP-
TOP.

Chaudhry et al. [2] were the first to propose Histogram
of Oriented Optical Flow (HOOF) for human action recogni-
tion and it was then adopted by Davison et al. [8] to be one of
the baseline methods for MiE recognition. Main Directional
Mean Optical Flow (MDMO) proposed by Liu et al. [30] to

describe local facial dynamics by extracting principal Opti-
cal Flow (OF) direction of some AUs. Furthermore, Liong
et al. exploited the Bi-Weighted Oriented Optical Flow (Bi-
WOOF) in [28].

Different from these methods, Mean Oriented Riesz Fea-
tures (MORF) [10] is proposed by Duque ef al.. It uses the
Riesz pyramid to model the temporal evolution of the MiE
in two frames called Mean Oriented Riesz (MOR) image
pair, which is then used to build a histogram. Polikovsky
et al. [36] have used a 3D-Histogram of Oriented Gradient
(HOG) on 12 facial regions to recognize MiE. Lu et al. [31]
proposed the Fusion of Motion Boundary Histogram (FMBH)
technique to extract features from the face. The FMBH is
the combination of Motion Boundary Histograms (MBHs)
which are based on the norms and the angles computed from
the horizontal and the vertical components of the optical
flow. More details about the MBH descriptor can be found
in [4].

2.2. Deep learning approaches

Computer vision tasks like object detection and track-
ing, video classification, and image segmentation are widely
addressed using deep learning techniques. Due to the high
performance of deep learning models on these tasks, many
researchers have tested and adopted deep learning architec-
tures for MiE analysis. State-of-the-art deep learning solu-
tions are usually based on variants of CNN or a combination
of CNN and Recurrent Neural Network (RNN).

The first deep learning solution for MiE recognition was
proposed by Patel et al [9] relying on a CNN. They used the
ImageNet-VGG-f CNN [1] pre-trained on ImageNet dataset
with a CNN trained on facial expressions datasets (CK+ [32]
and SPOS [35]) to extract features. Since then, numerous
deep learning solutions [38, 42, 24] are proposed. Reddy
et al. [38] proposed a MicroExpSTCNN architecture that is
based on 3D-CNN. Lateral Accretive Hybrid Network (LEAR-
Net) was proposed by Verma et al. [42] which is based on a
CNN with an accretion layer to refine the salient expression
features by accretion of the learning capability of the net-
work. One of the best derivatives of RNN is LSTM. An ar-
chitecture of CNN combined with LSTM has been proposed
by Kim et al. [24]. The CNN enables extracting the spatial
features and the LSTM extracts the temporal features from
the spatial features. While most computer vision tasks have
seen dramatic gains in accuracy, improvements in MiE video
analysis have been more moderate. This is mainly caused by
the lack of MiE datasets to train deep architectures.

2.3. Hybrid approaches

Since previous categories don’t achieve expected perfor-
mance, many hybrid systems have been proposed. Hybrid
solutions [17, 27, 19] are based on a combination of hand-
crafted and deep learning methods. A typical method of Op-
tical Flow (OF) and its variants are usually employed with
CNN for features extraction. Liong et al. [17] proposed Off-
ApexNet as a hybrid solution. They consider only two frames
to represent the MiE: Onset and Apex. Then, for feature ex-
traction, they compute OF from the two considered frames
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and pass the computed features to a CNN. Later, Shallow
Triple Stream Three-dimensional CNN (STSTNet) [27] was
proposed as an improvement of the Off-ApexNet method.
The authors added to the horizontal and vertical OF, the
strain of the OF. Recently, Khor er al. [19] proposed the
Enriched Long-term Recurrent Convolutional Network (EL-
RCN) which can be summarized into three main steps. First,
they compute the optical flow and the optical strain. Then,
they suggest two different methods for learning spatial fea-
tures. One method is called spatial dimension enrichment,
where the spatial features ®g are the output of the VGG-
16 [40] model trained on the concatenation of the image,
the optical flow, and the optical strain. The other proposed
method for spatial features extraction is called temporal di-
mension enrichment that trains three VGG-16 networks on
the image, the optical flow, and the optical strain and then
concatenates the outputs to form the spatial features ®. Fi-
nally, an LSTM is applied to the extracted spatial features
(g or @) for temporal learning and ends with a Fully
Connected Layer (FCL) for the classification. Recently, Xia
et al. [45] introduced Spatiotemporal Recurrent Convolu-
tion Network (STRCN) as a solution for MiE recognition.
They described two versions of the solution. One version is
called STRCN-A based on appearance connectivity where
the image is represented in a one-dimensional vector and
thus, the sequence by a 2D-matrix that will be fed to the
STRCN block. The other version is STRCN-G with geometric-
based connectivity where an OF is applied and the output is
fed to the STRCN. The STRCN block is based on recurrent
CNN.

