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Abstract

This paper presents a centralized, vision-based method for robust, on-the-fly
3D localization and mapping of human crowds in large-scale outdoor envi-
ronments, assuming their independent visual detection on the camera feed
of multiple UAVs. The proposed method aims at enhancing vision-assisted
human crowd avoidance, in line with common UAV safety regulations, since
the resulting 3D crowd annotations may be employed by other algorithms for
on-line mission/path replanning during deployment of a UAV fleet. Initially,
2D crowd heatmaps are assumed to be derived per video frame on-board each
UAV separately, using deep neural human crowd detectors, which indicate
the probability of each pixel depicting a human crowd. The UAV-mounted
cameras are assumed to be covering the same large-scale outdoor area over
time. The heatmaps of each time instance are transmitted to a central com-
puter and back-projected onto the common 3D terrain/map of the navi-
gation environment, utilizing the intrinsic and extrinsic camera parameters.
The projected crowd heatmaps derived from the different drones/cameras are
fused by exploiting a Bayesian filtering approach that favors newer crowd ob-
servations over older ones. Thus, during flight, an area is marked as crowded
(therefore, a no-fly zone) if all, or most, individual UAV-mounted visual de-
tectors have recently and confidently indicated crowd existence on it. In
order to calculate prior probabilities for Bayesian fusion, the method also
proposes and exploits a simple, but efficient image processing-based algo-
rithm for identifying flat terrain areas (under the assumption that people do
not gather on highly curved or inclined terrain), relying on a priori available
ground elevation data for the mapped area. Evaluation on both synthetic
and real-world multiview video sequences depicting human crowds in outdoor
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environments verifies the effectiveness of the proposed method.

Crowd Detection, Drone Vision, Image Processing, Autonomous Drones,
Multiview Fusion

1. Introduction

Camera-equipped Unmanned Aerial Vehicles (UAVs, or “drones”) are
widely employed for a variety of applications, including media production,
search and rescue operations, infrastructure inspection, etc. Cognitive auton-
omy functionalities, such as visual object/target detection and tracking [1]
[2] [3] [4], are gaining more and more traction in current commercial UAVs,
since they facilitate significantly easier drone deployment and operation [5] [6]
[7] [8]. However, safety concerns constitute an obstacle to more widespread
adoption of autonomous UAVs, mainly due to the risk they pose to humans
in case of malfunction [9].

Drone flight regulations postulate human crowd avoidance: drones are
typically not allowed to fly over a crowded area and must maintain a certain
safety distance from the crowd. Thus, in autonomous UAVs, the on-board
cognitive functionalities should be partially devoted to implementing these
policies autonomously. To this end, 2D crowd regions can be detected on
video frames using heatmaps, derived through crowd detection approaches
that rely on embedded Convolutional Neural Networks (CNNs) [10]. Each
heatmap is a grayscale image that spatially corresponds to the RGB video
frame it was derived from, but where the luminance value of each pixel repre-
sents the probability it depicts human crowd. Similar crowd heatmaps may
be exploited, for instance, to facilitate autonomous on-line mission/path re-
planning, so as to avoid flying over/near crowds. This would lead both to in-
creased conformance to regulations/legislation and to enhanced safety, while
also suppressing the need for a human operator being constantly involved.

However, in the common case of camera-equipped UAV fleet members
covering different parts of a large-scale outdoors area over time, accurate 3D
localization of the on-frame detected human crowd heatmaps is not trivial.
Crowd detection errors (per-pixel false positives/negatives) may accumulate
over time, observations from different cameras need to be fused, while the
possibly dynamic nature of the scene, i.e., moving crowds, further complicates
the issue. For instance, the 3D crowd regions derived from the camera stream
of each vehicle can naively be accumulated over time and combined using an
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OR operator, but this is suboptimal due to 2D visual crowd detection noise
and the possibility of dynamically moving human crowds. On top of all
these, aerial crowd detection itself (as opposed to crowd density estimation
or crowd counting) is a relatively new and unexplored topic, thus relevant
literature is rather sparse.

This paper presents a novel centralized method for on-the-fly 3D local-
ization of human crowds, initially detected on video frames (in 2D pixel
coordinates) acquired by independent camera-equipped UAVs. A certain 3D
area can be viewed by more than one UAV-mounted cameras, at coinciding
or different time instances.

The method makes the following assumptions:

• All UAVs communicate with a central Ground Station computer (e.g.,
via WiFi, 4G/LTE links, etc.). FANET schemes could be used for
always maintaining a link between each UAV and the Ground Station,
using other fleet members as relays.

• The 3D flight area terrain map is a priori available in a usable form
(e.g., Octomap [11]).

• A real-time 2D visual crowd detector is running separately on-board
each involved UAV (e.g., the method in [10] executed on a GP-GPU-
equipped nVidia Jetson Xavier board), thus on-the-fly transforming
each captured video frame into a human crowd heatmap image of iden-
tical resolution. Importantly, such heatmaps are susceptible to errors.

• The various heatmaps are timestamped using a common clock, for syn-
chronization purposes.

• Extrinsic/intrinsic parameters are known for all cameras at all times.

• An independent fleet mission/path planning subsystem is in place (e.g.,
[12]), for coming up with UAV fleet member trajectories and dynami-
cally replanning as needed.

Given this setup and set of assumptions (illustrated in Figure 1), the proposed
method’s output is a set of consistent semantic annotations of human crowds
(in 3D geo-referenced coordinates), being constantly derived per video frame
and used for regular updates of the common 3D area map. The proposed
method takes care both of suitably fusing the independent observations of
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the various fleet members, in order to compensate for the errors present in
each one, and of properly localizing them in a common, global 3D space. The
goal is to semantically annotate the employed 3D geometric area map used
for flight/navigation with the presence of human crowds, so that other algo-
rithms can better adjust mission/path plans on-the-fly for enhanced safety.

