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Abstract

Digital maps can be stored and distributed electronically using compressed raster image formats. We introduce a storage system for the

map images that supports compact storage size, decompression of partial image, and smooth transitions between various scales. The main

objective of the proposed storage system is to provide map images for real-time applications that use portable devices with low memory and

computing resources. Compact storage size is achieved by dividing the maps into binary layers, which are compressed using context-based

statistical modeling and arithmetic coding. Partial image decompression is supported by tiling the image into blocks and implementing direct

access to the compressed blocks. In this paper, we give overview of the system architecture, describe the compression technique, and discuss

implementation aspects. Experimental results are given both in terms of compression ratios and image retrieval timings.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Image compression; Map images; Real-time applications; Personal navigation; Spatial access

1. Introduction

Real-time cartography imaging application provides

user with the view of geographic map for the area

surrounding the user’s location [1,2]. The system may use

global positioning service (GPS) [3] or mobile positioning

service (MPS) [4] for obtaining the coordinates of the

current location. The location can be updated in real-time

(about once or twice in every second). The system must also

support real-time panning (spatial movement) and zooming

(change of resolution) on the map. By panning, we mean

scrolling the map; and by zooming, we mean the change of

the view on the display in a closer or wider perspective.

Digital maps are usually obtained from spatial databases

[5,6] where the maps are stored in vector formats. The visual

outlook of maps representing the same region varies

depending on the type of the map (topographic or road

map), and on the desired scale (local and regional maps).

Individual map images are reproduced for each scale

separately and stored as separate raster images augmented

with the location information of the map. A typical map

image needs only a few color tones but high spatial

resolution for representing the details such as roads,

infrastructure and names of the places.

In on-line map imaging applications, the images are

usually stored in an inefficient, uncompressed raster form.

The storage size of a map image is huge. For example,

electronic library of Finnish road maps of the resolution

1:250,000 takes an entire CD (over 600 Mb) in uncom-

pressed form [7]. In comparison, the portable viewing

device, such as pocket computers, have typically about

64 Mb of the storage space, which can be expanded at

present by about 256 Mb through using compact flash

memory cards [8]. The storage requirements of the maps

can therefore be a bottleneck, especially in the case of

portable devices, in which the maps share the limited

memory resources with the operating system, application

and other data.

A better approach is to provide the user with the images

in compressed form [9,10]. For example, an uncompressed

black-and-white topographic image of 5000 £ 5000 pixels

takes about 3 Mb in uncompressed form. The latest

compression standards [11], however, can compress typical

map images by a factor of about 20:1, which corresponds to

the file size of 150 kb. A drawback of the existing

compression techniques is that the entire image must be

decompressed in memory before the image can be viewed.
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This can be a problem if the device does not have sufficient

computing resources for real-time image decompression.

In this paper, we propose map image storage system

(further denoted as MISS), in which we present reasonable

solutions both to the storage problem and to the real-time

requirements of the system. The MISS images are composed

of semantic binary layers, which are compressed using a

context-based statistical modeling and arithmetic coding as

shown in Fig. 1. The method is basically the same as in the

latest international compression standards, Joint Bi-level

Image Group (JBIG) and JBIG2 [12–14] with a few

differences described later.

To meet the real-time requirements, we provide direct

access to the compressed image file. Our approach is to

divide the image into b £ b non-overlapping rectangular

blocks, which are compressed separately. The compressed

blocks are stored in the same file, and an index table is

stored in the header of the file to locate the starting points of

the code blocks. In this way, direct access can be provided

with the accuracy of the block size. The block size is a

compromise between compression efficiency and the

decoding speed. The JBIG2 file structure supports this

kind of file organization, where the image is composed of

several segments with direct access.

The rest of the paper is organized as follows.

The proposed MISS is introduced in Section 2. Multi-scale

representation of the map is first discussed in Section 2.1,

and the compression method briefly recalled in Section 2.2.

The decomposition of the image into binary layers is studied

in Section 2.3. The image tiling into blocks for supporting

efficient panning in studied in Section 2.4. The file structure

and the proposed system architecture are summarized in

Section 2.5. Experimental results are given in Section 3 to

demonstrate the compression performance and the decoding

efficiency of the system in real-time environment.

Conclusions are drawn in Section 4.

