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Abstract

This paper details a procedure for generating a function which maps an image of a neutral face to one depicting a desired expression

independent of age, sex, or skin colour. Facial expression synthesis is a growing and relatively new domain within computer vision. One of

the fundamental problems when trying to produce accurate expression synthesis in previous approaches is the lack of a consistent method for

measuring expression. This inhibits the generation of a universal mapping function. This paper advances this domain by the introduction of

the Facial Expression Shape Model (FESM) and the Facial Expression Texture Model (FETM). These are statistical models of facial

expression based on anatomical analysis of expression called the Facial Action Coding System (FACS). The FESM and the FETM allow for

the generation of a universal mapping function. These models provide a robust means for upholding the rules of the FACS and are flexible

enough to describe subjects that are not present during the training phase. We use these models in conjunction with several Artificial Neural

Networks (ANN) to generate photo-realistic images of facial expressions.
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1. Introduction

Facial expressions play a major role in how people

communicate. They serve as a window to one’s own

emotional state, they make behaviour more understandable

to others and they supplement verbal communication.

A computer that could interact with humans through facial

expression would advance human–computer interfaces and

provide a basis for communication that could be compared

to human–human interaction.

The central goal of this paper is to describe the

development of a mapping function which manipulates a

neutral image of a subject to accurately display a desired

expression. There has been a lot of work in this area over the

past 5 years [1–5]. However, real-time photo-realistic

expression synthesis for unseen images has not yet been

achieved [6]. The approach presented in this paper

combines the FACS, statistical shape and texture models,

and machine learning techniques to provide a novel solution

to this problem.
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In the past Radial Basis Function Networks (RBFN)

have been applied to facial expression synthesis [7,8].

However, in these approaches no redundancy reduction

techniques were applied prior to calculating the mapping

functions. This kept the dimensionality of the mapping

functions high and meant that irrelevant information was

used in calculating the mapping functions. In King’s [7]

approach mapping functions were used to modify the

locations of Facial Characteristic Points (FCP) which in

turn were used to warp an image to depict an alternative

expression. A key weakness with this approach is that in

order to adequately model the appearance change due to

expression, one must take account of the variation of

both shape and texture. For example, to synthesis a smile

the texture of the image must be modified to produce

wrinkles. The technique described in this paper over-

comes this problem by manipulating both shape and

texture of the input image.

More recently, Abboud [9] applied PCA to the shape

and texture of unseen images to lower the dimensionality

of the problem in order to produce synthetic facial

expressions. However, the approach used linear regression

to perform facial expression synthesis. Our technique

improves on this approach by using a RBFN to describe

the non-linear nature of facial expressions. The results of
Image and Vision Computing 23 (2005) 1041–1050
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the technique described in this paper considerably out-

perform the results found in [9].
Fig. 1. The 11 most influential muscles in expression formation (used by

permission [21]).
1.1. Overview

This paper details a technique that allows for real-time

photo-realistic images of a person depicting a desired

expression to be synthesised once a neutral image of the

subject is present [10,11]. The development of this mapping

function involves a comprehensive understanding of

expression. In the past facial expressions have been studied

by cognitive psychologists [12,13], social psychologists

[14], neurophysiologists [15], computer scientists [16] and

cognitive scientists [17].

As everyone’s facial features are unique, it is hypoth-

esised that the only feasible way to measure an expression is

not by examining features of expressions, but by the

movement of the muscles of the face. For this reason, the

anatomy of the face is a very important aspect in

understanding expression. The model of facial expression

described in this paper is Ekman’s Facial Action Coding

System (FACS) [14]. This method of studying facial

expressions and emotions depicted by facial expressions is

based on an anatomical analysis of facial actions. A

movement of one or more muscles of the face is known as

an action unit (AU). All expressions can be described using

one, or a combination of the AUs described by Ekman. In

previous approaches, the training set has caused inaccura-

cies in the mapping functions [7]. This paper solves this

problem by only using images that are FACS coded to a

specific expression to be included in the training set.

We achieve expression synthesis by building statistical

models of the AUs in question from a number of subjects

showing that expression in a training set. These models must

provide adequate flexibility to cover the differences in

human facial expression, however, it is also necessary that

the model only deforms in a manner consistent with the

system used to measure facial expressions. The change in

shape and texture of each face in the training phase is

analysed and used to derive a mapping function, which

maps an image of their neutral face to one depicting a new

expression.

To decrease the dimensionality of the mapping, the

variance in the shape and texture of each face in the training

set is analysed using Principal Component Analysis (PCA).

