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Abstract

In this paper we propose a novel technique for super-
resolution imaging of a scene from observations at different
zooms. Given a sequence of images with different zoom fac-
tors of a static scene, the problem is to obtain a picture of
the entire scene at a resolution corresponding to the most
zoomed image in the scene. We model the super-resolution
image as a Markov random field (MRF) and a maximum a
posteriori estimation method is used to derive a cost func-
tion which is then optimized to recover the high resolution
field. Since there is no relative motion between the scene
and the camera, as is the case with most of the super-
resolution techniques, we do away with the correspondence
problem.

1. Introduction
Availability of high spatial resolution images is often de-
sirable in most computer vision applications. Be it remote
sensing, medical imaging, robot vision, industrial inspec-
tion or video enhancement (to name a few), operating on
high resolution images leads to a better analysis in the form
of lesser misclassification, better fault detection, more true-
positives, etc. However, acquisition of high resolution im-
ages is severely constrained by the drawbacks of sensors
that are commercially readily available. Thus, images ac-
quired through such sensors suffer from aliasing and blur-
ring. Aliasing occurs as a consequence of insufficient den-
sity of the detector array which causes sampling of the scene
at less than Nyquist rate, while blurring occurs due to in-
tegration of the sensor point spread function (PSF) at the
sensor surface. Hence, one must resort to image process-
ing methods to construct a high resolution image from one
or more available low resolution images. Super-resolution
refers to the process of producing a high spatial resolution
image from several low resolution images. It includes up-
sampling the image thereby increasing the maximum spa-
tial frequency that can be represented and removing degra-
dations that arise during image capture, viz., aliasing and
blurring. The effect of aliasing differs with zooming. Thus

one can use zoom as cue for generating high resolution im-
ages at the lesser zoomed area of a scene.

Now we review some of the prior works on super-
resolution imaging. Many researchers have tackled the
super-resolution problem for both still and video images,
e.g., [8, 9, 14, 18] (see [16] for details). Tsai and Huang [18]
were the first to propose a frequency domain approach to re-
construction of a high resolution image from a sequence of
undersampled low resolution, noise-free images. Kim et al.
discuss a recursive algorithm, also in the frequency domain,
for the restoration of super-resolution images from noisy
and blurred images [10]. A minimum mean squared error
approach for multiple image restoration, followed by inter-
polation of the restored images into a single high resolution
image is presented in [15]. Ur and Gross use the Papoulis-
Brown generalized sampling theorem to obtain an improved
resolution picture from an ensemble of spatially shifted pic-
tures [19]. However, these shifts are assumed to be known
by the authors. An iterative backprojection method is used
in [9], wherein a guess of the high resolution output im-
age is updated according to the error between the observed
and the low resolution images obtained by simulating the
imaging process. But back-projection methods can be used
only for those blurring processes for which such an operator
can be calculated. A projection onto convex sets (POCS)-
based method is described in [17]. A MAP estimator with
Huber-MRF prior is described by Schultz and Stevenson in
[13]. Elad and Feuer [5] propose a unified methodology
for super-resolution restoration from several geometrically
warped, blurred, noisy and downsampled measured images
by combining ML, MAP and POCS approaches. An adap-
tive filtering approach to super-resolution restoration is de-
scribed by the same authors in [6]. Chiang and Boult [3] use
edge models and a local blur estimate to develop an edge-
based super-resolution algorithm. Other approaches include
MRF based super-resolution proposed by Rajan and Chaud-
huri [12]. Here authors consider availability of decimated,
blurred and noisy versions of a high resolution image which
are used to generate a super-resolved image. A known blur
acts as a cue in generating super-resolution image. For
super-resolution applications they also propose a general-



ized interpolation method [11]. Here a space containing the
original function is decomposed into appropriate subspaces.
These subspaces are chosen so that rescaling operation pre-
serves properties of the original function. On combining
these rescaled subfunctions, they get back the original space
containing the zoomed function. Shekarforoush et al. use
MRFs to model the images and obtain a 3D high resolution
visual information (albedo and depth) from a sequence of
displaced low resolution images [8]. The effect of sampling
a scene at a higher rate is acquired by having interframe sub-
pixel displacements.Freeman et al. in [20] describe image
interpolation algorithms which use a database of training
images to create plausible high frequency details in zoomed
images. In [1] authors develop super-resolution algorithm
and called it as hallucination which uses information con-
tained in a collection of recognition decisions in addition to
the reconstruction constraints.