The advantage of the methods in this category is the use
of handcrafted methods to facilitate the spatiotemporal fea-
tures extraction and the classification with the used deep learn-
ing architecture.

2.4. Region-based approaches

In contrast to previous cited approaches which focused
on improving the feature extraction model, the contributions
of region-based solutions address the locality character in
the preprocessing step. Instead of using the whole face for
MiE analysis, other researchers consider using some partic-
ular regions. Hence, enforce the system to extract more rel-
evant and robust spatial features. Such region-based meth-
ods have achieved state-of-the-art performance. Ekman et
al. [16] have already identified six different regions that are
left and right (eye+eyebrow), the nose, the two cheeks, and
the mouth. Based on these regions, Zhao el al. [50] have se-
lected manually 18 regions of interest called Active Patchs
(APs). From these APs, they identified Necessary Morpho-
logical Patches (NMPs) by giving a weight for each AP. The
weights are calculated using an entropy-weight method based
on their extracted features by LBP-TOP. An improved ver-
sion to identify the NMPs was proposed by Zhao et al. [51].
Instead of choosing manually 18 APs, they divide the six re-
gions into small blocks to get 106 APs and apply the Random
Forest (RF) algorithm on the features extracted from APs by
LBP-TOP and OF to select the NMPs.

Based on the advantages offered by region-based approaches,

our proposed system proceeds on Regions Of Interests (ROISs)
and uses deep learning techniques to extract spatiotemporal
features. As can be seen in the following section, our formu-
lation differs in that we also adopt a different label for each
region when extracting the spatial features. The label vector
is given based on the FACS system and the work of [51].

3. Proposed Solution

This section describes the proposed approach. An overview
of our architecture is illustrated in Figure 6. This work aims
to learn robust spatiotemporal features from local facial re-
gions of MiE sequence and classify them into the correspond-
ing labels.

3.1. Region definition

The region selection is based on two steps. First, we
identify the face and then we crop the 6 ROIs identified by
Ekman et al. [16] based on the FACS. Figure 5 shows the
locations of the selected regions and the included AUs.

wi

Eye+Eyebrow

Nose

Cheek

Mouth

AU1 0,12,14,5,2

Figure 5: lllustration of the ROls with corresponding AU [51].

To identify the face, the dlib algorithm? is used to detect
the 68 facial landmarks. Based on these points we crop the
face from the entire image. Then, two steps are needed to
extract the regions from the face. First, remove all global
movements from all frames by referring to the first frame of
each sequence: in the used dataset the subjects are static (no
global movements), thus it’s unnecessary to align the faces.
Secondly, we identify 6 blocks corresponding to the selected
regions and crop them. Instead of one sequence .S of MiE
we have 6 sequences: one sequence for each region. And
thus, S = [S,,r = 1, ..., R], where S, is the sequence of
region r and R is the number of regions (R is set to 6 in this
study).

Since the used datasets have different face sizes and know-
ing that the size of each region is proportional to the size
of the face, the size of each region will be different from

2http: //dlib.net/face_landmark_detection.py.html
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Figure 6: An overview of our proposed solution.

one dataset to another. To overcome this issue, we resize
each region into a fixed size of {(80x 100), (80x 120), (60 x
60), (60x 160)}, for respectively the left and the right {eye +
eyebrow }, the nose, the right and left cheeks, and the mouth.

3.2. Spatial features extraction

The goal of the spatial model is to extract relevant spa-
tial features from each region. To perform efficient training,
we give a different emotion label for each region. As shown
in Figure 7, a different region may express different emo-
tional states. The regions and their corresponding labels are

Table 1
The ROIs and their corresponding emotions.

eyes and eyebrows* nose cheeks* mouth

Happiness

Disgust

Surprise

Repression

Figure 7: ldentification of emotional state location [51].

summarized in Table 1. If the region is responsible for that
emotion, based on the work proposed by Zhao et al. in [51],
the same emotion label is given. Otherwise, another label is
given to the corresponding region, which should refer to "No
Reaction" or a neutral state. It is clear, from Table 1, that the
{eyes + eyebrows} and the mouth are the regions responsi-
ble for most MiEs emotions. However, the cheeks and the
nose are regions that can be important for some reactions as
well as to differentiate between two emotions. A drawback
of using different labels for each region is the complexity to
tune the hyperparameters of the model to fit all the regions.

