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ABSTRACT
MiE is a facial involuntary reaction that reflects the real emotion and thoughts of a human bei
very difficult for a normal human to detect a Micro-Expression (MiE), since it is a very fast an
face reaction with low intensity. As a consequence, it is a challenging task for researchers t
an automatic system for MiE recognition. Previous works for MiE recognition have attempted
the whole face, yet a facial MiE appears in a small region of the face, which makes the extrac
relevant features a hard task. In this paper, we propose a novel deep learning approach that le
the locality aspect of MiEs by learning spatio-temporal features from local facial regions using
posite architecture of Convolutional Neural Network (CNN) and Long Short Term Memory (L
The proposed solution succeeds to extract relevant local features for MiEs recognition. Expe
tal results on benchmark datasets demonstrate the highest recognition accuracy of our soluti
respect to state-of-the-art methods.

duction
face analysis has attracted a wide interest of the
ision research community with a potential scope
ions including healthcare, education, security, etc.
face holds essential information for a machine

nd human reactions and feelings, and also for hu-
tter understand each other in interpersonal com-
. Recently, particular attention is paid to a spe-
expression called facial micro-expression (MiE)
help to understand the feelings of a person.
oneering work on human facial expressions was
y Charles Darwin and Phillip Prodger [6] in 1872
othesis that some facial expressions may appear
he real emotion when someone tries to hide it.
aggard and Isaacs [20] first discovered the phe-
f MiE when studying films of communication be-
erapist and a patient frame by frame, searching
rbal reactions. Later in 1969, Ekman et al. [15]
existence of MiEs as quick, universal, and spon-
ial expressions of some local regions of the face.
alysis of MiE can be used for several applications
ection, pain or stress detection, and teaching as-
iEs, like any other facial expression, is a repre-
f facial muscles movements. Yet, they are hard to
ce they are local and lasting only from 1/25s to
ing to the study conducted in [14]. A precision
MiE recognition was reported in [12] for people
ssed professional training. To help reading these
s and encodingMiEs, a Facial Action Coding Sys-
) is used by P. Ekman based on the combination
nits (AUs). An AU is a small region of the face,
by one muscle or a group of muscles that react to-
ucing a basic movement in the face. The FACS
s originally developed by Hjortsjö [22] in 1969
dopted in 1978 by Ekman et al. [13]. Figure 1

illustrates the FACS as defined by Ekman et al. in
Ekman has also shown in [11] that human emotions c
categorized into 7 basic classes including disgust, sur
happiness, fear, anger, contempt, and sadness.

AU 1: Inner Brow 
Raiser AU 4: Brow Lowerer AU 6: Cheek Raiser AU 9: No

AU 10: Upper Lip 
Raiser

AU 12: Lip Corner 
Puller

AU 14: Dimpler AU 15: L
Depr

AU 17: Chin Raiser AU 20: Lip Stretcher AU 23: Lip Tightener AU 23: L

Figure 1: Face and some Action Unit locations according
Facial Action coding System proposed by Ekman [16]. I
from http://www.cs.cmu.edu/~face/facs.htm.

Figures 2(a) and 2(b) show examples of emotions in
Expression (MaE) and MiE and their corresponding
code according to the FACS system. The deformati
AUs defines the facial expression. This deformation
through three main steps: Onset, Apex, and Offset [12
Onset represents the starting point of the expression, th
represents themaximumor the peak that the expression
in deformation, and the Offset is the instant when th
pression vanishes away. Hence, the period of any faci
pression is the time spent between the beginning of th
set period and the end of the Offset period. Figure 3
an example of a deformation evolution through time (o
frames out of the sequence are shown1) for disgust em
In the Apex frame, where the peak of the deformatio
curs, we can notice a clear contraction of muscles be

1A Micro-Expression sequence labeled disgust in CAS
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s of Macro-Expressions with their corresponding action units
ages are from Cohn-Kanade (CK) dataset.

s of Micro-Expressions with their corresponding action units
es from [5].

acro- and Micro-Expressions in FACS system.

nd eyes, which refers to the AU9.
ously to the progress of MaE recognition, which
rst tackled by handcrafted features then modern
l networks, MiE recognition methods have also
m hand-designed approaches [49, 28, 8] to deep
oral neural networks [24, 37, 43, 42] and hybrid
[17, 27, 45, 19]. However, while MaE recogni-
en dramatic gains in accuracy, improvements in
nition have been more moderate.

sequence of 5 frames representing the evolution
expression from Onset up to Apex an then Offset.

in drawback of previous approaches for automatic
nition is the use of the whole face while a MiE
in small parts of the face. These solutions have
tributed to the architecture of models for features
and classification, which mostly deal with the low
nd short duration characteristics of MiEs and not
character. Nevertheless, recent works [50, 38,

tention to this locality feature. They apply ei-
rafted, deep learning or hybrid approaches only
lected regions, which may result in better perfor-
nce the MiEs are brief and local, and the avail-

able MiEs datasets are very small and unbalanced be
classes, the result is still less accurate than the resu
MaEs recognition systems.