This approach can model a large amount of the variance in

the training set by using only a few modes of variation or

principal components. This representation of expression is

known as the expression space. We use the expression space

in conjunction with Feedforward Heteroassociative

Memory Networks (FHMN), Linear Networks (LN) and

Radial Basis Function Networks (RBFN) to generate subject

independent mapping functions.

Photo-realistic facial expression synthesis could be used

in numerous applications. A short-list is detailed below:
† To generate arbitrary animated agents.

† To automate interactive web hosts for low bandwidth

video conferences.

† To add personality and expressions to arbitrary images

of faces.

† For interactive games.

† For biometric systems that are invariant to expressions.

† Viseme (visual equivalent of phonemes) synthesis.

The structure of this paper is as follows: Section 2 details

facial expressions. Section 3 details the construction of the

FESM and the FETM model. Section 4 describes the

learning phase of this technique, Section 5 details

experimental results with our proposed techniques and

section six provides some concluding remarks and future

work.
2. Facial expressions

Relatively few studies have measured how the face

moves as an expression forms [14,18–20]. The central

reason for this is due to the lack of adequate techniques for

measuring the face. More recent approaches to facial

measurement have varied in methodology, from measure-

ments of specific changes to a particular part of a face [19],

to verbal descriptions of facial gestalts [20]. Knowledge of



Fig. 2. The scale of intensity scores.

J. Ghent, J. McDonald / Image and Vision Computing 23 (2005) 1041–1050 1043
the muscles of the face allows us to characterise exactly

what is happening as an expression is emerging. Since the

appearance of everyone’s face is different it is difficult to

characterise an expression any other way. For this reason, a

thorough understanding of facial anatomy is required prior

to devising a scheme for the characterisation and

measurement of facial expression. In Section 2.1, we

describe the elements of the facial anatomy responsible

for the formation of facial expression. Subsequent to this we

detail the FACS.

2.1. Anatomical analysis

According to Faigin [21], of the 26 muscles that move the

face, only 11 are responsible for facial expressions. These

muscles are shown in Fig. 1 and consist of: (1) orbicularis

oculi, (2) levator palpebrae, (3) levator labii superioris, (4)

zygomatic major, (5) risorius/platysma, (6) frontalis, (7)

orbicularis oris, (8) corrugator, (9) triangularis, (10)

depressor labii inferioris, and (11) mentalis. Although this

description by Faigin provides a good basis for under-

standing the anatomy of facial expressions it does not

provide an insight as to which muscles work together to

create certain expressions..

2.2. The Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) provides a

method for studying facial expressions and emotions

depicted by facial expressions based on an anatomical

analysis of facial actions. A movement of one or more

muscles of the face is known as an action unit (AU). It can

be difficult to distinguish if a single muscle or a set of

muscles is accountable for a facial movement, for this

reason the term action unit is used. All expressions can be

described using the AUs described by Ekman [14].

2.3. Scoring action units

For an AU to be considered present, there has to be a

significant appearance change. Appearance changes are

characterised by the following criteria: (1) the parts of the

face that have moved and the direction of their movement,

(2) the wrinkles that have appeared or have become more

pronounced, and (3) the alterations in the shape of the face.

The intensity of an AU can also vary from trace to

maximum. There are five intensities in total ranging from A,

minimum to E, maximum. These are shown in the following

list.

A. Trace. Activity in the face is barely noticeable.

B. Slight. One or more changes in appearance are visible.

C. Marked/pronounced. Distinguished from B by a set of

criteria that is specific to each AU. This criteria

establishes how much more evidence is required to

score C.
D. Severe/extreme. Similar to the distinction between B

and C.

E. Maximum. Maximum appearance change required to

score E.

Fig. 2 provides a visual representation of the relationship

between the scale of evidence for classification and the

intensity scores. Fig. 2 can be thought of as the spectrum of

intensity for each AU. Note that this scale is divided non-

uniformly, e.g. marked/pronounced takes up a larger range

of the change than trace.
3. Shape and texture models

A number of computational techniques exist for building

flexible shape models. Hand crafted models can be

developed using circles, lines, and arcs that can move

around relative to one another. Yuille et al. [22]

demonstrated this technique in modelling parts of the face

such as the eyes and mouth. Lipson et al. [23] and Hill et al.

[24] illustrated the usefulness of this technique by building

an elliptical model of vertebrae and by building a

handcrafted model of the heart, respectively. Another useful

technique is the articulated model which is built from rigid

components connected by sliding or rotating joints.