Happiness X X v v
Disgust v v X v
Surprise v X X v
Repression X X X v
Sadness v X X X
Contempt X X X v

* Right and left side

Since the MiE datasets used in our experiments are small,
using the proposed labels may help the model to learn faster
but also the size of the network is important for this issue.
According to [33, 46], deep CNN architecture may eliminate
the features that are helpful for MiE recognition. Hence, the
considered CNN architecture, shown in Figure 8, is much
shallower (only 6 convolutional layers) than state-of-the-art
models relying on InceptionNet [41] or ResNet [21].

“%

Concatenate

? |

. Spatial Features

N i : SFy(r)
Region r ‘ :

A B

Figure 8: The architecture of the proposed shallow CNN in-
spired from the InceptionNet [41].

The proposed CNN model consists of two main parts.
The first part A includes two sequential blocks, the first block
is composed of 4 convolution layers with a filter size of 5 x5
and the second block consists of 8 convolution layers with a
filter size of 3 X 3. The second part B is composed of a max-
pooling layer and 4 parallel blocks of 16 convolution layers

Aouayeb et al.: Preprint submitted to Elsevier
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each, with filter size, respectively, 1 X 1, 3 X 3, 5 X 5 and
7 x 7. Each convolution block is followed by a max-Pooling
layer. The outputs of the last parallel max-pooling layers
are then concatenated and fed to an average-pooling layer,
followed by FCLs to perform the training of the convolution
part. The output of the average-pooling layer represents the
spatial features. However, to reduce the size of the spatial
features, we take the output of the third layer of the FCL,
which contains only 20 neurons.

In our formulation, we denote the input F (r)asthe frame
J of the sequence S, Conuz as the convolution operation
with a filters of size b X b (Convg = Identity), M P for the
max-pooling layer with size 2 X 2, GAP for the global aver-
age pooling layer, and FC L, for FCL with d neurons. The
output Out s of the spatial model is defined in Equation (2):

Outg = FCLy,(SF;(r)),
SF;(r) = FCLyy(FCLyso(FCLygps(B(F;(r)))),
B = GAP(®M P(Cont' ((A)).i € [0,1,3,5,7)),
A = M P(Convy(M P(Conuy))),

2

where k(r) is the number of classes of the region r, SF;(r)
indicates the spatial features to be saved of the j* frame of
the region r, and @ is the concatenate operation.

After each convolutional or fully connected layer, we use
Rectified Linear Unit (ReLLU) as an activation function ex-
cept for the last FCL we use Softmax. Since the model con-
tains FCLs, it is more vulnerable to the overfitting problem.
Overfitting is detected when the performance of the model
on the test set is too far from the performance on the train set.
To solve this problem, a Dropout layer is used. This latter
chooses randomly a percentage a of neurons to be ignored
during the training which forces the deep learning model to
learn more robust features that are useful in conjunction with
many different random subsets of the other neurons. In this
work, we use Dropout with « = 0.5.

To train the spatial model for each region as a multi-label
classification problem we used focal loss (F L) [26] instead
of categorical cross-entropy. The loss for the training is per-
formed by Equation (3):

L =FL(Softmax(FCLy(SF(r),GT(r)), (3)

where S F(r) and GT (r) are, respectively, the extracted spa-
tial features for all the frames and the ground truth label of
region r.

One advantage of such loss is that it deals with the prob-

lem of high unbalanced classes. The Categorical Cross-Entropy

(CCE) loss function for multi-label classification is expressed
in Equation (4):

CE@p,y) = - Y, y;log(p), )

where y; specifies the ground truth class and p; € [0, 1] is

the model estimated probability for the class with label y;.
The modified Cross-Entropy (CE) or the focal loss function
F L is given by Equation (5):

FL(p.y) = = X, awyi(1 = p,) log(p). ©)

In the above a; € [0, 1] is a weighting factor for class i set
by inverse class frequency to contribute the imbalance be-
tween classes but it does not differentiate between hard and
easy classification task of samples. That’s why another mod-
ulating factor (1 — p;)” is introduced to the CE loss function,
where the y >= 0 factor is called the focusing parameter.