The method is composed of three cooperating components: a) the Map
Projector (MP), b) the Bayesian Fusion mechanism (BF), and c) the Flat
Area Identifier (FAI). Initially, the heatmap corresponding to the currently
processed video frame (i.e., a grayscale image in 2D pixel coordinates) is
transmitted from each UAV to the central Ground Station. There, crowd re-
gions identified using probability thresholding, separately on each heatmap of
each UAV, are back-projected by the Map Projector, via raycasting, onto the
common 3D map of the navigation environment. The resulting preliminary
projected regions do not take into account previous observations (no fusion
over time) and do not intelligently combine the detections coming from differ-
ent UAVs (no multiview fusion across cameras). Thus, they are subsequently
processed by the Bayesian Fusion mechanism, using the stored semantic an-
notations set of the last time instance. Prior probabilities required for the
BF calculations are provided by the Flat Area Identifier component, under
the assumption that human crowds are usually concentrated in large and
flat terrain areas. The final method output for each time instance/video
frame is a set of semantic 3D map annotations that indicate crowd gathering
locations, defining no-fly zones in 3D space.

The MP component of the proposed method is an elaborate engineering
pipeline relying on pre-existing algorithmic building blocks, while both BF
and FAI rely on novel algorithms. MP and BF need to be executed on-line for
each video frame, while FAI can be executed once, off-line, before deploying
the UAV fleet, since it depends on a priori available, static Digital Elevation
Models (DEMs) [13] of the flight environment’s terrain. FAI relies on image
processing and is not learning-based; thus it does not require enormous train-
ing datasets, unlike competing deep learning-based methods. Additionally,
a useful by-product of FAI is a set of potential UAV emergency landing sites
within the flight environment, under the typical assumption that a drone can
only land safely on sufficiently large, non-inclined terrain.

Thus, overall, the contributions of this paper are the following ones:

• An engineering pipeline for on-line semantic 3D map annotation through
back-projecting 2D visual detections, via raycasting (MP). Existing
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methods with similar goals (e.g., [14, 15]) do not support the multi-
view setting of UAV fleets and typically rely on RGB-D sensors instead
of simple, regular visual cameras [14].

• A novel Bayesian algorithm for on-line multiview fusion of map anno-
tations over time and across cameras (BF). No such algorithm has been
proposed before for vision-based multiple-UAV semantic mapping, in
contrast to other multiview tasks where Bayesian approaches have been
successfully applied (e.g., head pose estimation, pedestrian detection,
etc.).

• A novel algorithm for identifying large and flat terrain areas by pro-
cessing available DEMs (FAI), that provides auxiliary information to
the multiview semantic mapping process and identifies potential UAV
landing sites, as a by-product. In contrast to competing methods, the
proposed algorithm does not require vast training datasets or compli-
cated optimization, but only publicly available DSM and DTM height
maps.

The above ingredients are combined into a cohesive system, in order to permit
vision-based human crowd on-map localization with acceptably high accu-
racy, under a UAV fleet setting.

It must be noted that the algorithm in FAI has been previously published
in conference form [16], for the narrow purpose of a priori potential UAV
landing site detection within the known flight area. Thus, since the goal,
context and application domain of [16] is entirely different, the experimental
evaluation of FAI performed in this paper significantly deviates from the one
in [16]. Here, the main purpose of FAI is to assign prior crowd gathering
probabilities, based on assessing ground morphology. These probability esti-
mates are exploited by the BF module, which is presented here for the first
time. Therefore, overall, this paper serves as the extended journal version of
[16]; the entire system is completed and evaluated as a whole, including all
cooperating components that were not presented in [16] (MP and BF).

The remainder of this paper is organized as follows. Firstly, Section 2
presents previous work related to crowd detection and localization from UAV-
captured videos. Then, Section 3 describes the proposed method, including
its MP, BF and FAI components. Subsequently, the method is evaluated in
terms of performance in Section 4, using synthetic multiview video sequences
depicting human crowds in outdoor environments as well as real-world drone
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Figure 1: A schematic of the assumed method setup.

data experiments. Finally, conclusions are drawn from the preceding discus-
sion in Section 5.

2. Related Work

Typically, 3D terrain information is represented as 3D occupancy grids.
Two different 3D mapping solutions are worth mentioning: a) Octomap [11],
and b) Voxblox [17]. The first one provides a probabilistic 3D occupancy
map compressed in a hierarchical way for memory efficiency. It consists in
a volumetric representation of occupied, free and unknown areas in space,
based on octrees. These maps are usually generated by post-processing data
from LiDAR (Light Detection And Ranging) surveying. Voxblox, on the
other hand, provides a field distance map, i.e., for each voxel, the Euclidean
distance to the nearest obstacle is provided.

An alternative source offering terrain information is Digital Elevation
Models (DEM) [13], which come in two forms. The first type is Digital Ter-
rain Models (DTM) [18],[19] that includes information regarding the height
variations of an area’s bare ground, without any man-made structures or
vegetation. The second type is Digital Surface Models (DSM) [20],[21]. A

6



DSM provides a representation of the elevation values for areas of exposed
ground, road surfaces, tree crowns, vegetation and buildings. In other words,
DSMs include information for both the ground and the man-made structures
or vegetation that lie on it. DSMs can be generated by data coming from
various sources such as LiDAR (Light Detection And Ranging) surveying.
DTMs are usually generated by post-processing DSMs. DSMs and DTMs
often come in raster format, i.e., essentially georeferenced images where a
pixel’s value denotes elevation of the corresponding location.

Several approaches aiming to augment topological maps [22] with seman-
tic information [23] [24] and high-level attributes have been proposed over
the past years, allowing aerial robots to handle more expressive concepts or
be deployed for more sophisticated tasks. Typically, the goal is to segment
the environment into regions that have a coherent semantic meaning. Re-
cently, the robotics community has focused on the presence of semantics in
maps [25] [26] [27], to develop autonomous robots capable of understanding
the semantic relationships between the objects in the environment [28] [29]
[30], besides exploiting occupancy grid maps for navigation.