2. Map image storage system

Digital maps are usually stored as vector graphics in a

database for retrieving the data using the spatial location

as the search key. Vector representation is convenient for

zooming as the maps can be displayed in any resolution

defined by the user. Panning of the map can be performed by

retrieving the elements needed for updating the changes in

the view. The use of database, however, can be impractical

in mobile environment, as the devices may not have enough

resources to store the complete map database and the

database engine.

The storage problem could be solved by generating

spatial views (mapsheets) from the database and store the

maps in a vector format. The storage size can be reduced

further by compressing the vector maps (by a factor of about

2:1), or by simplifying the vector representation.

This approach, however, does not support real-time panning

as separate data structures must be built for this purpose.

The biggest problem of the vector format is that maps are

not always available for the user in vector format.

Moreover, the maps are stored in various formats and

incompatibility between different systems can restrict the

use of the maps. To sum up, vector format is a good

approach if the user has sufficient hardware and software

resources, and if the maps are widely available in a

compatible vector format. Otherwise, raster image format

is the only choice.

We introduce next a MISS based on compressed raster

format. The system support the following properties of

the maps:

1. Compact storage size

2. Multi-scale representation (zooming)

3. Fast scrolling ability ( panning).

The idea is that the maps are stored in server-side

database. Spatial views are generated for the client-side

application using compressed raster image format organized

so that it supports the zooming and panning requirements.

In this way, raster format is suitable in applications,

where the maps are needed for viewing purposes only.

Furthermore, the system does not depend on any

database or vector format as digitized raster maps can be

easily generated and reproduced from any source format,

including paper maps. The conversion of the maps

Fig. 1. Outline of the map image compression system.

P. Fränti et al. / Image and Vision Computing 22 (2004) 1105–11151106



is therefore not a big problem. Another advantage of

the system is that it requires only a modest memory and

computing resources in order to be operational in real-time

environment.

2.1. Multi-scale representation

The visual outlook of the maps varies depending on the

scale. It is therefore not convenient to use multi-resolution

image representation. Instead, several different map images

should be reproduced for each desired scale. In addition to

this, intermediate scales can also be provided by zooming

the raster image. For example, Fig. 2 includes two different

scales of a map (1:20,000 and 1:100,000) of the same

location. The intermediate scale 1:40,000 has been

generated from the detailed map (1:20,000) in order to

provide the user with smoother zooming. The image has the

same level of details but the size and quality of the features

suffer because of the change in resolution.

The intermediate scale images can be generated

beforehand, and stored in the library. Another solution is

to perform real-time zooming in the client application.

The organization of the data is illustrated in Fig. 3. In this

example, the large rectangles represent the map images of

four different scales. The size of the rectangles corresponds

to the size of the individual images in pixels. The images

have usually the same size when printed on paper or shown

on display. The thin grid lines drawn across the rectangles

correspond to the spatial territories shown in the maps that

have same size in reality but different resolution.

2.2. Image compression

A compressed raster image format provides a reasonable

solution in the form of compact storage size and compatible

map format. Typical map images have high spatial resolution

for representing fine details such as text and graphics objects

but not so much color tones as photographic images. The most

suitable compression methods can thus be found among

the lossless graphics compression methods such as

Graphics Interchange Format (GIF) and Portable Network

Graphics (PNG) [15,16]. It is also possible to divide the maps

into separate color layers and to apply the lossless binary

image compression standards such as ITU-T Group 4 [9], or

the current standard JBIG2 [13,14]. However, lossy

compression methods, such as the JPEG [17] do not apply

well for map images.

We take the JBIG1 and JBIG2 as the starting point of our

MISS. They use context-based statistical modeling and

arithmetic coding in the manner as originally proposed

in Ref. [18]. The image is processed pixel-by-pixel in

raster-scan order. The probability of each pixel is estimated

on the basis of previous occurrences in similar context.

The context is defined as the combination of already

processed neighboring pixels defined by a template. Each

context is assigned with its own statistical model that is

adaptively updated during the compression process.

Decompression is synchronous process with compression.

Here, we apply the JBIG2 file format but use only the

generic mode, which is basically the same as JBIG1. JBIG2

also segments the image into regions of different types,

Fig. 2. Example of a map shown in three different scales. The highest and smallest scales have different representation of the content, but the intermediate scale

(1:40,000) has been generated from the map of lowest scale (1:20,000).