In this paper we present a new approach to generation of
super-resolution intensity map using the zoom as a cue. We
consider the resolution at which the most zoomed observed
image is available as the resolution to which the entire
scene needs to be super-resolved. This requires that we re-
cover high resolution intensity values for the lesser zoomed
entire area of a scene. Our approach generates a super-
resolution image of the entire scene although only a part of
the observed zoomed image has multiple observations. Our
method does a noise smoothing for the region where multi-
ple observations are available and utilizes the same neigh-
borhood property to generate the super-resolution image for
the rest of the regions. In effect what it does is as follows.
If the wide angle view corresponds to a field of view of ��,
and the most zoomed view corresponds to a field of view of
�� (where � � �), we generate a picture of the �� field of
view at a spatial resolution comparable to � � field of view.
The details of the method are now presented.

2. Low resolution image formation
model

The zooming based super-resolution problem is cast in
a restoration framework. There are � observed images
����

�
��� each captured with different zoom settings and of

size ����� each. Figure 1 illustrates the block schematic
of how the low resolution observations at different zoom
settings are related to the high resolution image. Here
we consider that the most zoomed observed image of the
scene �� has the highest resolution. We assume that the
zoom factors between successive observations are known.
It is also assummed that there is no change in the view-
ing direction, i.e, the optical axis remains the same during
the zooming process. We further assume that there is no
depth related perspective distortion due to the thick lens be-
havior of the camera. Since different zoom settings give
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Figure 1: Illustration of observations at different zoom
levels, �� corresponds to the least zoomed and �� to the
most zoomed images. Here � is the high resolution image.
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Figure 2: Low resolution image formation model. View
fixation just crops a small part of the high resolution image
�.

rise to different resolutions, the least zoomed scene corre-
sponding to entire scene need to be upsampled to the size
of ����� � � � ����� � ��� � ��� � �	� � 	��, where
��
 ��
 � � � 
 ���� are the zoom factors between observed im-
ages of the scene ����
 ����
 � � � 
 ��������. Given ��, the
remaining �� � �� observed images are then modeled as
decimated and noisy versions of this single high resolution
image of the appropriate region in the scene. With this the
most zoomed observed image will have no decimation. If
�
�

is the ���� � � lexicographically ordered vector con-
taining pixels from differently zoomed images ��, the ob-
served images can be modeled as (refer to figure 2)

�
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 � � � 
 � (1)

where D is the decimation matrix, size of which depends on
zoom factor. For a zoom factor of �, decimation matrix D
consists of �

��
and has the form
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� is the number of observations, �� is the ���� � �
noise vector. We assume noise to be zero mean i.i.d, and
hence the multivariate noise probability density is given by
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(3)

where ��� denotes the variance of noise process. Our
problem now reduces to estimating � given �

�
’s, which is

clearly an ill-posed, inverse problem.

3. MRF approach to super-resolve a
scene

3.1. Stochastic models of Fields:
Markov random fields (MRFs) have emerged as a popular
stochastic model for images due to its ability to capture lo-
cal dependencies and its equivalence to the Gibbs random
field (GRF) [4]. Let � be a random field over an arbi-
trary 	 � 	 lattice of sites � � ���
 ���� � �
 � � 	�.
From the Hammersley-Clifford theorem [2] which proves
the equivalence of an MRF and a GRF, we have � �� �
�� � �

	
��
��� where � is an instance of � , � is the par-

tition function given by
	

� �
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��� and ���� is the energy

function given by ���� �
	

��� �����. ����� denotes the
potential function of clique � and � is the set of all cliques.