Although several works utilize deep CNNs for crowd analysis and under-
standing, e.g. [31, 32, 33], research on crowd detection in drone-captured
images is rather a little bit more than an uncharted territory. One reason
might be that the aerial point-of-view bears additional challenges (e.g., small
person size, occlusions etc.), in comparison to a ground point-of-view. Since
the crowd first needs to be detected on-frame, relevant algorithms must be
capable of efficiently distinguishing between crowded and non-crowded video
frames. An application-tailored deep Convolutional Neural Network is pre-
sented in [10], where a pretrained model is finetuned for the task of crowd
detection. Moreover, in [34], the authors propose a novel crowd detection
method for drone safe landing, based on an extremely lightweight and fast
Fully Convolutional Neural Network.

A different approach in [35] performs sampling-based multiview crowd
detection for accurate localization of people in 3D space, based on single
or multiview images. In addition, a probabilistic method for accurate 3D
crowded scene localization and cross-view tracking is presented in [36], where
binary constraints are exploited to localize truncated human boxes in a 3D
map and identify moving subjects, exploiting a Bayesian approach for han-
dling failure cases (e.g., occlusions, false detections). Finally, [37] presents
an algorithm for detecting coherent crowd groups utilizing a Multiview-based
Parameter-Free framework (MPF). This framework consists of a novel struc-
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tural context descriptor for individual crowd characterization, a multiview
clustering approach for grouping these descriptors, as well as a module that
automatically determines the size (in terms of people contained therein) of
each crowd area.

Despite the prominence of Bayesian methods in general data fusion, lit-
erature on Bayesian multiview visual information fusion is rather limited. A
Bayesian filtering approach for multiview head pose estimation is presented
in [38]. The method fuses neural network outputs from multiple camera
views. Bayesian multiview filtering was also used for robust multiple camera
pedestrian detection and fake pedestrian detection removal in [39]. Finally,
Bayesian multiview filtering for body orientation estimation based on silhou-
ette information in a smart room environment is presented in [40]. Overall,
however, none of these methods applies Bayesian filtering to a UAV-related
setting or to achieve on-the-fly, on-line multiview semantic area mapping, as
proposed in this paper.

Regarding the identification of large and flat areas on a known terrain,
the most relevant pre-existing research concerns algorithms for UAV landing
site detection. In our case, identification of potential landing sites is simply
a useful by-product, but the methodology is similar. In [41], a method is pre-
sented for detecting fixed-wing UAV landing sites using the average height
and height variance inside quadtree-based DEM partitions. Partitions whose
height variance is below a limit are selected as landing sites and merged with
neighboring ones with similar average heights. In [42], suitable landing areas
are determined on topographical maps for emergency landing of UAVs by
utilizing surface fitting on coarse elevation models using Least Squares Error
and slope calculation. Furthermore, in [43], the authors create a system for
efficient and reliable assessing the safety of landing zones covered in low veg-
etation by combining a volumetric occupancy map with a 3D Convolutional
Neural Network (CNN). In [44] the authors propose a system for landing zone
selection based on a relatively simple geometric analysis of terrain roughness
and slope. Finally, [45] proposes a scheme for the selection or validation of
landing zones for unmanned helicopters with terrain assessment incorporat-
ing factors such as terrain/vehicle interaction, wind direction and mission
constraints.
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3. Proposed Method

The proposed method assumes that all UAVs communicate with a central
Ground Station computer (e.g., via WiFi, 4G/LTE links, etc.) and that the
3D flight area terrain map is a priori available. The method’s outputs are
semantic annotations of human crowds (in 3D geo-referenced coordinates),
being constantly derived per video frame and used for regular updates of
the common 3D area map. The proposed method assumes that a real-time
2D visual crowd detector (e.g., [10]) is running separately on-board each
involved UAV, thus on-the-fly transforming each captured video frame into
a human crowd heatmap image of identical resolution. Additionally, the
various heatmaps are assumed to be timestamped using a common clock, for
synchronization purposes, while extrinsic/intrinsic parameters are assumed
to be known for all cameras at all times. Finally, the method requires a DEM
of the flight/navigation area to be available, while the 3D geometric area map
to be semantically annotated is assumed to be an Octomap (although this is
not strictly necessary).

The method is composed of three cooperating components: a) the Map
Projector (MP), b) the Bayesian Fusion mechanism (BF), and c) the Flat
Area Identifier (FAI). These components are described below in detail and
illustrated in Figure 2.

3.1. Map Projector

Let us assume there are N UAVs equipped with a camera and a 2D visual
crowd detector system. The crowd detector converts on-the-fly each video
frame into a heatmap: a single-channel image of identical resolution, where
each pixel luminance value denotes the probability that it indeed depicts
human crowd. Thus, heatmap pixel values lie within the real range [0, 1],
where a value of 1.0/0.0 implies absolute detector confidence that human
crowd is/is not depicted there, respectively, while a pixel value of 0.5 implies
maximum detector uncertainty.

At each time instance, the heatmap corresponding to the currently pro-
cessed video frame (i.e., a grayscale image in 2D pixel coordinates) is trans-
mitted from each UAV to the Map Projector (MP) method component, resid-
ing in the central Ground Station. There, each pixel may be back-projected
onto the stored 3D terrain using the known extrinsic and intrinsic camera
parameters. Such an approach is presented in Section 3.1.1, detailing a ray-
casting method to annotate the 3D occupancy grid of an Octomap with
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Figure 2: Block diagram of the proposed algorithm.
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human crowd information.

3.1.1. Semantic Map Region Projector (SRP)

The Semantic Map Region Projector (SRP) receives and temporally syn-
chronizes each of the N heatmaps. Subsequently, by thresholding them in or-
der to retain only image locations with high probabilities of crowd existence,
they are converted into binary images where groups of adjacent pixels with
value 1 (white) represent 2D regions occupied by crowd. Next a contour-
following algorithm is applied in order to find the contours of this image,
resulting in a new binary image indicating the boundaries (white pixels) of
the aforementioned crowd regions 2D polygons. If needed, the polylines are
simplified maintaining their shape according to the Ramer-Douglas-Peucker
algorithm [46], which takes a curve composed of line segments and finds a
similar one with fewer points.