Fig. 3. Representation of the maps as separate map images (1:250,000 and

1:50,000), and as intermediate scales that are obtained by zooming.
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in particular, textual, halftone and generic (other), and utilize

the repetitive nature of the textual and halftone images.

However, the encoding of the data other than text or

halftones remains similar to JBIG with the difference that a

newer version of the arithmetic coder (MQ-coder) is used.

The pre-ancestor, Q-coder, has similar working principles

[19]. For more details about the application of JBIG2 file

structure (see Ref. [20]).

Better compression could be achieved by using

multi-layer context tree modeling as recently proposed

in Ref. [21] but at the cost of much longer encoding time.

However, in this work, we content ourselves with

the standard compression schemes as we emphasize

the simplicity and compatibility of the proposed map

imaging system.

2.3. Decomposition to binary layers

In order to utilize the context-based compression, the

map must be divided into binary layers. Each layer is then

compressed separately, and the compressed layers are

stored into the same file. There are three ways to perform

the decomposition as illustrated in Fig. 4:

1. Semantic decomposition

2. Color separation

3. Bit-level separation.

Semantic decomposition is possible if the maps are

obtained from a map database in vector format. The map is

output into a set of binary layers each containing different

semantic meaning. We consider maps that consist of five

layers: basic (topographic data and contours), elevation

lines, fields, water and property (administrative borders,

see Fig. 5). The user application can reproduce the map by

plotting each layer by its own color overlapping each other

in a given order. Color information can be added into the file.

Fig. 4. Conversion diagram for using layer separation and binary image

compression methods.

Fig. 5. Sample fragment from a color map image (above), and its decomposition into binary layers by semantic separation (middle), color separation (below).
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The image can be reconstructed as a gray-scale image,

or using any color set given by the user application.

The benefits of the semantic separation are better

compression performance, and that the layers to be shown

can be selected at the time of viewing.

The second approach, color separation, can be used

when we have only raster color image as the original

map, and it contains only a limited number of colors

[22]. The image is divided into binary layers so that each

layer represents one color in the original image.

The drawback of the color separation is that information

of the original semantic separation cannot be recovered.

Furthermore, the color separation can create artifacts into

the binary layers (see Fig. 5). For example, overlapping

text elements break the continuation of the fields and

lakes. This does not decrease the quality of the image but

it increases the complexity of the image, and thus,

the compressed file size.

The third approach, bit-level separation, must be applied

when we have the original map only as a raster image, and

the number of different colors is too high for efficient color

separation. For example, the image might have been

digitized from a paper copy and stored using lossy

compression method, such as JPEG [17]. In the bit-level

separation, the number of colors are first reduced by

quantizing the image into a limited-color representation of a

256 colors or gray scales. The resulting pixel values are then

separated into bit planes using gray coding [23], and the

image is represented as a sequence of binary images.

2.4. Block decomposition for direct access

The binary layers are divided into b £ b non-overlapping

rectangular blocks before the compression, and each block

is compressed separately from others as proposed in

Ref. [24]. The compressed blocks are stored in the same

file, and an index table is stored in the header of the file to

locate the starting points of the code blocks (see Fig. 6).

When the compressed image is accessed, a block index table

is constructed. This provides direct access to the

compressed image file, and therefore, enables efficient

decompression of a particular image fragment.

The block decomposition has the effect that there are

fewer pixels to be coded in the same run. It means that the

model has less time to adapt to the statistics of the image.

Another problem is the compression inefficiency near

block boundaries. This is because the pixels located

outside the block cannot be used in the context template.

Previous studies indicate that the compression inefficiency

remains tolerable if the block size is 256 £ 256 pixels or

higher [24].

Somewhat better compression performance can be

obtained using the following two modifications. First idea

is to apply a forward-adaptive variant of the statistical

modeling based on the ideas presented in Ref. [26].

The forward-adaptive variant uses a pre-calculated initial

model, which is constructed using the statistics collected

from the entire image layer. This requires an additional pass

over the image but it does not affect the speed of the

decompression. The second idea is to use variable-size

context modeling technique as described in Ref. [25].

This technique reduces the size of the model, and it allows

using larger context templates. These modifications can

provide about 20% improvement in the compression

performance.