3.3. Temporal model

STF:

he — L T

CU LSTMr,n LSTMM LSTM]’,N
b LSTM:
|
SFo(r)  SF(r) SE(1)

Figure 9: Temporal model: the architecture of the LSTM
applied on a sequence of spatial features (SF) of the region
r. cy.hy @ cells initialization. More details of the LSTM are
in [23].

The goal of the temporal model, presented in Figure 9,
is to extract spatiotemporal features ST F(r) (Equation (6))
from a sequence of spatial features (SFj(r), j € [1.N]) of
the region r. The proposed temporal model is LSTM, and
thus we have to pad with zeros all the input sequences to the
same length N.

STF, = LSTM,(SF,(r), ... SFx(r)). (6)

As an activation function for the output of the LSTM,
a Leaky Rectified Linear Unit (LeakyReLU) is used. After
that, a dropout is used with « = 0.2 to protect the model
from overfitting.

Finally, we concatenate all the extracted spatiotemporal
features from all the regions and feed them to the classifica-
tion network. This latter is composed of a FCL with 256 neu-
rons, followed by LeakyReLU and a dropout with & = 0.5,
then another FCL with K neurons followed by a softmax
activation function. The output Out of the classification
network is expressed by Equation (7).

Outp = FCLi(FCLyso(®STF,,r €[1,...,R]). (7)

The classification and the temporal model are trained to-
gether with also the focal loss function.

Aouayeb et al.: Preprint submitted to Elsevier
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Table 2
Summary of three publicly available datasets (SMIC, CASME
II, SAMM) of spontaneous MiEs.

Table 3
Summary of the MEGC 2019 conditions to get the FULL
dataset [39]

SMIC CASME Il  SAMM Emotion Class SMIC CASME Il SAMM FULL
# Sequences 164 247 159 Negative 70 88" 929 250
Participants 16 26 32 Positive 51 32 26 109
Resolution 640 x 480 640x480 2040 x 1088 Surprise 43 25 15 83
Face 190 x 230 280340 400 x 400 Total 164 145 133 442
Frame rate 100 200 200 ™ Negative class of CASME |l consists of samples from its
FACS coded No Yes Yes original emotion classes of Disgust and Repression,
# Classes 3 5 7 G.B .Negative .class of SAMM consists of samp|e§ from its
Mean Age 26.7 2203 3324 original emotion classes of Anger, Contempt, Disgust, Fear

L and Sadness.

Ethnicities 3 1 13

4. Experimental Results

In this section, we assess the performance of the pro-
posed MIE recognition model. We start by introducing the
datasets, then we ablate various design choices to show the
contributions of the used model’s parameters. Next, we present
the results under different protocols and conditions to vali-
date the performance of the model and finally we compare
our method to the existing state-of-the-art methods.

4.1. Datasets

Experiments are conducted on three benchmark datasets
of spontaneous MiE including SMIC [25], CASME 1I [47]
and SAMM [7]. These datasets are publicly available and
used on the state-of-the-art proposed solutions. Hereafter,
we report details of each datasets including size, number of
classes, participants and video resolution.

4.1.1. SMIC

The Spontaneous Micro-Expression (SMIC) dataset in-
cludes spontaneous micro-expressions elicited by emotional
movie clips. It contains 164 sequences from 16 different sub-
jects recorded by a high-speed (HS) camera at 100 frames
per second (fps). The sequences are recorded also with a
normal speed camera at 25 fps of both visual (VIS) and near-
infrared (NIR) light range. So we have three datasets re-
ferred as SMIC-HS, SMIC-VIS, and SMIC-NIR for the same
MiE recorded under different conditions. SMIC provides
sequences with a facial resolution of (190 x 230) and corre-
sponding to only 3 classes: Negative, Positive, and Surprise.

4.1.2. CASME 11

The Chinese Academic of Science Micro-Expressions
IT (CASME 1I) dataset is the largest dataset of spontaneous
MIiE with 2473 sequences from 35 participants with 5 classes:
Happiness, Disgust, Repression, Surprise and Sadness, plus
the Other class. The sequences are recorded with high tem-
poral and spatial resolutions of 200 fps and 280 x 340, re-
spectively.

3247 samples was reported by the authors [47] while in the publicly
available dataset, the number of samples is about 255 samples.