This paper studies a new model to automatically r
nize MiE from local facial regions using a composite
tecture of CNN and LSTM for spatiotemporal featur
traction. Our proposed solution differs from other re
based solutions since it associates a novel label for ea
gion based on the definition of facial expressions on the
system illustrated in Figure 2. Also, a shallow CNNmo
used instead of deep CNN, because a very deep archit
may eliminate the spatial features that are helpful fo
analysis. The contributions of this work can be summ
as follows:

• We use a shallow CNN, combined with LSTM to
the spatiotemporal information. By this archite
we address the low intensity (CNN) and rapidity
characters of facial Micro-Expression.

• The proposed architecture of CNN-LSTM is ap
on 6 regions of the face to address the locality a

• The training process of CNN (spatial part) is do
ing specialized labels for each region depending
expression to aid the CNN learning more specifi
useful features.

• We test the proposed solution on two different
bution of datasets : theMicro-ExpressionGrand
lenge (MEGC) 2019 challenge dataset with 3
bined data bases (CASMEII, SAMM, SMIC)
classes (Positive, Negative and Neutral), and th
based datasets (CASMEII and SAMM) with 5 c
based on AU.

Experiments on 3 spontaneousMiE datasets demon
the potential of our approach performance that excee
state-of-the-art methods.

The remainder of this paper is organized as follows
tion 2 presents the state-of-the-art solutions forMiE rec
tion. Section 3 investigates the proposed spatiotempo
chitecture for MiE recognition. The performance of th
posed solution is assessed and compared to the best-per
solutions in Section 4. Finally, Section 5 concludes th
per.

2. Related Work
In this section, we review and discuss the state-of-t

solutions for MiEs recognition. The overall pipeline, s
in Figure. 4, has two main parts: spatiotemporal featur
traction and classification.

Given a fixed set of k classes c1, c2,… , ck and a Mquence S composed ofN frames (F1, F2,… , FN ), th
of MiE recognition as a video sequence classification
lem is to identify the class to which the MiE sequenc
longs. In other words, we are interested in the class c
the highest probability P (c |S) among the probabilitie
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Features 
Extraction

Classifier

MiE classes

ipeline of state-of-the-art micro-expression recog-

is probability can be parameterized using differ-
s f (S) = fC (fE(S))which leverage at all frames
ence to predict P (ci|S) as follows:

ci = argmaxP (ck|S), k ∈ [1, … , N],
ci = argmaxfC

(
fE(S)

)
.

) = fE({Fj , j = 1,⋯ , N}).
(1)

epresents the model used for spatiotemporal fea-
ction and fC represents the model used for the
on. Based on the proposed problem formulation,
-art works can be grouped into 4 categories in-
dcrafted, deep learning, hybrid, and region-based.
gories may lead to different approaches for MiE
.
dcrafted approaches
st group of solutions for MiE recognition rely on
d models. The model includes spatial and tempo-
. The extraction of the features is based either on
face information that describes the variation of
nsity (texture) or on geometric face information
apes and the locations of facial landmarks. Zhao
rst introduced Local Binary Pattern on Three Or-
lanes (LBP-TOP) for features extraction from dy-
ures to analyze the MiE. The features are defined
-TOP histogram which is the concatenation of the
ry Pattern (LBP) histograms of the three orthog-
: XY, XT, and YT. Concatenating histograms in
ation of LBP-TOP leads to redundant information
neighbor pixel is used more than once. Subse-
ang et al. [44] proposed an improved version of
ith six intersection points of the three orthogonal

, XT, and YT. Moreover, LBP Mean Orthogonal
PMOP) computes the LBP of average planes for
gonal planes to reduce the redundancy. Guo et
posed Extended LBPTOP (ELBPTOP) that uses
-order discriminative information in the radial and
ections of a local path alongwith the normal LBP-
ry et al. [2] were the first to propose Histogram
Optical Flow (HOOF) for human action recogni-
as then adopted by Davison et al. [8] to be one of

e methods for MiE recognition. Main Directional
cal Flow (MDMO) proposed by Liu et al. [30] to

describe local facial dynamics by extracting principal
cal Flow (OF) direction of some AUs. Furthermore,
et al. exploited the Bi-Weighted Oriented Optical Flow
WOOF) in [28].