2.5. Compression phase

The compression of a single map image is performed

using the following steps:

1. Layer decomposition

2. Block decomposition

3. Compression.

Fig. 6. Diagram of the block decomposition.

Fig. 7. Image decomposition diagram.

P. Fränti et al. / Image and Vision Computing 22 (2004) 1105–1115 1109



In the first step, the image is decomposed into the binary

layers (unless the semantic decomposition already exists)

The color space is enumerated and the number of required

bit planes are generated. The resulting color palette is stored

in the compressed file. If the palette is not stored, the image

will be reconstructed as a gray scale.

In the second step, the layers are partitioned into

blocks. If the forward-adaptive modeling variant is applied,

non-empty blocks of the entire layer are analyzed and

the statistical model is built and stored in the compressed

file. The emptiness of a block is determined by

checking whether all pixel values in the block are of the

default color value.

In the third step, the series of the bit planes are compressed

and ordered highest to lowest (see Fig. 7). Each non-empty

block is compressed using context-based modeling and the

MQ-coding algorithm as described in Section 2.2, which is

basically the same as the compression of separate generic

regions in JBIG2. The context is determined by a fixed-size

template but we also permit the use of custom context-

templates as described in Ref. [27]. The MQ-coder is

reinitialized every time the compression of a new block

starts. The initialization resets the model to the blank model

(default), or to the optimized initial model (optional).

2.6. Use in the client device

A typical use scenario of the MISS is to show the area

surrounding the object whose position is tracked The scale

to be used can be set by the user or it can be automatically

determined on the basis of the speed, or other parameters

defined in the application. The maps for the particular

region are stored in the client’s viewing device

(flash memory, hard disk, CD), or the images can be located

in a remote server and accessed via communication network

(Internet, GSM, GRPS).

The system uses the following steps to show the current

view on the map. First, the file possessing the map of the

desired location is accessed and its header part is retrieved

in memory. From the header, the type and structure of the

image are determined, and the block index table is built.

The table indicates the size and location of each block in

the compressed file. All supplementary data required for

image decoding (such as initial model and possible context

tree) are also retrieved and kept in memory until this

particular map image is no longer used.

Next, depending on the requested location, the system

calculates the map image fragment needed to be

displayed. The blocks covering this fragment are retrieved

Fig. 8. Image decoding in real-time system. Nine blocks are first decompressed and stored in the cache (left). Change of location is then registered (middle), and

new image blocks are then decompressed and the view updated (right).

Fig. 9. Illustration of the cache operation.
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and decoded. If the map image is accessed remotely,

the retrieved blocks are also stored (in compressed form) in

the local storage space for further use. When the position

of the object changes, the view is updated by decoding new

image blocks in the direction of movement (see Fig. 8).

To speed-up the access to the image, the system may use

cache for temporary storage of the decompressed image

blocks (see Fig. 9). The size of the cache can be fixed, or it

can be determined by the amount of free memory.

The performance may be further improved by exploiting

an idle time for decoding neighboring blocks further in the

direction of movement, before the blocks are actually

requested. In practice, it is convenient to buffer the data

according to the block boundaries.

On the basis of the proposed MISS, a fully dynamic

map handing system can be built as proposed in Ref. [28].

When there is no map of the current location the client

creates a blank map image and then begins to request

relevant blocks from the servers as shown in Fig. 10.

The image is gradually built up by the addition of new

blocks. When the mobile device memory is full, less

relevant maps are removed. This requires that the concept

of relevance be well defined as to minimize the cost of map

transmission. The addition of new data must be

implemented at the block-level but removal may occur,

for the sake of simplicity, only at the file level.

It is expected that dynamic map handling can be

integrated with a mobile phone or GPS-based device so

that the user pays for map access just once, when buying the

device. He will have no further need to worry about map

access at all. Scenarios of such applications have been

outlined in Ref. [29].

3. Experimental results

We study next the compression performance and

the retrieval times of the proposed storage system.

The following methods are considered in the comparisons:

† MISS

† JBIG2

† TIFF G4

† GIF

† PNG

† RAW

JBIG2 [13,14] is the latest binary image compression

standard. We compress the whole image as one region using

generic coding with the 10-pixel context template. TIFF G4

[9] refers to the older ITU-T Group 4 fax compression

standard; we use the method as included in the Tagged

Image File Format (TIFF). The CompuServe Graphics

Interchange Format (GIF) [15] is the most widely used

format in Internet for palette images. It uses the dictionary-

based coding known as LZW [30], which is based on class

of Ziv-Lempel methods known as LZ78 [31]. The PNG [16]

differs from GIF in that it is based on LZ77 dictionary

compression [32] instead of the LZ78.