4.1.3. SAMM

The Spontaneous Micro-Facial Movement (SAMM) has
the largest amount of different ethnicities (13 ethnicities) and
age distribution (Mean age = 33.24). The video sequences
are recorded with a high-resolution camera with 200 fps and
contain the 7 basic classes of emotion: Disgust, Surprise,
Happiness, Fear, Anger, Contempt, and Sadness. The dataset
includes 159 sequences from 32 participants. It has the high-
est spatial resolution (400 X 400 pixels) among these three
datasets. Further, this dataset’s focus is not on the emotional
labels but on the objective AUs so that all the sequences
are FACS-coded and include the Onset, Apex, and Offset
frames.

Table 2 summarizes the three datasets of spontaneous
MiEs.

These datasets are very interesting since they afford close
cases to reality with spontaneous MiEs sequences. How-
ever, they are small datasets compared to Extended Cohn-
Kanade (CK+) or FER-2013 datasets for MaE recognition,
that’s why they are combined to form a bigger dataset.

4.2. Experimental settings

Since the three considered datasets have different condi-
tions (number of classes, frame rate, dimensions), to com-
bine them into a larger dataset, we used two proposed meth-
ods: with 3 classes based on the MEGC 2019 [39] test con-
ditions and with 5 classes based on AUs [8]. Table 3 summa-
rizes the MEGC conditions, where the number of classes is
reduced to 3 (negative, positive, and surprise) to create a new
larger dataset, named FULL, that combines SMIC, SAMM
and, CASME II. This dataset has 442 sequences with 250 for
negative class, 109 for positive class and 83 for surprise. The
conditions for the distribution of the 5 classes based on AUs
are described in [8] and the obtained distribution of classes
is summarized in Table 4. The new distribution of classes
is used to create a new dataset by fusing only CASMEII and
SAMM. The fusion is done after reassigning the sequences
of CASMEII and SAMM datasets to the 7 AU classes pre-
sented in Table 4. However, only 5 classes are preserved, the
other two classes (VI and VII) are removed because the VI
class contains only a very few samples and the "Others" class
(VII) denotes movements that are not suited for the other cat-
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Table 4
The total number of movements assigned to the new classes
for both SAMM and CASME II.

Class CASME Il SAMM  Total
| 25 24 49
I 15 13 28
I 99 20 119
v 26 3 34
\Y 20 3 23
Vi 1 7 8
VII 69 84 153
Total 255 159 414

Table 5
Evaluation of the model with different regions on the FULL
dataset.

regions whole face  no cheeks no nose all regions
Accuracy 0.85 0.89 0.91 0.92
UAR 0.84 0.84 0.84 0.89
UF1 0.84 0.84 0.85 0.89

egories and referred to no emotion state.

In this evaluation, 4 metrics are used including accuracy,
F1-score, UAR, and UF1. The UF1 and the UAR are given
by Equations (8) and (9), respectively.

C
1
UFl=—- ) Fl,
AR

2TP,

C

¢ 2TP.+ FP,+ FN,’

®)
F1

where TP, , FP, and FN, are respectively true positive,
false positive and false negative for class ¢ and C is the num-
ber of classes.

c
1
UAR=— ) ACC,,
c L ACC

©))
TP,
ACC, = —

c

where N, is the number of samples and ACC, is the accu-
racy rate of class c.

4.3. Ablation study

Hereafter is presented an analysis to demonstrate the con-
tribution of each component in the global performance of the
proposed method. The experiments of this study are con-

ducted using Leave-One-Subject-Out Cross-Validation (LOSO-

CV) evaluation method under the MEGC conditions.

4.3.1. Effects of the ROIs selection

To demonstrate the importance of the selected regions
we test the model with the whole face, with only some re-
gions, and with all the regions. Table 5 gives the result of
the test with different regions and proves the importance of

Table 6
Evaluation of the proposed model depending on the CNN ar-
chitecture on the FULL dataset.

Metrics / CNN  Simple CNN  proposed model
Accuracy 0.85 0.92
UAR 0.79 0.89
UF1 0.79 0.89

Table 7
Evaluation of the proposed model depending on loss function
on the FULL dataset.