Figure 3: Ray casting procedure for crowd heatmap contours projection onto the 3D
occupancy grid of Octomap as semantic annotations.

Finally, by traversing the points (pixels) of the regions’ boundaries in a
counter-clockwise manner, ray casting is employed for back-projection onto
the 3D volumetric map handled by Octomap [47], [48]. The contour image
lies on the focal plane of the UAV camera, whose parameters are fully known.
Thus, one may cast a ray from each of the boundary contour points towards
the voxels of the Octomap. This results in finding the occupied voxel hit by
each ray, leading to the evaluation of the X, Y, Z terrain coordinates where
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each of the contours’ points is projected, as the Octomap is coordinate-
referenced. Since the 2D boundary contour points are traversed sequentially,
so are the points of the 3D boundary contour (polyline).

3.1.2. Semantic Map Manager (SMM)

After the SRP, the second stage of the MP’s operation consists of the
Semantic Map Manager (SMM), whose functionality can be summarized as
follows: firstly, the created polylines which delineate crowd gathering loca-
tions on the 3D map are merged with previous ones, as the UAV moves and
its camera “sees” new areas of the terrain. This is done using the union oper-
ator, as a preliminary stage of crowd information merging. Subsequently, the
constantly updated geometrically localized semantic annotations are stored
in an internal data layer.

Overall, the output of the MP for the current time instance and cor-
responding set of synchronized video frames is a preliminary set of human
crowd map annotations which do not take into account previous observations
(no fusion over time) and do not intelligently combine the detections coming
from different UAVs (no multiview fusion across cameras).

3.2. Bayesian Fusion

After the MP processing step, the Bayesian Fusion (BF) procedure is
executed. During this computational step, on-the-fly fusion of projected
MP crowd annotations from several UAVs is conducted, before advancing to
the next time instance. The main aim of this module is to increase crowd
localization accuracy by taking into account the dynamic nature of the crowd
detection outputs and by compensating for the 2D crowd detector’s noise.
The novel Bayesian multi-view fusion algorithm is explained below.

Let us define the following Bernoulli-distributed (binary event space) ran-
dom variables (RVs):

A: random variable denoting crowd presence in a voxel of the Octomap.
Bi: random variable denoting crowd detection in the corresponding pixel

on the heatmap of the i-th UAV.
Due to the combination of N hypotheses on the same underlying truth,

i.e., the estimation of a voxel probability containing crowd based on N differ-
ent probability models, the posterior probability of a voxel actually contain-
ing crowd can be derived according to Bayes theorem and Linear Opinion

12



Pool [49]:

P (A = 1|B1 = b1, ..., BN = bN) =∑N
i=1wi

P (Bi=bi|A=1)P (A=1)
P (Bi=bi|A=1)P (A=1)+P (Bi=bi|A=0)P (A=0)

, (1)

where bi ∈ {0, 1} (non-crowd/crowd) is the detector’s binary observation
from the i-th UAV, derived by thresholding its raw probability output oi.

In the above:

• P (Bi = 1|A = 1) is the detector’s True Positive Rate (TPR)

• P (Bi = 1|A = 0) is the detector’s False Positive Rate (FPR)

• P (Bi = 0|A = 1) is the detector’s False Negative Rate (FNR)

• P (Bi = 0|A = 0) is the detector’s True Negative Rate (TNR). All these
four probabilities can be evaluated experimentally for the specific crowd
detector being viewed.

• P (A = 1) is the a-priori probability of a certain location (voxel) to
be occupied by crowd. Assuming that the human crowds would only
gather in large, relatively flat/non-inclined terrain areas (see Section
3.3), this probability can be considered equal to the percentage of the
area surface that satisfies these criteria.

The choice of using Linear Opinion Pool against other opinion pools, such
as Log-Linear, is justified from the fact that the former provides a desirable
property, which is invariance to event combination [50]. Moreover,the fusion
aims to combine N candidate crowd probabilities even if a subset of them
is zero. However, the Log-Linear Opinion Pool is unimodal [51] and if even
a single crowd probability is zero, then the combined probability will be
zero too. This is not the case with the Linear Opinion Pool, where a null
probability would be averaged with all other ones in a weighted manner.

Thus, weights wi encoding the degree to which we take each detector’s
decision into account regarding the currently processed voxel are denoted
in Eq. (2). When the detector outputs (either positive or negative ones)
are confident, this weight should be higher. Given the above, wi can be
determined as the absolute difference between the original detector’s output
percentage mi from 0.5:
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wi =
|mi − 0.5|

1
2
N

, (2)

where, for voxels on which crowd has been projected, mi is their raw probabil-
ity output (derived by averaging the oi probability values of the correspond-
ing heatmap pixels), while for voxels where no crowd has been projected it
holds that mi = 0. The denominator in Eq. (2) is required so as to keep all
probabilities in Eq. (1) valid (i.e., lying within the interval [0, 1]).

A crowd annotation forgetting policy is also exploited in the current
method. Gradual forgetting of old detections for each voxel can be intro-
duced by Eq. (1). More precisely, proper weighting over time of each UAV’s
contributions (e.g., by using a very slow exponential decay), is added, if
no newer observation are made regarding that specific voxel. Any new ob-
servations can either override the old ones (a new posterior probability is
computed from scratch, referred to as Fusion Scenario 1), or be merged with
them by properly extending Eq. (1) with additional terms in the sum (Fu-
sion Scenario 2). Both temporal fusion policies compute an aggregate/fused
probability P̃t of a voxel actually containing crowd at current time instance
t, using the following probability blending formula:

P̃t = (1− αγt)β∆tP̃t′ +

+αγtP (A = 1|B1 = b1, ..., BN = bN)t , (3)

where t′ is the last time instance the voxel was visible through any of the
UAVs/cameras, ∆t = t − t′, λ is a temporal decay rate hyperparameter,
β∆t = e−λ∆t and P̃t′ is the last stored aggregate probability that the voxel in
question contains crowd, as computed in previous time instance t′. Also, α ∈
(0, 1] is a hyperparameter regulating the degree to which the current/newest
observations override older ones. γt ∈ {0, 1} is not a parameter, but a binary
value denoting whether the voxel being currently processed is visible by at
least one UAV at the present time instance t. Thus, [1− αγt] evaluates to
1 − α when at least one new observation is currently available (γt = 1) and
to 1 otherwise (γt = 0).