In MISS, we use the following parameter setup:

† The default 10-pixel context template from JBIG2,

† Forward-adaptive statistical modeling optimized for each

layer,

† Block size of 100 £ 100 pixels,

† Other parameters same as in JBIG2.

3.1. Test image sets

We use three image sets representing the following

situations:

† Set #1: layers separation by semantic decomposition,

† Set #2: layers separation by color separation,

† Set #3: layers separation by quantization and bit-level

separation.

The first two sets contain topographic map images, and

the third a set of two road map images. The first two sets

originate from the NLS topographic database [33].

The images are of the size 5000 £ 5000 pixels, and have

the original scale 1:20,000. This corresponds to a resolution

of two meters per pixel. The topographic map images are

composed of five semantic layers representing topography,

elevation lines, waterways, fields and administrative

boundaries (when available).

The Set #1 (semantic decomposition) includes the

images when separated into the five semantic layers.

The Set #2 (color separation) contains the same set of

images but after the following processing. Color image is

Fig. 10. Dynamic map handling by composing map sheet from individual

map segments.
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first constructed from the original semantic layers, and color

separation is then performed to estimate the original

division. See Fig. 5 for the difference in the bit-plane

separation in these two cases. The Set #3 (bit-level

separation) consists of two scanned color map images

including scanning noise and a high number of output colors

(see Fig. 11). In the experiments, the images have then been

converted to 2 bits per pixel gray-scale images correspond-

ing to the number of colors available in a low cost mobile

device. The images have been divided into two bit-planes.

3.2. Compression performance

The compression results have been summarized in

Tables 1–3. The average compression performance of

MISS is about 0.20 bits per pixel but the result depends

on the complexity of the image. The MISS files take about

5–15% more space than that the JBIG2 files, on average,

but 50–65% less than the comparative methods (TIFF-G4,

GIF, PNG). The MISS, on the other hand, is the only method

that supports direct access to the compressed file. The results

in Fig. 12 show that most of the bits (about 54%) originates

from the basic information, whereas the water and fields are

rather easy to compress. Administrative boundaries were

absent in the case of image 3.

The compression results between the Set #1 and Set #2

are not significant. The color separation loses information

that originally appears in the image, but at the same time, it

adds to the complexity of the images when the layers are

compressed separately. The overall effect, however,

remains small. We therefore did not consider multi-level

context templates, which could be used to handle this kind

of inter-layer dependencies. In the case of Set #2, the GIF

and PNG methods were applied to the color images, and not

the bit planes. In the case of Set #1, this is also possible but

not desirable, as we did not want to lose the semantic

separation of the images.

The images in the Set #3 are more difficult to compress

because of the noise and the level of complexity of the

images. The average bit rate for these images is 0.84.

The performance gap between MISS and the comparative

methods (TIFF-G4, GIF, PNG) is much smaller than

in the case of the Set #1 and Set #2 (MISS files take about

25% less than the PNG files). The results demonstrate the

importance of having the image divided into semantic

layers, or at least a clean original so that the color separation

can be performed.

The effect of the block size is illustrated in Fig. 13.

The optimal block size is around 350 £ 350 to 500 £ 500 in

Fig. 11. Sample fragments from the images in the Set #3.

Table 1

Compression results (kilobytes) for the set 1 (semantic decomposition)

MISS JBIG2 TIFF G4 GIF PNG RAW

Image 1 247 197 372 727 602 15,259

Image 2 1109 969 2382 2866 2608 15,259

Image 3 395 327 604 1142 1100 15,259

Image 4 840 759 1540 2633 2534 15,259

Total 2591 2252 4899 7367 6845 61,035

bpp 0.21 0.18 0.40 0.60 0.56 5.00

Table 2

Compression results (kilobytes) for the set 2 (color separation)

MISS JBIG2 TIFF G4 GIFa PNGa RAW

Image 1 310 258 466 610 654 15,259

Image 2 1269 1138 2605 2642 2644 15,259

Image 3 426 360 691 1028 1074 15,259

Image 4 957 875 1902 2295 2384 15,259

Total 2962 2631 5664 6575 6757 61,035

bpp 0.24 0.22 0.46 0.54 0.55 5.00

a The GIF and PNG results are obtained by compressing the

corresponding color image instead of the binary layers.