Loss Function CE

Focal Loss: a =1/2,y =2 [26]

Accuracy 0.91 0.92
UAR 0.87 0.89
UF1 0.87 0.89

the selected areas. It shows that using all the regions outper-
forms the other configurations with the whole face, without
cheeks, or without the nose. We have gained about 7% ac-
curacy using regions compared to the whole face and that’s
due to the two following facts: the focus on the relevant ar-
eas for MiE recognition and the use of specific labels for
each selected region. From Table 5, we can also conclude
that the less are the regions that contain an emotion the more
those regions are important. For example, disgust emotion
can be detected in the nose but also in different regions like
the eyes, and the mouth, contrary to the happiness which can
be expressed only with the mouth and cheeks. Therefore, the
mouth and the cheeks are more important than the nose re-
sulting in lower accuracy without cheeks than without the
nose.

4.3.2. Impact of the proposed CNN

In the proposed solution, the second contribution is the
use of a special model of CNN as described in Section 3.
Contrary to classical CNN models, we used a shallower ar-
chitecture inspired by the architecture of the InceptionNet [41].
Table 6 compares the performance of the proposed model
with a classic CNN illustrated in Figure 10. It shows that
the proposed CNN model outperforms the classic one.

Region r

Maxpool, 2x2
Maxpool, 2x2
3x3 Conv, 32
Glob.Avr.Pool
1024, FCL

D SpatialFeatures SF(r)

Figure 10: The architecture of a classic CNN for the left eye
region.

4.4. Loss function

As a loss function for spatial and temporal models, we
use two different functions: categorical cross-entropy loss
and focal loss [26]. Table 7 gives the result with the categor-
ical cross-entropy loss and with focal loss. The results with
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Table 8

LOSO-CV performance of the proposed method, baselines and the recent methods (*

references from the MEGC 2019 challenge)

Models FULL SMIC CASME I SAMM

(bold: 1° ; blue: 2") UF1 | UAR | UF1 | UAR | UF1 | UAR | UF1 | UAR
LBP-TOP [39]* 0.58 | 057 | 0.20 | 0.52 | 0.70 | 0.74 | 0.39 | 0.41
Bi-WOOF [28]* 0.62 | 062 | 057 | 0.58 | 0.78 | 0.80 | 0.52 | 0.51
OFF-ApexNet [17]° 0.71 | 0.70 | 0.68 | 0.66 | 0.87 | 0.86 | 0.54 | 0.53
Micro-Attention [43]® 050 | 049 | 047 | 0.46 | 0.53 | 0.51 | 0.40 | 0.34
ATNet (Fusion) [34]® 0.63 | 0.61 055 | 0.54 | 0.79 | 0.77 | 0.49 | 0.48
Quang et al. [37]*® 0.65 | 065 | 0.58 | 0.58 | 0.70 | 0.70 | 0.58 | 0.59
Zhou et al. [52]*F 0.73 | 0.72 | 066 | 0.67 | 0.86 | 0.85 | 0.58 | 0.56
Liong er al. [27]* 0.73 | 076 | 068 | 0.70 | 0.83 | 0.86 | 0.65 | 0.68
Liu et al. [29]* 078 | 0.78 | 0.74 | 0.75 | 0.82 | 0.82 | 0.77 | 0.71
LFM-based (CNN+LSTM) [3]7 | 0.77 | 0.75 | 0.72 | 0.71 | 0.87 | 0.84 | 0.67 | 0.60
ICE-GAN [48]® 085 | 0.84 | 0.79 | 0.79 | 0.87 | 0.86 | 0.85 | 0.82
Our proposed method ® 090 | 090 | 0.88 | 0.88 | 0.98 | 0.98 | 0.78 | 0.81

° handcrafted approach, T hybrid approach, ® deep learning approach.

Table 9

LOSO-CV performance of the proposed method and state-of-the-art based on the 5 classes
of AUs on CASME Il and SAMM datasets (* references from [8]).

Models CASME Il & SAMM CASME Il SAMM

(bold: 1% ; blue: 2") F1l-score | Accuracy | Fl-score | Accuracy | Fl-score | Accuracy
LBP-TOP*® 0.40 0.52 0.51 0.67 0.38 0.44
HOOF*® 0.40 0.52 0.56 0.69 0.33 0.42
HOG3D* 0.27 0.43 0.51 0.69 0.22 0.34
ELRCN [19] 0.41 0.57 - - - -
Micro-Attention [43]® 0.66 0.76 - - - -
Our proposed method ® 0.83 0.86 0.84 0.88 0.82 0.79

° handcrafted approach, T hybrid approach, ® deep learning approach.

Table 10
Performance of the proposed method under the MEGC with
LOSO-CV.