The current fused probability of crowd existence is computed according
to Eq. (1), by employing the detections of current time instance t (if the
corresponding area is visible by at least one UAV). Overall, setting α to 1
results in Fusion Scenario 1, while setting it to a real value in the interval
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(0, 1) results in Fusion Scenario 2.
Using the above setup, the presence of human crowd in an area which is

denoted as a no-fly zone, is considered to be certain if and only if all or most
of N UAV-mounted visual detectors concurrently detect it at the present
moment with high probability. In case only a subset of the UAVs detect
crowds and/or a significant time interval has lapsed since last crowd detection
in that area, the output aggregate/fused probability falls dramatically.

The proposed BF module/method innovates by applying a simple Bayesian
formula and a Linear Opinion Pool, in order to promptly and efficiently fuse
human crowd probability heatmaps on-the-fly, under a multiple-UAV set-
ting. To the best of our knowledge, no such Bayesian on-line method has
been previously presented.

3.3. Flat Area Identifier

Unlike MP and BF, which need to be executed on-line for each video
frame, Flat Area Identifier (FAI) can be executed once, off-line, before de-
ploying the UAV fleet, since it relies on a priori available, static Digital Ele-
vation Models (DEMs) [13] of the flight environment’s terrain. It employs a
novel algorithm which computes prior probabilities required for the BF cal-
culations in Eq. (1), but also exports potential UAV landing sites as a useful
by-product. This dual use results from the main goal of FAI, i.e., to identify
(sufficiently) flat and large areas within the flight area. Such regions can
be used as normal or emergency UAV landing points, while also serving as
potential human crowd gathering spots, due to friendly ground morphology.

The employed method (previously published in conference form [16],
where it was evaluated only for potential UAV landing site detection) utilizes
the information contained in pre-obtained Digital Terrain Model (DTM) and
Digital Surface Model (DSM) files. Based on this, it detects the vegetation,
buildings and generally the objects upon the bare ground, by evaluating the
height difference between the DTM and DSM models.

The algorithm’s input consists of the two flight area DEMs, namely the
DSM and the DTM, in raster format, i.e., as a regular grid of elevation
values. The DTM (Figure 4-a) only depicts the terrain and no man-made
structures or vegetation, whereas the DSM (Figure 4-b) depicts the terrain
along with buildings and vegetation. DSM files often contain pixels with
no value (no elevation information), as a result of sensor inefficiencies during
DSM acquisition. As DTM is constructed by post-processing the DSM, these
pixels are usually assigned values through interpolation. Here, DSM pixels
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with no values are assigned elevation values from the corresponding pixels of
the DTM file. Flat areas are discovered by evaluating the local terrain slope
through estimating the image gradient on the DEM file and thresholding
the gradient magnitude image, so as to retain areas having small local 3D
gradient. Connected component analysis is applied on the resulting binary
image, so as to identify and retain regions whose area is above a preset
threshold. The final map is constructed by combining the results of building
and vegetation detection with the results of the previous step, delineating
regions that are sufficiently large and flat.

Overall, the FAI algorithm can be summarized in five steps:
1) Detection of man-made structures and vegetation: by subtracting the

DTM from the DSM and applying a threshold to the outcome, a binary image
is obtained (Figure 4-f) which marks pixels depicting man-made structures
and vegetation whose height is above a selected (small) threshold.

2) Terrain slope determination (Figure 4-g): the local slope of the de-
picted areas in the DSM is calculated. According to Geographic Information
Systems (GIS) theoritical definition [52], the slope is the maximum rate of
change in value (elevation) from a pixel (cell) to its neighbors. The lower
the slope value, the flatter the terrain. As far as the slope calculation is
concerned, the rates of change of the surface elevation in the horizontal ( dz

dx
)

and vertical (dz
dy

) directions from the central cell determine the slope. Slope,

in degrees, is calculated as [52]:

slopedegrees =
180

π
arctan

√√√√([dz
dx

]2

+

[
dz

dy

]2
)

(4)

The values of the center cell and its eight neighbors determine the hori-
zontal and vertical rates of elevation change. For a neighbourhood such as
the one depicted in Figure 5, the rates of change along the x and y direction
for cell “e” can be calculated as:

dz

dx
=

(c+ 2f + i)− (a+ 2d+ g)

8 ∗ xcellsize
(5)

dz

dy
=

(g + 2h+ i)− (a+ 2b+ c)

8 ∗ ycellsize
(6)

Essentially, the rates of change along the x and y direction are the hori-
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Figure 4: Example of processing DEMs: (a) 3D view of DTM, (b) 3D view of DSM, (c)
final map (meaning of colors is explained in the text) (d) DSM, (e) DTM , (f) binary image
of buildings/vegetation, in black, (g) Terrain slope determination via Sobel operator, (h)
binary image of low slope areas, in white, (i) connected components analysis result.

Figure 5: 8-neighborhood of a DSM.

zontal and vertical derivative approximations, generated by the well known
Sobel operator [53] scaled by a factor of −8 ∗ cellsize.

3) Sobel operator gradient image thresholding (Figure 4-h): after extract-
ing the elevation gradient magnitude image, it is thresholded in order to
classify the DSM pixels in “flat” or “non-flat” areas based on the local slope.
Obviously, near-flat areas are retained. The terrain slope threshold may be
adjusted as a hyperparameter, according to desired tolerance to inclination.

4) Binary image connected components evaluation (Figure 4-i): connected
components analysis is applied on the binary image resulting from the pre-
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vious step. Connected components with sufficiently large number of pixels,
i.e., of sufficient area, are retained.