Table 3

Compression results (kilobytes) for set 3 (bit-level separation)

MISS JBIG2 TIFF G4 GIFa PNGa RAW

Vantaa 91 84 123 120 132 313

Sea 44 39 72 53 59 313

Total 135 123 195 173 191 625

bpp 0.86 0.79 1.25 1.11 1.22 2.00

a The GIF and PNG results are obtained by compressing the

corresponding color image instead of the binary layers.
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terms of compression performance as the model can be best

optimized for images of this size. With the chosen

100 £ 100 the files sizes are slightly bigger but more

dense tiling allows more accurate buffering with

less memory resources, and smaller transmission and

decompression delays.

3.3. Retrieval timings

We consider next the retrieval performance of the

proposed system by measuring time required to transmit

and decompress a desired part of the map. We assume that

the client device buffers the image data according to the

nearest block boundaries. In other words, the client devices

stores in the memory the pixels of the current view,

plus additional outside pixels from the blocks across the

screen boundary. In this way, we need to transmit and

decompress, on average, the exact amount of pixels required

to update the view.

The decompression times are summarized in Table 4

when decompressing the complete 5000 £ 5000 images.

The results show that the better compression performance of

the MISS has been obtained at the cost of 10–20 times

slower decoding speed in comparison to GIF and PNG.

The decoding speed of MISS corresponds to 973,710 pixels

per seconds for the images in the Set #1, on average.

Using this result, we then calculated the sample retrieval

timings for several different screen sizes with varying

computing power and transmission speeds.

We consider the following three transmission networks:

† GSM, capable of 9600 bits per second,

† high speed GSM, capable of 14,400 bits per second,

† GRPS network, capable of 48 kb/s.

Typical hand-held devices have relatively low comput-

ing power with only a few MIPS but the computing power of

these devices is developing rapidly. We consider three

speeds (10, 50, 100 MIPS) that roughly correspond to the

computing power of the current and forth-coming low-cost

compact devices. The retrieval timings can be calculated as

follows:

Transmission time

¼ compressed data size=channel bandwidth

Decompression time

¼ uncompressed image size=decoding speed

The results are summarized in Table 5 in case of

retrieving data for a full screen. The results show that the

data for a reasonable size screen can be transmitted and

decompressed in real-time using existing networks and

devices of reasonably low computing speed. For example,

Fig. 12. The proportion of the layers in the compressed MISS files for the

Set #1 (left columns), and Set #2 (right columns).

Fig. 13. The effect of the block size on the code size for the Set #1.

Table 4

Decompression times (in seconds) for the Set #1 using a processor of 1000

MIPS

Image Method

MISS GIF PNG

Image 1 25.9 2.1 1.2

Image 2 31.4 2.5 1.4

Image 3 18.4 2.2 1.1

Image 4 27 2.2 1.3

Total 102.7 9.0 5.0

Table 5

Transmission and decompression times (in seconds) for retrieving a full

screen

Screen size Transmission times Decompression times

9600 bps

(GSM)

14,400 bps

(hs-GSM)

48 kbps

(GRPS)

10

MIPS

50

MIPS

100

MIPS

100 £ 100 0.22 0.15 0.04 1.03 0.21 0.10

150 £ 150 0.49 0.33 0.10 2.31 0.46 0.23

200 £ 200 0.88 0.58 0.17 4.11 0.82 0.41

250 £ 250 1.37 0.91 0.27 6.42 1.28 0.64
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the screen size of 150 £ 150 pixels equals to 22,500 pixels,

and 0.21·22,500 ¼ 4725 bits in the compressed format.

Let us then consider the GSM channel and a low-

performance client device with 50 MIPS. In this case, the

transmission of a full screen takes about 0.33 s and the

decompression about 0.57 s. The timings vary depending on

the complexity of the blocks; the most complex image

regions take about twice as that of the average case.

In the case of movement, the view is scrolled and a new

portion of data is retrieved. We consider a diagonal

movement by amount of one block (b £ b pixels).