Beinglass and Wolfson [25], and Grimson [26] demonstrate

the effectiveness of this technique by locating an object

within an image.

The two most common techniques for representing

shapes are active contour models [27] or snakes and the

Fourier series shape model [28]. Active contour models or

snakes have been demonstrated to be very effective in this

domain. These energy minimising curves are modelled as

having stiffness and elasticity and are attracted toward

features such as lines and edges. Equilibrium equations

allow the curve to move toward image features whilst

ensuring the curve’s original shape and smoothness are

maintained. In this way, the spline moves towards the

dominant edge contours and hence the most probable match

for its shape in the image.

Hinton et al. [29] illustrates this technique by allowing

a set of control points govern the movement of a spline.

Each control point has a desired ‘home’ location which

acts as the shape’s restoring force, the shape deforms by

movement of the control points. The main problems with

this technique are, the fact, that the shape is infinitely

deformable, and contains no information on whether a

shape belongs to a class of shape or not. This creates

problems when trying to create a model of facial

expressions as a model of this nature has to be based

on strict rules.
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Staib and Duncan [30] use the Fourier series shape model

technique effectively to describe medical images and

Bozma and Duncan [31] show how this technique can be

used to model organs. The central drawback to this

technique is that the Fourier transform is only capable of

representing band-limited signals. Many contours we deal

with are not smooth, i.e. they contain corners and hence

would require an infinite number of Fourier terms to

represent the shape. For these reasons, a statistical model

based on point distribution is used that only allows

deformations observed from the training set and accurately

describes the training set. The model adopted is based on

Cootes’s work on statistical models of appearance [16].
3.1. Facial expression shape model

In order to develop the Facial Expression Shape Model

(FESM), we first have to label every image with a set of

landmark points. These are located around key areas such as

the eyes, nose, mouth and eyebrows (see Fig. 3).
3.1.1. Shape alignment

To analyse the variance of the points that describe the

shape of the face it is necessary that the faces in the training

set are as closely aligned as possible. One way to achieve

this is to use a technique known as Generalised Procrustes

Alignment (GPA) [32]. This technique aligns two shapes

with respect to position, rotation and scale by minimising

the weighted sum of the squared distances between

the corresponding landmark points. The alignment depends
Fig. 3. The arrangement of landmark points around the faces.
on the weights given to each of the points, which in turn

depends on which AU is being mapped.

To align two shapes P and Q, we choose a rotation, scale

and translation that minimises the sum of the squared

distances between them. Let P be defined as

P Z ½p1; p2; p3;.;pnK1� Z
x1; x2; x3;.; xnK1

y1; y2; y3;.; ynK1

� �
(1)

and

Q Z ½q1;q2;q3;.;qnK1� Z
x1; x2; x3;.; xnK1

y1; y2; y3;.; ynK1

� �
(2)

Procrustes alignment computes the transformation by

minimising the error function:

E Z ðPKMQKtÞTWðPKMQKtÞ (3)

Here, M represents the rotation and the scale of Q, i.e.

M Z Mðs; qÞ Z
ðs cos qÞKðs sin qÞ

ðs sin qÞC ðs cos qÞ

 !
(4)

and t is the translation. Hence, Procrustes alignment leads to

four linear equations which can be solved using traditional

matrix methods. To align a set of N shapes, which is the case

in this situation, the following two step algorithm is used:

† Calculate the mean shape

† Align each shape to the mean shape by minimising (3).

This process of alignment is demonstrated in Fig. 4 by a

simple example. The Fig. 4 shows the mean shape as a solid

line and the variance of other landmark points from the

mean.
3.1.2. Principal component analysis

Principal Component Analysis (PCA, also known as the

Karhunen–Loéve transform) is a technique used to lower

the dimensionality of a feature space [32]. This method
Fig. 4. Aligned landmark points.



Fig. 5. Structure of mapping function.
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takes a set of data points and constructs a lower dimensional

linear subspace that best describes the variation of these data

points from their mean. We use PCA here to analyse how

the landmark points move with respect to each other.