5) Creation of the final map (Figure 4-c): in order to create the final map,
any parts that overlap with buildings and vegetation (found in Step 1) are
removed from the large low slope areas (found in the previous Step). The
final map consists of three categories of pixels:

• Blue pixels: this category of pixels corresponds to regions in the DSM
map with small terrain slope and large enough area.

• Light blue pixels: this category of pixels corresponds to regions in the
DSM map with large terrain slope or very few pixels (small area).

• Yellow pixels: these pixels correspond to buildings and vegetation.

4. Experimental Evaluation

The proposed method was fully implemented in C++ using the well-
known Robotic Operating System (ROS) [54] middleware. ROS allows easy
InterProcess Communication under the publisher-subscriber model, in a dis-
tributed setting. The employed ROS messages were: a) a drone telemetry
message, containing the UAV GPS coordinates, b) a gimbal status message,
containing the gimbal pitch, roll and yaw, as well as c) a camera status mes-
sage, containing the camera focal length and sensor width/height. All these
messages were synchronized with the video frames according to timestamps.
The pre-trained 2D visual crowd detection CNN from [10] was also employed,
in the form of a separate ROS process.

Two experimental setups were used to assess the proposed multiview
human crowd localization approach: a simulated one and one based on real-
world UAV flights. They are both described below, before the presentation
and discussion of evaluation results.

4.1. Synthetic drone data experiments

In the simulation evaluation setup, synthetic multiview video sequences
depicting human crowds in outdoor environments and captured by N = 3
simulated UAVs were constructed using the Microsoft AirSim simulator, built
on top of the real-time 3D graphics engine Unreal Engine 4 (UE4). All
video frames were stored along with the corresponding ROS messages. A
mountainous, large-scale UE4 terrain model was selected, covering an area
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(a) RGB image (b) Ground truth segmentation map

(c) Crowd heatmap (d) Output semantic map projected on a 2D
representation of the 3D map environment

Figure 6: Samples of the multiview human crowd aerial synthetic image dataset and the
proposed method output.

of approximately 1270× 1017 meters within the virtual world, and multiple
crowds were placed on the sides of a road serving as the path of a bicycle
race. The crowds were designed to move slowly along the road while keeping
their cohesion. Using AirSim, three UAVs were deployed to follow three
cyclists (one drone per cyclist), being quite far apart for one another. In
this evaluation setup, coordinated multiple-UAV cinematography shooting
trajectories were planned according to [8]; in a different scenario, any UAV
fleet mission/path planning subsystem would also be admissible, as long as
the same 3D area is viewed by more than one UAV-mounted cameras, at
coinciding or different time instances.

Overall, three annotated video sequences were created (one per drone),
each one containing more than K = 1056 frames. The annotations included
the center of each crowd on the frame and a per-pixel ground truth segmenta-
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tion map of the frame, containing the following five classes: crowd, ground,
sky, road, cyclist. An example video frame, along with its ground-truth
segmentation map, the respective human crowd heatmap and the output se-
mantic area map of the proposed MP+BF+FAI pipeline, are shown in Figure
6. For visualization purposes, the semantic 3D area map is projected onto
the 2D (top-down) representation of the 3D Octomap.

The ground-truth for human crowd presence on 3D terrain was extracted
from the available ground-truth segmentation maps (one per video frame,
with a spatial resolution of 640× 360 pixels). Crowd-class pixels in segmen-
tation maps were processed into connected components, through merging
individual silhouettes and filling in gaps. These connected components were
then projected onto the 3D terrain. The mean TPR (True Positive Rate),
FPR (False Positive Rate), FNR (False Negative Rate) and TNR (True Neg-
ative Rate) in Eq. (1) were calculated by comparing the thresholded crowd
heatmaps produced by [10] and the binary ground-truth, on the validation
set of the dataset where the model was trained.

4.2. Real-world drone data experiments

An additional set of experiments was performed, using data from real-
world UAV flights, in order to better validate the proposed method. To this
end, N = 2 2-minute drone video sequences (of spatial resolution equal to
1920×1080 pixels) were simultaneously captured, containing a simply struc-
tured human crowd (group of six persons) located on a flat terrain and moving
slowly, while preserving its cohesion, as depicted in Figure 7. All necessary
camera parameters and captured video frames were stored during flight, in
order to facilitate not only method execution, but also reproducibility of the
experiments. An Octomap file was additionally constructed, representing the
flat terrain upon which the filmed crowd was placed. Finally, a person within
the target crowd carried a GPS device in order to record its ground-truth
real-world position. This was selected as a simpler but feasible alternative to
obtaining accurate ground-truth locations for the entire crowd region in the
real world, which was very difficult to achieve.

4.3. Performance Evaluation

Performance of the proposed multiview crowd heatmap fusion is detailed
below, for both the synthetic/simulated and the real-world UAV flight setups.
In order to validate the importance of the novel BF and FAI components
of the proposed method, a “no-fusion” variant was also evaluated which
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(a) Video frame captured from drone No 1. (b) Video frame captured from drone No 2.

(c) Qualitative view of the cumulative visual-
ization output over time, depicting identified
crowd-annotated areas (α = 1 and λ = 0).
The predicted/ground-truth crowd location is
shown as the yellow polyline/green location
pointer, respectively (in real scale).

Figure 7: Real-world experimental setup, filming a simply structured human crowd.

accumulates the 3D annotations derived from all drones over time and simply
combines them using an OR operator. Thus, the “no-fusion” variant is more
of an elaborate engineering pipeline [55].

Performance of the proposed multiview crowd heatmap fusion in the syn-
thetic/simulated data evaluation setup was measured by Intersection-over-
Union (IoU) on the projected crowd detections. The mean IoU over all video
frames was computed, so as to observe the performed annotation accuracy
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of the crowd regions. It is given by:

IoUmean =
1

K

K∑
i=1

Overlapi
Unioni

, (7)

where K is the total number of video frames, while Overlapi, Unioni are the
overlap and the union area, respectively, between the ground-truth informa-
tion and the projection of crowd prediction regions onto the terrain.