Different from these methods, Mean Oriented Ries
tures (MORF) [10] is proposed by Duque et al.. It us
Riesz pyramid to model the temporal evolution of the
in two frames called Mean Oriented Riesz (MOR)
pair, which is then used to build a histogram. Polik
et al. [36] have used a 3D-Histogram of Oriented Gr
(HOG) on 12 facial regions to recognize MiE. Lu et a
proposed the Fusion ofMotionBoundaryHistogram (F
technique to extract features from the face. The FM
the combination of Motion Boundary Histograms (M
which are based on the norms and the angles computed
the horizontal and the vertical components of the o
flow. More details about the MBH descriptor can be
in [4].
2.2. Deep learning approaches

Computer vision tasks like object detection and
ing, video classification, and image segmentation are w
addressed using deep learning techniques. Due to the
performance of deep learning models on these tasks,
researchers have tested and adopted deep learning arc
tures for MiE analysis. State-of-the-art deep learning
tions are usually based on variants of CNN or a combin
of CNN and Recurrent Neural Network (RNN).

The first deep learning solution for MiE recognitio
proposed by Patel et al [9] relying on a CNN. They us
ImageNet-VGG-f CNN [1] pre-trained on ImageNet d
with a CNN trained on facial expressions datasets (CK+
and SPOS [35]) to extract features. Since then, num
deep learning solutions [38, 42, 24] are proposed. R
et al. [38] proposed a MicroExpSTCNN architecture
based on 3D-CNN. Lateral AccretiveHybridNetwork (
Net) was proposed by Verma et al. [42] which is base
CNN with an accretion layer to refine the salient expre
features by accretion of the learning capability of th
work. One of the best derivatives of RNN is LSTM. A
chitecture of CNN combined with LSTM has been pro
by Kim et al. [24]. The CNN enables extracting the s
features and the LSTM extracts the temporal features
the spatial features. While most computer vision tasks
seen dramatic gains in accuracy, improvements inMiE
analysis have been more moderate. This is mainly caus
the lack of MiE datasets to train deep architectures.
2.3. Hybrid approaches

Since previous categories don’t achieve expected p
mance, many hybrid systems have been proposed. H
solutions [17, 27, 19] are based on a combination of
crafted and deep learning methods. A typical method o
tical Flow (OF) and its variants are usually employed
CNN for features extraction. Liong et al. [17] propose
ApexNet as a hybrid solution. They consider only two f
to represent the MiE: Onset and Apex. Then, for featu
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he computed features to a CNN. Later, Shallow
am Three-dimensional CNN (STSTNet) [27] was
s an improvement of the Off-ApexNet method.
rs added to the horizontal and vertical OF, the
e OF. Recently, Khor et al. [19] proposed the
ong-term Recurrent Convolutional Network (EL-
h can be summarized into three main steps. First,
ute the optical flow and the optical strain. Then,
st two different methods for learning spatial fea-
method is called spatial dimension enrichment,
spatial features ΦS are the output of the VGG-
odel trained on the concatenation of the image,
flow, and the optical strain. The other proposed
spatial features extraction is called temporal di-
richment that trains three VGG-16 networks on
the optical flow, and the optical strain and then
es the outputs to form the spatial featuresΦT . Fi-STM is applied to the extracted spatial features
) for temporal learning and ends with a Fully
Layer (FCL) for the classification. Recently, Xia
introduced Spatiotemporal Recurrent Convolu-
rk (STRCN) as a solution for MiE recognition.
ibed two versions of the solution. One version is
CN-A based on appearance connectivity where
is represented in a one-dimensional vector and
equence by a 2D-matrix that will be fed to the
ck. The other version is STRCN-Gwith geometric-
ectivity where an OF is applied and the output is
TRCN. The STRCN block is based on recurrent
vantage of the methods in this category is the use
fted methods to facilitate the spatiotemporal fea-
tion and the classificationwith the used deep learn-
cture.
on-based approaches
rast to previous cited approaches which focused
ng the feature extraction model, the contributions
ased solutions address the locality character in
essing step. Instead of using the whole face for
sis, other researchers consider using some partic-
s. Hence, enforce the system to extract more rel-
robust spatial features. Such region-based meth-
chieved state-of-the-art performance. Ekman et
e already identified six different regions that are
ht (eye+eyebrow), the nose, the two cheeks, and
Based on these regions, Zhao el al. [50] have se-
ually 18 regions of interest called Active Patchs
m these APs, they identified Necessary Morpho-
ches (NMPs) by giving a weight for each AP. The
calculated using an entropy-weightmethod based
tracted features by LBP-TOP. An improved ver-
tify the NMPs was proposed by Zhao et al. [51].
choosing manually 18 APs, they divide the six re-
mall blocks to get 106APs and apply the Random
) algorithm on the features extracted from APs by
and OF to select the NMPs.