Before any significant analysis can be done on the shape

of the faces, the mean shape must be computed. We then

take the set of landmark points and constructs a lower

dimensional linear subspace that bests describes the

variation of these data points from their mean. The

covariance matrix is calculated using

S Z
1

NK1

XN

iZ1

ðdPiÞðdPT
i Þ (5)

where dPi is the difference between Pi and the mean shape,

and N is the number of shapes is the training set. The

eigenvalues and eigenvectors of the covariance matrix are

then calculated. The eigenvector corresponding to the

largest eigenvalue describes the most significant mode of

variation. Images can be reconstructed using

P Z �x CSb (6)

where S is the set of eigenvectors, b is a vector of weights

and �x is the mean image. Since images can be approximated

using b (in conjunction with S and �x), representing

expression in this manner provides for simpler manipulation

of expression without any significant loss of information.
3.2. Facial Expression Texture Model

To calculate the Facial Expression Texture Model

(FETM) we warp all images to the mean shape. This is

achieved using Delaunay triangulation to segment the mean

shape into 214 separate triangles using 122 landmark points.

We apply an affine transformation to the pixels within each

triangle. This is achieved by computing the barycentric

coordinates of each point relative to its surrounding triangle

in the input image. The output points are identified as the

points with equivalent barycentric coordinates in the

corresponding triangles in the output image.

It is often the case that there does not exist enough

information to give values to every pixel in the output

image. This is overcome using bilinear interpolation. It

estimates the value of an unknown pixel by using the pixels

around it. We use PCA again to analyse how the warped

images change with respect to each other. In the

experiments in this paper the n!n covariance matrix is

very large, where nZ65025. For this reason, the eigenvec-

tors and eigenvalues are calculated from a smaller N!N

matrix derived from the data. Texture parameters can be

extracted and reconstructed using a similar technique used

with the Facial Expression Shape Model (FESM). For a

more detailed description of the construction of the FETM

see [11].
4. Learning phase

In this section, we address the problem of facial

expression synthesis and discuss ANNs that can be used

for this task in conjunction with the FESM and the FETM.

All neural networks are trained by using the parameters

that describe neutral faces as input and the parameters that

depict a specific expression as target. The structure of these

mapping functions is illustrated in Fig. 5.
4.1. Calculating mapping functions

A Feedforward Heteroassociative Memory Network

(FHMN) is used to compute a mapping from a neutral

expression to one depicting an alternative expression [33].

This is a one-layer network that stores patterns and is the

simplest type of network we consider. The synaptic weight

value of a FHMN is given by

Wi Z bpðbqÞ
T (7)

where bp are the parameters of shape or image p and bq are

the parameters of shape or image q. Eq. (7) is person

specific. To generate a general mapping function the

following equation is used

W Z a
XN

iZ1

Wi (8)

where a is for normalisation and N is the number of samples

in the training data. To produce a synthetic expression, the

associated parameters bp are used as input to the network,

thus

bp Z W$bp (9)

bq can then be used in conjunction with the FESM and the

FETM to generate the shape and texture.

A Linear Network (LN) is a perceptron with a linear

output instead of a hard-limiting output. This means that

their outputs can take on any value, which is needed for

function approximation, whereas the perceptron output is

limited to either 0 or 1. Like the FHMN this type of network

can only solve linearly separable problems. This network is

trained to minimise the error between the input and output

training data. This is achieved using the Least Mean Squares

(Widrow–Hoff) algorithm [33]. Each input is applied to



Fig. 6. Mean shape segmented using Delaunay triangulation.
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the network and the network output is compared to the

target. The error is calculated as the difference between the

target output and the network output. The error is calculated

using:

E Z
XN

iZ1

ðti KaiÞ
2 (10)

This is the error of the mapping from a neutral expression

to an alternative expression, where ai is the output of the

network given the input bi and ti is the target output. The

LMS algorithm adjusts the weights and biases of the linear

network so as to minimise this mean square error.

Radial Basis Function (RBF) networks are a form of

ANN that are closely related to what is known as distance-

weighted regression. The potential of RBF networks has

been demonstrated several times [34,35], most notably for

facial expression recognition [36].

In a RBF network, each hidden unit produces an

activation determined by a radial function (usually a

Gaussian) centred at a specific position. Neurons are

added to the network until the sum-squared error falls

beneath an error goal or a maximum number of neurons

have been reached. In RBF’s, the learned hypothesis is a

function of the form

f̂ ðxÞ Z w0 C
Xk

uZ1

wuGuðdðxu; xÞÞ (11)

where Gu(d(xu,x)) is the kernel function. It is common in

practice to choose each function Gu(d(xu,x)) to be a

Gaussian function cantered at the point xu. The RBF

transfer function used in this paper is tZeKn2

. To retrieve

parameters of an image bp given bq we use

bp Z WHLLðe
KðjjWRBFKbqjjbRBFÞ

2

ÞCbHLL (12)