Given that the field-of-view for each camera at any time instance covers
only a part of the map/flight area, at each time there may exist map regions
not yet seen by any drone. Therefore, the current crowd annotations derived
by the proposed method cannot be directly compared against the complete
ground-truth map. Thus, in this paper, the IoU for each video frame was
computed in the following manner: only the union of the projections of the
camera fields-of-view on the map from all drones at all time instances from
mission start up to that time instance is taken into account; not the complete
map.

Semantic annotation performance on real-world drone data experiments
can only be measured offline, after the experiment is conducted by following
the specified protocol. Two evaluation modes were employed:

• First, an objective evaluation was conducted, using ground-truth in-
formation concerning the geolocation of the depicted crowd. The em-
ployed evaluation metric was a boolean indicator, estimating whether
the ground-truth position of the crowd centre, as recorded by the GPS
device held by a member of the crowd, falls within the predicted area
annotations.

• Second, a subjective evaluation was conducted on a sample of the ma-
terial using M = 5 subjects, exploiting recorded ground-truth informa-
tion. The subjects were given separately visualizations of the semantic
map polygons obtained in two ways: a) the no-fusion approach (MP-
only) and b) the complete proposed method (MP+BF+FAI). Subjects
were independently shown the two method results (the semantically
annotated map) and the original video files. Then, they were asked to
rate the results in terms of their perceived quality, along a scale graded
the following way: poor (0% - 40%), fair (40% - 60%), good (60% -
75%), very good (75% - 90%) and excellent (90% - 100%).

22



Figure 8: IoU per video frame against time. The best-performing variant of the proposed
method is highlighted in bold.

4.4. Evaluation results

Results of the experimental evaluation process are detailed below, both
for the synthetic and for the real-world setup.

4.4.1. Evaluation on synthetic data from simulated UAV flights

Evaluation results are illustrated in Fig. 8 and in Table 1, which depicts
the mean IoU and the standard deviation of the IoU values, measured ac-
cording to the process detailed in Subsection 4.3. Evidently, the proposed
method outperforms the naive no-fusion approach for the optimal values of
parameters α and λ. The maximum mean IoU value is obtained in the case of
probability blending with α = 0.1, which essentially means that at each time
instance the current map annotations evaluated using Eq. (1) contribute by
10%, whereas the last stored map annotations contribute by the remaining
90%. Increasing α beyond this value (including α = 1, which is equivalent to
Fusion Scenario 1) leads to algorithm performance deterioration. Regarding
λ, one can notice that this parameter has a much less pronounced effect and
that the best results are typically obtained by using a very small value, i.e.,
λ = 0.0005.

The plot in Fig. 8, which shows per-frame IoU over time, verifies the
above results. Each per-frame IoU value is computed only within the union
of all drone cameras’ fields-of-view, after their projection on the area map,
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Table 1: Synthetic experimental evaluation results (mean IoU).

Method mIoU (±std)

no-fusion [55] 0.1271 (±0.0872)

multiview a = 0.1, λ = 0 0.2403 (±0.0612)

multiview a = 0.1, λ = 0.05 0.2394 (±0.0578)

multiview a = 0.1, λ = 0.0005 0.2488 (±0.0562)

multiview a = 0.2, λ = 0 0.1992 (±0.0723)

multiview a = 0.2, λ = 0.05 0.1825 (±0.0719)

multiview a = 0.2, λ = 0.0005 0.1957 (±0.691)

multiview a = 0.5, λ = 0 0.1434 (±0.0769)

multiview a = 0.5, λ = 0.05 0.1532 (±0.0771)

multiview a = 0.5, λ = 0.0005 0.1582 (±0.0790)

multiview a = 0.8, λ = 0 0.1336 (±0.0742)

multiview a = 0.8, λ = 0.05 0.1286 (±0.0759)

multiview a = 0.8, λ = 0.0005 0.1281 (±0.0764)

multiview a = 1, λ = 0 0.1062 (±0.0767)

multiview a = 1, λ = 0.05 0.1069 (±0.0748)

multiview a = 1, λ = 0.0005 0.1053 (±0.0745)

aggregated from mission start up to current video frame. Thus, map areas
which have never been seen by any drone until the current time instance, are
excluded from IoU computation.

Beyond mean IoU, we also employed the mean F-measure metric (aver-
aged over time) for additional evaluation of the proposed method. Precision
and recall were calculated in a rectangular grid of the 2D (top-down) repre-
sentation of the 3D terrain map, for several different grid resolutions (Tables
2,3,4). If any map voxel falling within each patch of this grid is annotated
as “crowd” by the proposed method, then the entire patch is assumed to
contain human crowds. In most applications, such a setup would most likely
be more suitable, since an entire region containing humans should be avoided
by the mission/path planner for safety reasons. Unsurprisingly, the results
indicate best performance (in terms of mean F-measure) for the highest grid
resolution/smallest patches. Once more, the BF and FAI components prove
to be crucial for method performance.
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Table 2: Synthetic experimental evaluation results (mean F-measure), grid resolution
25× 25 patches.

Method (Resolution 25× 25 patches) m F-measure (±std)

no-fusion [55] 0.2152 (±0.1064)

multiview a = 0.1, λ = 0 0.3769 (±0.0826)

multiview a = 0.1, λ = 0.05 0.3748 (±0.0798)

multiview a = 0.1, λ = 0.0005 0.3884 (±0.0803)

multiview a = 0.2, λ = 0 0.3166 (±0.1072)

multiview a = 0.2, λ = 0.05 0.2891 (±0.1077)

multiview a = 0.2, λ = 0.0005 0.3115 (±0.1013)

multiview a = 0.5, λ = 0 0.2284 (±0.1170)

multiview a = 0.5, λ = 0.05 0.2434 (±0.1166)

multiview a = 0.5, λ = 0.0005 0.2544(±0.1218)

multiview a = 0.8, λ = 0 0.2236 (±0.1120)

multiview a = 0.8, λ = 0.05 0.2168 (±0.1157)

multiview a = 0.8, λ = 0.0005 0.2161 (±0.1151)

multiview a = 1, λ = 0 0.1943 (±0.1117)

multiview a = 1, λ = 0.05 0.1939 (±0.1109)

multiview a = 1, λ = 0.0005 0.1965 (±0.1108)

4.4.2. Evaluation from real-world UAV flights

Objective evaluation results for the real-world UAV flight setup, mea-
sured, according to the relevant process detailed in Subsection 4.3, are de-
picted in Figure 7-c. It is a Google Maps visualization, where the ground-
truth region is depicted as a green location marker and the predicted crowd
area as a small yellow polyline. As it can be seen, the predicted crowd poly-
line successfully contains the crowd ground truth pin-point.