Based on the advantages offered by region-based ap
our proposed system proceeds onRegionsOf Interests (
and uses deep learning techniques to extract spatiotem
features. As can be seen in the following section, our f
lation differs in that we also adopt a different label fo
region when extracting the spatial features. The label v
is given based on the FACS system and the work of [

3. Proposed Solution
This section describes the proposed approach. An o

of our architecture is illustrated in Figure 6. This work
to learn robust spatiotemporal features from local fac
gions ofMiE sequence and classify them into the corres
ing labels.
3.1. Region definition

The region selection is based on two steps. Fir
identify the face and then we crop the 6 ROIs identifi
Ekman et al. [16] based on the FACS. Figure 5 show
locations of the selected regions and the included AU

Figure 5: Illustration of the ROIs with corresponding AU

To identify the face, the dlib algorithm2 is used to
the 68 facial landmarks. Based on these points we cro
face from the entire image. Then, two steps are need
extract the regions from the face. First, remove all g
movements from all frames by referring to the first fra
each sequence: in the used dataset the subjects are stat
global movements), thus it’s unnecessary to align the
Secondly, we identify 6 blocks corresponding to the se
regions and crop them. Instead of one sequence S o
we have 6 sequences: one sequence for each region.
thus, S = [Sr, r = 1,… , R], where Sr is the sequen
region r and R is the number of regions (R is set to 6 i
study).

Since the used datasets have different face sizes and
ing that the size of each region is proportional to th
of the face, the size of each region will be different

2http://dlib.net/face_landmark_detection.py.html
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Figure 6: An overview of our proposed solution.

t to another. To overcome this issue, we resize
into a fixed size of {(80×100), (80×120), (60×
60)}, for respectively the left and the right {eye +
the nose, the right and left cheeks, and the mouth.
ial features extraction
al of the spatial model is to extract relevant spa-
s from each region. To perform efficient training,
ifferent emotion label for each region. As shown
, a different region may express different emo-
s. The regions and their corresponding labels are

dentification of emotional state location [51].

d in Table 1. If the region is responsible for that
ased on the work proposed by Zhao et al. in [51],
motion label is given. Otherwise, another label is
corresponding region, which should refer to "No

or a neutral state. It is clear, from Table 1, that the
ebrows} and the mouth are the regions responsi-
st MiEs emotions. However, the cheeks and the
gions that can be important for some reactions as
differentiate between two emotions. A drawback
fferent labels for each region is the complexity to
perparameters of the model to fit all the regions.

Table 1
The ROIs and their corresponding emotions.

eyes and eyebrows* nose cheeks*
Happiness % % !

Disgust ! ! %

Surprise ! % %

Repression % % %

Sadness ! % %

Contempt % % %

* Right and left side

Since theMiE datasets used in our experiments are
using the proposed labels may help the model to learn
but also the size of the network is important for this
According to [33, 46], deep CNN architecture may elim
the features that are helpful for MiE recognition. Henc
considered CNN architecture, shown in Figure 8, is
shallower (only 6 convolutional layers) than state-of-t
models relying on InceptionNet [41] or ResNet [21].

Figure 8: The architecture of the proposed shallow CN
spired from the InceptionNet [41].