The lexicographically ordered high resolution image �

satisfying the Gibbs density function is now written as
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In order to employ a simple and fast minimization tech-
nique like gradient descent, it is desirable to have a convex
energy function. To this end we consider pair wise cliques
on a first order neighborhood and impose a quadratic cost
which is a function of finite difference approximations of
the first order derivative at each pixel location, i.e.,
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where � represents the penalty for departure from
smoothness in �

It is well known that in images, pixels with significacant
change in intensities carry important information. In order
to incorporate provisions for detecting such discontinuities,

Geman and Geman [7] introduced the concept of line fields
located on a dual lattice. The horizontal line field element
���� connecting site ��
 �� to ����
 �� aids in detecting a hor-
izontal edge while the vertical line field element ���� con-
necting site ��
 �� to ��
 � � �� helps in detecting a vertical
edge. We have chosen ���� and ���� to be binary variables
over the line fields� and � . The on-state of the line-process
variable indicates that a discontinuity, in the form of a
high gradient, is detected between neighboring points, e.g.,
���� � � if ����� � ������ � � Threshold
 else ���� � �. Simi-
larly ���� � � if ����� � ������� � Threshold
 else ���� � �.
Each turn-on of a line-process variable is penalized by a
quantity � so as to prevent spurious discontinuities. Thus
the energy function for the random process � with discon-
tinuity fields � and � is written as [12]
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where ��� and ���
 respectively, are the smoothness term
and the penalty term necessary to prevent occurance of spu-
rious discontinuities. Here � represents the penalty term for
departure from the smoothness. We use this particular en-
ergy function in our studies in order to preserve discontinu-
ities in the restored image. Any other form of energy func-
tion can also be used without changing the solution modal-
ity proposed here.

3.2. Maximum a posteriori (MAP) Solution
In order to use the maximum a posteriori (MAP) estima-
tion technique to obtain the high resolution image � given
the ensemble of images at different resolutions we need to
obtain
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Using Bayes’ rule and taking the log of posterior proba-
bility
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since �� are independent. Now using equations (1) and
(3), we get
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We model the scene to be recovered as an MRF. This

is justified because the change in intensities in a scene is
usually gradual and hence there is a local dependency. Thus
using equation (4) and substituting in equation (7) the final
cost function is obtained as
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The above cost function is convex and is minimized us-
ing the gradient descent technique. The initial estimate ����

is obtained as follows. Pixels in zero-order hold of the
least zoomed observed image corresponding to the entire
scene is replaced successively at appropriate portions with
zero-order hold of the other observed images with increas-
ing zoom factors. Finally the most zoomed observed image
with highest resolution is copied with no interpolation.

In order to preserve discontinuities we modify the cost
for prior probability term as discussed in Section 3 and use
simulated annealing to minimize the cost. The cost function
to be minimized then becomes


� � arg���
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On inclusion of line fields in cost function, the gradient
descent technique is liable to get trapped in local minima.
Hence we minimize the cost by using simulated annealing
(SA) which guarantees the attainment of global minima.
However, in order to speed up the computation, the esti-
mate obtained using the gradient descent method is used as
the initial guess.

4. Experimental Results
In this section, we present the efficacy of the proposed tech-
niques to recover the super-resolved image from scenes at
different zooms through some examples on real data. In our
experiments we used a zoom factor of � between images
���� and � between ����. Thus the zoom factor between
���� becomes �. Figures 3 (a-c) show input (observed) im-
ages of a house �� 
 �� 
 �� each of size �� � �� with a
zoom factor of � between images (a) and (b) and also a fac-
tor of � between (b) and (c). The automatic gain control

(AGC) in the camera automatically set the camera gain in
accordance with the amount of light in the pictured area
and the level of zooming. Since we are capturing regions
with different zoom setting, the AGC of the camera yields
different average brightness for differently zoomed obser-
vation. Hence in order to compensate for AGC effect we
used mean correction so as to maintain the average bright-
ness of the captured images approximately the same. This is
done for �� image by subtracting its mean from each pixel
and adding the mean due to its corresponding portion in � �

(refer to figure 1). Similarly for the �� image we subtract
its mean and add mean of its portion in ��. We used mean
corrected images in all our experiments. Figure 4 shows the
zoomed house image of size ������� obtained by bilinear
interpolation of the least zoomed observed image �� of size
����� with ������� sized bilinear interpolation obtained
with �� replacing that part of interpolated least zoomed ob-
served image and ��� �� sized most zoomed observed im-
age replacing those corresponding pixels in interpolated � �.
The super-resolved image is shown in figure 5. Compari-
son of the figures show less blockiness in the super-resolved
image. The seam is clearly visible in figure 4. Also the
branches in the plants are more clearly distinguishable in the
super-resolved image. The values of the parameters used in
simulated annealing (SA) algorithm for recovering house
image are � � �
����, � � ���, Threshold � ��, the
decrement factor for temperature in the annealing schedule
Æ � �
���, initial temperature  � � �
��.

Next we consider the case where the observed images
Figure 6 (a-c) have less intensity variations. Figures 7,
and 8 show the corresponding results with the girl image.
Again notice the seam in figure 7. The super-resolution
image corresponding to entire scene �� consists of super-
resolved image due to �� which has super-resolved image
��. In the case of girl image ��
 �� and �� correspond
to figure 6 (a), (b), and (c). In this experiment we found
discontinuities were better preserved by considering three
different Threshold values for the three super-resolution re-
gions, and the parameters used were � � �
��, � � ��,
Threshold1 � �� for the super-resolution region of �� only,
Threshold2 � �� for the super-resolution region of �� only,
and Threshold3 � �, for the super-resolved region � �. The
justification for selecting different thresholds for different
regions is that one has gradually less information about the
peripheral regions, and hence the restoration tends to be
more smooth at these regions. The choice of lower values
of threshold tries to prevent oversmoothing. The value for Æ
was chosen as �
��. Initial temperature  � was set to �
��,
same as before. The initial estimate for the high resolution
image in these experiments was chosen to be the output ob-
tained by using the gradient descent technique to reduce the
computational burden.

Comparison of these results demonstrate that the pro-
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Figure 3: Observed images of a house captured with three
different zoom settings.

Figure 4: Zoomed house image formed by successive bilin-
ear expansion as illustrated in figure 1.

posed method does yield a better result. However, the resto-
taion tends to be a bit too smooth near the periphery. This
is quite expected as we have used just three observations
and the peripheral region has been upsampled by a factor of
���. By use of more number of observations, we are likely
to perform better. The effect of over smmothness is quite
visible in the house image where the high frequency region
corresponding to the plants appear to be very smooth. But
the picture of the girl when super-resolved does not show
this effect that prominently. The result does appear visu-
ally quite pleasant. The simulated annealing optimization
method used here is quite slow and in order to decrease the
computation time we implemented the mean field annealing
optimization (MFA). The recovered super-resolved girl im-
age using MFA is shown in figure 9. This compares quite
favorably with the results given in figure 8.

5. Conclusions
We have presented a technique to recover the super-
resolution intensity field from a sequence of zoomed ob-
servations. The resolution of the entire scene is obtained at
the resolution of the most zoomed observed image which
consists of only a portion of the actual scene. The super-
resolved image is modeled as an MRF and a MAP estimate
is used to derive the cost function to be minimized. The ba-

Figure 5: Super-resolved house image.

(a) (b) (c)

Figure 6: Observed images of a girl captured with three
different zoom settings.

sic idea is that the entire observation conforms to the same
MRF, but viewed at the different resolution pyramid. A sim-
ulated annealing optimization algorithm is used to minimize
the cost. In order to increase the speed of convergence we
try the mean field annealing scheme which uses determin-
istic annealing for a faster convergence and attains a near
global minima. At present we have not considered the im-
plementation in realtime. We have assumed here that zoom
factors are known and considered only integer zoom fac-
tors. A more realistic situation is one in which it is un-
known. Our future work involves simultaneously estimat-
ing the unknown zoom factors between observed images
(scenes) while recovering the super-resolved image.
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