Subjective evaluation was conducted according to the relevant protocol
detailed in Subsection 4.3. A sample of the content evaluated by the subjects
is shown in Fig. 7. One can notice that the identified human crowd annota-
tion area is differently shaped in the output KML file visualization (although
correctly localized), in comparison to the intuitive shape of the human crowd
depicted in the video sequence. This difference results from the deformation
introduced by the projection viewing angle, but is gradually minimized over
time as the identified region is progressively getting well-shaped. Overall,
the mean perceived quality was 86.6% for the output semantic annotation

25



Table 3: Synthetic experimental evaluation results (mean F-measure), grid resolution
40× 40 patches.

Method (Resolution 40× 40 patches) m F-measure (±std)

no-fusion [55] 0.2334 (±0.1117)

multiview a = 0.1, λ = 0 0.3803 (±0.0808)

multiview a = 0.1, λ = 0.05 0.3796 (±0.0781)

multiview a = 0.1, λ = 0.0005 0.3905 (±0.0757)

multiview a = 0.2, λ = 0 0.3227 (±0.1038)

multiview a = 0.2, λ = 0.05 0.2979 (±0.1057)

multiview a = 0.2, λ = 0.0005 0.3570 (±0.0886)

multiview a = 0.5, λ = 0 0.2391 (±0.1180)

multiview a = 0.5, λ = 0.05 0.2534 (±0.1176)

multiview a = 0.5, λ = 0.0005 0.2621 (±0.1197)

multiview a = 0.8, λ = 0 0.2391 (±0.1180)

multiview a = 0.8, λ = 0.05 0.2232 (±0.1166)

multiview a = 0.8, λ = 0.0005 0.2220 (±0.1166)

multiview a = 1, λ = 0 0.2002(±0.1150)

multiview a = 1, λ = 0.05 0.1984 (±0.1128)

multiview a = 1, λ = 0.0005 0.1975 (±0.1127)

derived by the complete proposed method (MP+BF+FAI), while it was only
84% for the result of the naive no-fusion method (higher is better).

Subjective evaluation in the real-world setting confirmed the importance
of BF and FAI modules, that was already evident from the synthetic evalua-
tion results. The complete proposed method surpassed once more in perfor-
mance the naive no-fusion alternative.

4.5. Runtime Requirements and Computational Complexity

Regarding runtime requirements, the on-line components of the proposed
method (MP and BF) jointly required 1.32985 secs per video frame on aver-
age for N = 3, while the off-line FAI component required 1.4563 secs once,
before mission start. Evaluation was performed on a typical desktop com-
puter with an Intel Core i7-6700HQ CPU @ 2.60Ghz and 16GB RAM. Thus,
given a powerful server computer, the method may run stably at a map up-
date rate of approximately 1Hz for N = 3. This frequency is enough for
typical multicopter UAV flight speeds [5, 6, 1]. Computational complexity is
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Table 4: Synthetic experimental evaluation results (mean F-measure), grid resolution
100× 100 patches.

Method (Resolution 100× 100 patches) m F-measure (±std)

no-fusion [55] 0.2365 (±0.1169)

multiview a = 0.1, λ = 0 0.3841 (±0.0793)

multiview a = 0.1, λ = 0.05 0.3833 (±0.0777)

multiview a = 0.1, λ = 0.0005 0.3941 (±0.0737)

multiview a = 0.2, λ = 0 0.3262 (±0.1017)

multiview a = 0.2, λ = 0.05 0.3017 (±0.1046)

multiview a = 0.2, λ = 0.0005 0.3613 (±0.0863)

multiview a = 0.5, λ = 0 0.2424 (±0.1181)

multiview a = 0.5, λ = 0.05 0.2577 (±0.1174)

multiview a = 0.5, λ = 0.0005 0.2659 (±0.1189)

multiview a = 0.8, λ = 0 0.2328 (±0.1129)

multiview a = 0.8, λ = 0.05 0.2251 (±0.1172)

multiview a = 0.8, λ = 0.0005 0.2255 (±0.1165)

multiview a = 1, λ = 0 0.2006 (±0.1165)

multiview a = 1, λ = 0.05 0.1989 (±0.1145)

multiview a = 1, λ = 0.0005 0.1989 (±0.1132)

proportionate linearly both to map area and to N , thus method scalability
is bounded by the number of UAVs and the size of the flight area/3D map.

5. Conclusions

In this paper, a centralized, multiview method for robust, on-line, on-
the-fly 3D localization and mapping of human crowds in known, large-scale
outdoor environments was presented, assuming their independent visual de-
tection on the camera feed of multiple UAVs. The proposed method aims
at enhancing vision-assisted human crowd avoidance, in line with common
UAV safety regulations, since the resulting 3D crowd annotations may be
employed for on-line mission/path replanning during deployment of a UAV
fleet. The method relies on: a) an elaborate engineering pipeline, and b)
novel algorithms for Bayesian fusion of multiview data and for identification
of large, flat terrain areas. Thus, it also outputs potential UAV landing sites
as a useful by-product. Evaluation on both synthetic and real world drone
video sequences reliably indicates the superiority of the proposed method
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in comparison to the naive alternative, which does not employ our novel
algorithms.
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