The proposed CNN model consists of two main
The first partA includes two sequential blocks, the first
is composed of 4 convolution layers with a filter size o
and the second block consists of 8 convolution layers w
filter size of 3×3. The second part B is composed of a
pooling layer and 4 parallel blocks of 16 convolution
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filter size, respectively, 1 × 1, 3 × 3, 5 × 5 and
convolution block is followed by a max-Pooling
outputs of the last parallel max-pooling layers
ncatenated and fed to an average-pooling layer,
y FCLs to perform the training of the convolution
utput of the average-pooling layer represents the
ures. However, to reduce the size of the spatial
e take the output of the third layer of the FCL,
ains only 20 neurons.
ormulation, we denote the inputFj(r) as the frame
quence Sr, Convba as the convolution operation
rs of size b × b (Conv0a = Identity),MP for the
g layer with size 2 × 2, GAP for the global aver-
g layer, and FCLd for FCL with d neurons. The
Sr of the spatial model is defined in Equation (2):

FCLk(r)(SFj(r)),
FCL20(FCL250(FCL1024(B(Fj(r)))),
GAP (⊕MP (Convi16(A)), i ∈ [0, 1, 3, 5, 7]),

MP (Conv38(MP (Conv54)),

(2)

is the number of classes of the region r, SFj(r)
e spatial features to be saved of the jtℎ frame of
r, and⊕ is the concatenate operation.
ach convolutional or fully connected layer, we use
inear Unit (ReLU) as an activation function ex-
last FCL we use Softmax. Since the model con-
, it is more vulnerable to the overfitting problem.
is detected when the performance of the model

set is too far from the performance on the train set.
is problem, a Dropout layer is used. This latter
ndomly a percentage � of neurons to be ignored
training which forces the deep learning model to
robust features that are useful in conjunction with
rent random subsets of the other neurons. In this
se Dropout with � = 0.5.
the spatial model for each region as a multi-label

on problem we used focal loss (FL) [26] instead
cal cross-entropy. The loss for the training is per-
Equation (3):
FL(Softmax(FCLk(r)(SF (r))), GT (r)), (3)
(r) and GT (r) are, respectively, the extracted spa-
s for all the frames and the ground truth label of
vantage of such loss is that it deals with the prob-
unbalanced classes. TheCategorical Cross-Entropy
function formulti-label classification is expressed
(4):

p, y) = −
∑
i
yi log(pi), (4)

pecifies the ground truth class and p ∈ [0, 1] is

the model estimated probability for the class with lab
The modified Cross-Entropy (CE) or the focal loss fun
FL is given by Equation (5):

FL(p, y) = −
∑
i
�iyi(1 − pi)
 log(pi).

In the above �i ∈ [0, 1] is a weighting factor for clas
by inverse class frequency to contribute the imbalanc
tween classes but it does not differentiate between har
easy classification task of samples. That’s why another
ulating factor (1− pi)
 is introduced to the CE loss fun
where the 
 >= 0 factor is called the focusing parame
3.3. Temporal model

Figure 9: Temporal model: the architecture of the
applied on a sequence of spatial features (SF) of the
r. c0, ℎ0 : cells initialization. More details of the LST
in [23].

The goal of the temporal model, presented in Fig
is to extract spatiotemporal features STF (r) (Equatio
from a sequence of spatial features (SFj(r), j ∈ [1..N
the region r. The proposed temporal model is LSTM
thus we have to pad with zeros all the input sequences
same lengthN .

STFr = LSTMr(SF1(r), .., SFN (r)).

As an activation function for the output of the L
a Leaky Rectified Linear Unit (LeakyReLU) is used.
that, a dropout is used with � = 0.2 to protect the m
from overfitting.

Finally, we concatenate all the extracted spatiotem
features from all the regions and feed them to the clas
tion network. This latter is composed of a FCLwith 25
rons, followed by LeakyReLU and a dropout with � =
then another FCL with K neurons followed by a sof
activation function. The output OutC of the classifi
network is expressed by Equation (7).

OutC = FCLK (FCL256(⊕STFr, r ∈ [1,… , R])

The classification and the temporal model are train
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f three publicly available datasets (SMIC, CASME
of spontaneous MiEs.