The proportion of data to be retrieved is ðxb þ yb 2 b2Þ

pixels, where x £ y is the size of the screen, and b £ b the

size of a block. The proportion of data to be retrieved is

summarized in Table 6 using various block sizes. Using the

default block size of 100 £ 100 pixels, we must decompress

64–100% of the data shown on screen size. Smaller block

sizes would improve the situation but also increase the file

sizes, and therefore, increase the transmission delays.

3.4. Memory requirements

We consider next the memory requirement of the client

device. Memory is needed both for the decompression

software, and for storing the uncompressed image blocks.

The decompression software can be fitted into 64 kb of

object code (standard libraries not included), or in a 100 kb

Windows DLL (everything included). This is hardly a

bottleneck. Besides the Codeq, we need memory also

for buffering the image data. The following parameters must

be set:

† L ¼ number of layers per image

† K ¼ number of images stored

† C ¼ number of contexts (1024 by default).

Let us suppose that we store K images of different scales

in the memory, and each of the images have L layers. We

can safely assume (on the basis of the discussion in Section

2.3) that the number of layers is never more than eight.

Thus, we can store the layers one pixel per byte (one bit per

layer). Furthermore, we assume that the chosen block size is

within the range 50–100% of the screen size in both

directions. For example, the block size 100 £ 100 fulfill this

requirement for screen sizes up to 200 £ 200 pixels.

The main consequence of this assumption is that we need

to buffer only 3 £ 3 image blocks to form a bounding box

around the current view. Using the default 10-pixel context

template, the number of contexts is 210 ¼ 1024.

The memory requirements are summarized in Table 7.

First, we need I/O data buffers for a single block; one buffer

for the input (compressed) data and another one for the output

(uncompressed) data. Image header then takes 400 bytes per

image, and the coding parameters 616 bytes per layer. For

each layer, we must also store the model depending on the

choice of static or forward-adaptive approach. The model

data takes 3 bytes per context plus 56 bytes overhead.

Assuming that we have the block size of 100 £ 100 pixels,

L ¼ 5 layers per image, and K ¼ 4 images stored (e.g. images

with the scale 1:20,000, 1:40,000, 1:100,000, 1:250,000), the

overhead of these parts sum up to about 100 kb. The data of

one images takes 9·1002 ¼ 90,000 bytes, which sums up to

360,000 bytes in total.

4. Conclusions

We have proposed a MISS for real-time applications that

use portable devices with low memory and computing

resources. The system architecture is designed to minimize

storage size, transmission time, and memory requirements

of the user device. Compact image size is achieved by

dividing the image into semantic binary layers, which are

then compressed using the state-of-art context-based

method. Direct access to the compressed image file allows

to transmit/decompress only the necessary part of the image

needed. This minimizes the transmission time and memory

requirement in the user device are minimized.

Mobile map imaging systems can be designed on the

basis of the proposed methodology. It remains to be seen

when such dynamic map imaging systems will become

Table 7

Memory requirements (in bytes) of the data buffering in the client device,

and the sample numbers for the parameters: B ¼ 2500; L ¼ 5; K ¼ 4; C ¼

1024; b ¼ 100

Per block Per layer Per image Total

Client device

I/O data buffers – – – 2·b2

Image header – – 400 L·400

Coding parameters – 616 L·616 KL·616

Statistical model – 56 þ C·3 L·56 þ LC·3 KL·56 þ KLC·3

Image data – N=8 N KN

Sample numbers

I/O data buffers – – – 20,000

Image header – – 400 2000

Coding parameters – 616 3080 12,320

Statistical model – 3128 15,640 64,560

Image data – – 90,000 360,000

Table 6

Amount of work (relative to update of full screen) when refreshing a view

after a diagonal scroll of 100 pixels in each dimension (corresponds to one

block)

Screen size Block size

50 £ 50 100 £ 100 200 £ 200

100 £ 100 75% 100% 400%

150 £ 150 56% 89% 178%

200 £ 200 44% 75% 100%

250 £ 250 36% 64% 96%
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available for broad use-technically there should be no

restrictions anymore.
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[27] E.I. Ageenko, P. Kopylov, P. Fränti, On the Size and Shape of Multi-

level Context Templates for Compression of Map Images, IEEE

International Conference on Image Processing (ICIP’01), Thessalo-

niki, Greece, October, vol. 3, 2001, pp. 458–461.
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