Dataset UF1 UAR
FULL 0.90 0.90
SMIC part 0.88 0.88
CASME Il part 098 0.98
SAMM part 0.78 0.81

the focal loss are better since it is more compatible with a
scenario of imbalanced data among classes.

4.5. Comparison and discussions
The proposed model is evaluated with two cross-validation

methods: the LOSO-CV method and the Cross dataset (CDB)
method. In LOSO-CV, each folder contains more than one
sequence of MiE of a person that didn’t appear in the other
folders. The LOSO-CV ensures subject-independent eval-
uation. For the cross dataset method, the training set will
be from a dataset and the test set from another dataset. For
example, the training maybe on CASME II and the test on
SAMM. The second method is good to evaluate the model

but the provided datasets are too small for the training especially

when using a complex architecture of CNN and LSTM which
may lead to a bad performance. Tables 10 and 11 show

Table 11
Performance of the proposed method in 5 classes based on AUs
with LOSO-CV.

Dataset UF1  Accuracy
CASME Il + SAMM  0.83 0.86
CASME Il part 0.84 0.88
SAMM part 0.82 0.79

the performance of the proposed model with the LOSO-CV
method and under the two conditions (with 3 classes based
on the MEGC 2019 conditions or with 5 classes on the AU
objective classes) while Tables 12 and 13 present the perfor-
mance with cross dataset method.

From Table 10 and Table 11 we can notice that the best
performance of our model is reached on the CASME II dataset.
This can be explained by the characteristics of the CASME
IT dataset with 200 fps (100 fps for SMIC) and RGB color
mode (Grayscale for SAMM). The same observation can be
made in CDB validation (Table 12 and Table 13) where the
proposed method outperforms other cases when CASME 11
is the test set that can support the hypothesis. However,
when the CASME Il is used as the training set (Table 12), we
can notice better performance on SAMM, which is a 200 fps
and grayscale dataset, than on SMIC, which is 100 fps and
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Table 12
Cross dataset performance of the proposed method under the
MEGC challenge.

Train set Test set Accuracy  Fl-score
CASME II & SMIC SAMM 0.89 0.83
CASME Il & SAMM  SMIC 0.75 0.75
SMIC & SAMM CASME I 0.92 0.91
CASME I SMIC 0.70 0.71
CASME I SAMM 0.87 0.79
SMIC CASME I 0.75 0.79
SMIC SAMM 0.79 0.75
SAMM CASME I 0.90 0.88
SAMM SMIC 0.75 0.76
Table 13

Cross dataset performance of the proposed method in 5 classes
based on AU.

Train set Test set Accuracy  Fl-score
CASME I SAMM 0.75 0.59
SAMM CASME Il 0.82 0.69

RGB dataset. This latter can be an argument to explain how
the temporal information is more beneficial for MiE recog-
nition than the color scale of the image which is a part of the
spatial information.

The proposed solution has been compared with other MiE
recognition algorithms in different conditions. The compar-
ison is summarized in Tables 8 and 9 which show that the
proposed framework performs the best among different ap-
proaches. Table 8 shows the performance of our method,
with LOSO-CV and under MEGC conditions, comparing
with baselines and recent methods, that obtain high accuracy
on the four datasets. The results indicate that our method

outperforms handcrafted, deep learning, and hybrid approaches

for almost all datasets (ICE-GAN [48] has the highest per-
formance on SAMM).

As expected, results in Table 9 with LOSO-CV and un-
der 5 classes based AU conditions are less accurate. We
moderately improve the accuracy for three datasets (CASME
II & SAMM, CASME II, SAMM) compared to other state-
of-the-art methods.

5. Conclusion

In this paper, we have presented a novel spatiotemporal
deep learning solution for MiE recognition from local fa-
cial regions. We have reported details and tests that support
the used techniques and parameters. The main contributions
of the proposed solution are the use of some particular re-
gions of the face instead of the whole face and the extraction
of spatiotemporal features from these regions with a deep
learning architecture that combines CNN and LSTM. The
solution is tested on different datasets and different distri-
butions of classes and with different evaluation methods and
metrics. The experiments showed that the proposed solution
has a good performance that exceeds state-of-the-art solu-
tions.

In this paper, we focused only on the recognition task
without spotting and a static method for region cropping is
used. Thus, in future work, we will extend the study by de-
veloping a framework that detects the active region, spots
and then recognizes the MiE.
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