SMIC CASME II SAMM
ences 164 247 159
ants 16 26 32
ion 640 × 480 640 × 480 2040 × 1088

190 × 230 280 × 340 400 × 400
rate 100 200 200
oded No Yes Yes
ses 3 5 7
ge 26.7 22.03 33.24
ties 3 1 13

imental Results
section, we assess the performance of the pro-
recognition model. We start by introducing the
en we ablate various design choices to show the
ns of the usedmodel’s parameters. Next, we present
under different protocols and conditions to vali-
rformance of the model and finally we compare
to the existing state-of-the-art methods.
sets
ments are conducted on three benchmark datasets
eous MiE including SMIC [25], CASME II [47]
[7]. These datasets are publicly available and

e state-of-the-art proposed solutions. Hereafter,
etails of each datasets including size, number of
rticipants and video resolution.
IC
ontaneous Micro-Expression (SMIC) dataset in-
ntaneous micro-expressions elicited by emotional
s. It contains 164 sequences from 16 different sub-
ded by a high-speed (HS) camera at 100 frames
(fps). The sequences are recorded also with a
ed camera at 25 fps of both visual (VIS) and near-
IR) light range. So we have three datasets re-
IC-HS, SMIC-VIS, and SMIC-NIR for the same

ded under different conditions. SMIC provides
with a facial resolution of (190 × 230) and corre-
only 3 classes: Negative, Positive, and Surprise.

SME II
inese Academic of Science Micro-Expressions
II) dataset is the largest dataset of spontaneous

473 sequences from 35 participants with 5 classes:
, Disgust, Repression, Surprise and Sadness, plus
lass. The sequences are recorded with high tem-
patial resolutions of 200 fps and 280 × 340, re-

ples was reported by the authors [47] while in the publicly
set, the number of samples is about 255 samples.

Table 3
Summary of the MEGC 2019 conditions to get the
dataset [39]

Emotion Class SMIC CASME II SAMM FU
Negative 70 88† 92⊕ 25
Positive 51 32 26 10
Surprise 43 25 15 8
Total 164 145 133 44

† Negative class of CASME II consists of samples from
original emotion classes of Disgust and Repression

⊕ Negative class of SAMM consists of samples from
original emotion classes of Anger, Contempt, Disgust,

and Sadness.

4.1.3. SAMM
The Spontaneous Micro-Facial Movement (SAMM

the largest amount of different ethnicities (13 ethnicitie
age distribution (Mean age = 33.24). The video sequ
are recorded with a high-resolution camera with 200 fp
contain the 7 basic classes of emotion: Disgust, Sur
Happiness, Fear, Anger, Contempt, and Sadness. The d
includes 159 sequences from 32 participants. It has the
est spatial resolution (400 × 400 pixels) among these
datasets. Further, this dataset’s focus is not on the emo
labels but on the objective AUs so that all the sequ
are FACS-coded and include the Onset, Apex, and
frames.

Table 2 summarizes the three datasets of sponta
MiEs.

These datasets are very interesting since they afford
cases to reality with spontaneous MiEs sequences.
ever, they are small datasets compared to Extended C
Kanade (CK+) or FER-2013 datasets for MaE recogn
that’s why they are combined to form a bigger dataset
4.2. Experimental settings

Since the three considered datasets have different c
tions (number of classes, frame rate, dimensions), to
bine them into a larger dataset, we used two proposed
ods: with 3 classes based on the MEGC 2019 [39] tes
ditions and with 5 classes based on AUs [8]. Table 3 su
rizes the MEGC conditions, where the number of clas
reduced to 3 (negative, positive, and surprise) to create
larger dataset, named FULL, that combines SMIC, SA
and, CASME II. This dataset has 442 sequences with 2
negative class, 109 for positive class and 83 for surprise
conditions for the distribution of the 5 classes based on
are described in [8] and the obtained distribution of c
is summarized in Table 4. The new distribution of c
is used to create a new dataset by fusing only CASME
SAMM. The fusion is done after reassigning the sequ
of CASMEII and SAMM datasets to the 7 AU classe
sented in Table 4. However, only 5 classes are preserve
other two classes (VI and VII) are removed because t
class contains only a very few samples and the "Others"
(VII) denotes movements that are not suited for the oth
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umber of movements assigned to the new classes
MM and CASME II.
Class CASME II SAMM Total
I 25 24 49
II 15 13 28
III 99 20 119
IV 26 8 34
V 20 3 23
VI 1 7 8
VII 69 84 153
Total 255 159 414

of the model with different regions on the FULL

whole face no cheeks no nose all regions
0.85 0.89 0.91 0.92
0.84 0.84 0.84 0.89
0.84 0.84 0.85 0.89

referred to no emotion state.
evaluation, 4 metrics are used including accuracy,
AR, and UF1. The UF1 and the UAR are given
ns (8) and (9), respectively.

= 1
C

C∑
c=1

F1c ,

c =
2TPc

2TPc + FPc + FNc
,

(8)

c , FPc and FNc are respectively true positive,
ve and false negative for class c andC is the num-
ses.

R = 1
C

C∑
c=1

ACCc ,

c =
TPc
Nc

(9)

is the number of samples and ACCc is the accu-f class c.
tion study
ter is presented an analysis to demonstrate the con-
each component in the global performance of the
ethod. The experiments of this study are con-
g Leave-One-Subject-Out Cross-Validation (LOSO-
tion method under the MEGC conditions.
ects of the ROIs selection
onstrate the importance of the selected regions
model with the whole face, with only some re-
with all the regions. Table 5 gives the result of
th different regions and proves the importance of

Table 6
Evaluation of the proposed model depending on the CN
chitecture on the FULL dataset.

Metrics / CNN Simple CNN proposed model
Accuracy 0.85 0.92
UAR 0.79 0.89
UF1 0.79 0.89

Table 7
Evaluation of the proposed model depending on loss fu
on the FULL dataset.

Loss Function CE Focal Loss: � = 1∕2, 
 = 2 [2
Accuracy 0.91 0.92
UAR 0.87 0.89
UF1 0.87 0.89

the selected areas. It shows that using all the regions o
forms the other configurations with the whole face, w
cheeks, or without the nose. We have gained about 7
curacy using regions compared to the whole face and
due to the two following facts: the focus on the releva
eas for MiE recognition and the use of specific labe
each selected region. From Table 5, we can also con
that the less are the regions that contain an emotion the
those regions are important. For example, disgust em
can be detected in the nose but also in different region
the eyes, and the mouth, contrary to the happiness whic
be expressed only with the mouth and cheeks. Therefo
mouth and the cheeks are more important than the no
sulting in lower accuracy without cheeks than witho
nose.
4.3.2. Impact of the proposed CNN

In the proposed solution, the second contribution
use of a special model of CNN as described in Sect
Contrary to classical CNN models, we used a shallow
chitecture inspired by the architecture of the InceptionN
Table 6 compares the performance of the proposed m
with a classic CNN illustrated in Figure 10. It show
the proposed CNN model outperforms the classic one

Figure 10: The architecture of a classic CNN for the le
region.

4.4. Loss function
As a loss function for spatial and temporal mode

use two different functions: categorical cross-entrop
and focal loss [26]. Table 7 gives the result with the ca
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Table 8
LOSO-CV performance of the proposed method, baselines and the recent methods (∗

references from the MEGC 2019 challenge)

Models FULL SMIC CASME II SAMM
(bold: 1st ; blue: 2nd) UF1 UAR UF1 UAR UF1 UAR UF1 UAR
LBP-TOP [39]∗⋄ 0.58 0.57 0.20 0.52 0.70 0.74 0.39 0.41
Bi-WOOF [28]∗⋄ 0.62 0.62 0.57 0.58 0.78 0.80 0.52 0.51
OFF-ApexNet [17]† 0.71 0.70 0.68 0.66 0.87 0.86 0.54 0.53
Micro-Attention [43]⊕ 0.50 0.49 0.47 0.46 0.53 0.51 0.40 0.34
ATNet (Fusion) [34]⊕ 0.63 0.61 0.55 0.54 0.79 0.77 0.49 0.48
Quang et al. [37]∗⊕ 0.65 0.65 0.58 0.58 0.70 0.70 0.58 0.59
Zhou et al. [52]∗† 0.73 0.72 0.66 0.67 0.86 0.85 0.58 0.56
Liong et al. [27]∗† 0.73 0.76 0.68 0.70 0.83 0.86 0.65 0.68
Liu et al. [29]∗† 0.78 0.78 0.74 0.75 0.82 0.82 0.77 0.71
LFM-based (CNN+LSTM) [3]† 0.77 0.75 0.72 0.71 0.87 0.84 0.67 0.60
ICE-GAN [48]⊕ 0.85 0.84 0.79 0.79 0.87 0.86 0.85 0.82
Our proposed method ⊕ 0.90 0.90 0.88 0.88 0.98 0.98 0.78 0.81

⋄ handcrafted approach, † hybrid approach, ⊕ deep learning approach.

Table 9
LOSO-CV performance of the proposed method and state-of-the-art based on the 5 classes
of AUs on CASME II and SAMM datasets (∗ references from [8]).

Models CASME II & SAMM CASME II SAMM
(bold: 1st ; blue: 2nd) F1-score Accuracy F1-score Accuracy F1-score Accuracy
LBP-TOP∗⋄ 0.40 0.52 0.51 0.67 0.38 0.44
HOOF∗⋄ 0.40 0.52 0.56 0.69 0.33 0.42
HOG3D∗⋄ 0.27 0.43 0.51 0.69 0.22 0.34
ELRCN [19]† 0.41 0.57 - - - -
Micro-Attention [43]⊕ 0.66 0.76 - - - -
Our proposed method ⊕ 0.83 0.86 0.84 0.88 0.82 0.79

⋄ handcrafted approach, † hybrid approach, ⊕ deep learning approach.

e of the proposed method under the MEGC with

Dataset UF1 UAR
FULL 0.90 0.90
SMIC part 0.88 0.88
CASME II part 0.98 0.98
SAMM part 0.78 0.81

ss are better since it is more compatible with a
imbalanced data among classes.
parison and discussions
posedmodel is evaluatedwith two cross-validation
he LOSO-CVmethod and the Cross dataset (CDB)
LOSO-CV, each folder contains more than one
f MiE of a person that didn’t appear in the other
he LOSO-CV ensures subject-independent eval-
r the cross dataset method, the training set will
dataset and the test set from another dataset. For
he training maybe on CASME II and the test on
he second method is good to evaluate the model
ided datasets are too small for the training especially
a complex architecture of CNNandLSTMwhich

Table 11
Performance of the proposed method in 5 classes based o
with LOSO-CV.

Dataset UF1 Accuracy
CASME II + SAMM 0.83 0.86
CASME II part 0.84 0.88
SAMM part 0.82 0.79

the performance of the proposed model with the LOS
method and under the two conditions (with 3 classes
on the MEGC 2019 conditions or with 5 classes on th
objective classes) while Tables 12 and 13 present the p
mance with cross dataset method.

From Table 10 and Table 11 we can notice that th
performance of ourmodel is reached on the CASME II
This can be explained by the characteristics of the CA
II dataset with 200 fps (100 fps for SMIC) and RGB
mode (Grayscale for SAMM). The same observation c
made in CDB validation (Table 12 and Table 13) whe
proposed method outperforms other cases when CAS
is the test set that can support the hypothesis. How
when the CASME II is used as the training set (Table 1
can notice better performance on SAMM, which is a 2
and grayscale dataset, than on SMIC, which is 100 fp
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et performance of the proposed method under the
llenge.

Test set Accuracy F1-score
I & SMIC SAMM 0.89 0.83
I & SAMM SMIC 0.75 0.75
AMM CASME II 0.92 0.91
I SMIC 0.70 0.71
I SAMM 0.87 0.79

CASME II 0.75 0.79
SAMM 0.79 0.75
CASME II 0.90 0.88
SMIC 0.75 0.76

et performance of the proposed method in 5 classes
U.
n set Test set Accuracy F1-score
ME II SAMM 0.75 0.59
M CASME II 0.82 0.69

et. This latter can be an argument to explain how
al information is more beneficial for MiE recog-
the color scale of the image which is a part of the
rmation.
posed solution has been comparedwith otherMiE
algorithms in different conditions. The compar-
marized in Tables 8 and 9 which show that the
ramework performs the best among different ap-
Table 8 shows the performance of our method,
-CV and under MEGC conditions, comparing
nes and recent methods, that obtain high accuracy
r datasets. The results indicate that our method
s handcrafted, deep learning, and hybrid approaches
all datasets (ICE-GAN [48] has the highest per-
n SAMM).
ected, results in Table 9 with LOSO-CV and un-
es based AU conditions are less accurate. We
improve the accuracy for three datasets (CASME
, CASME II, SAMM) compared to other state-
ethods.

lusion
paper, we have presented a novel spatiotemporal
ing solution for MiE recognition from local fa-
s. We have reported details and tests that support
chniques and parameters. The main contributions
osed solution are the use of some particular re-
e face instead of the whole face and the extraction
mporal features from these regions with a deep
chitecture that combines CNN and LSTM. The
tested on different datasets and different distri-
classes and with different evaluation methods and
e experiments showed that the proposed solution
performance that exceeds state-of-the-art solu-

In this paper, we focused only on the recognition
without spotting and a static method for region cropp
used. Thus, in future work, we will extend the study b
veloping a framework that detects the active region,
and then recognizes the MiE.
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