where WRBF is the weight matrix of the radial basis layer,

bRBF is the bias vector of the radial basis layer, WHLL is the

weight matrix of the hidden linear layer and bHLL is the bias

vector of the hidden linear layer.
Fig. 7. The mean images.
5. Experiments

To create a FESM and a FETM, it is necessary to use a

database that is consistent with the FACS description of an

expression. For this reason, we use the Cohn–Kanade AU-

Coded Facial Expression Database [37]. The database

includes approximately 2000 image sequences from over

200 subjects. All images used from the database are AU

coded by certified FACS coders. The images used during the

training phase of all experiments described in this paper

have been coded as AU6CAU12CAU25, AU1CAU2C
AU5CAU26 and AU15CAU17. A short description of

AU6CAU12CAU25 is provided, for descriptions of other

AUs see [14].
(1) AU 6. Draws the skin from the temple and cheeks

towards the eye. The outer band of muscles around the

eye constricts.

(2) AU 12. Pulls the corners of the lips back and upward,

creating a smile shape to the mouth.

(3) AU 25. Pulls the lips apart and exposes the lips and

gums.

Seventy-seven people and 154 images from the Cohn–

Kanade AU-coded facial expression database were used.

Each image was acquired using a Panasonic WV3230

camera connected to a Panasonic S-VHS AG-7500 video

recorder. The camera was located directly in front of the

subject, and each image was originally digitised into 640!
480 pixel arrays of greyscale values.

Each face was manually labelled using 122 landmark

points and aligned with each other using Procrustes

alignment. PCA was performed on the data and the top

few principal components were used in the FESM. The

mean shape was segmented using Delaunay triangulation

and each image was warped to the mean shape using



Fig. 8. Top four principal components.

Fig. 9. Expression synthesis using a FHMN.
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a piece-wise affine transformation. The segmented mean

shape can be seen in Fig. 6.

The mean image was then calculated (Fig. 7). Each

image was then represented as a single vector, subtracted

from the mean image and the FETM was generated. The top
Fig. 10. Original neutral, original non-
30 principal components of the FETM for AU6CAU12C
AU25 describe 95.59% of the total variance found in the

training set. Fig. 8 illustrates the effect of varying the top

four principal components.

A FHMN was used to generate a mapping from a neutral

expression to one depicting an alternative expression. This

network was implemented on the shape and texture

separately to create two mappings. This network, using

the FESM produced encouraging results but failed to return

convincing results when using the FETM. Fig. 9 illustrates

the effect of passing the shape and texture of an image

through these mapping functions. The shape and texture

parameters were calculated using the neutral image on

the left of Fig. 9. These parameters were passed through the

neural networks and the image on the right is the output. The

target image is at the center of the figure. It can be shown

that the identity of the person is lost as the FHMN in

conjunction with the FETM performs poorly and while the

shape model performs well it is thought that the output can

be enhanced by using a more advanced network.

To improve the mapping further, we used a Linear

Network (LN) with the FESM and used a more sophisticated

Radial Basis Function Network (RBFN) with the FETM.

Fig. 10 illustrates the photo-realistic synthetic facial

expressions of five different subjects. The first two rows

consist of images of subjects that were used during the

training of the networks while the next three individuals

(rows 3–5) were not used during the training of the

networks. The images in the first-three columns are all

warped to the mean shape and are therefore considered to be
neutral and synthesised images.



Table 1

Correlation coefficients between the estimated data and real data of the FESM using a FHMN and a LN

AU NI NT Parm Perc Seen/

Unseen

NS FHMN LN

Avg Min Max Avg Min Max

6,12,25 80 40 15 94.04 Seen 35 0.6929 0.3356 0.9433 0.9586 0.7539 0.9976

Unseen 5 0.5220 0.3353 0.8244 0.8746 0.5896 0.9965

1,2,5,26 40 20 20 98.61 Seen 15 0.7456 0.3842 0.9200 0.9755 0.8990 0.9991

Unseen 5 0.6019 0.4678 0.8941 0.7773 0.5223 0.9714

15,17 34 17 20 99.35 Seen 15 0.7465 0.3333 0.9184 0.9692 0.7761 0.9993

Unseen 2 0.6811 0.6286 0.7336 0.6995 0.5536 0.8454

Total 154 77 N/A N/A Seen 65 0.7281 0.3333 0.9433 0.9677 0.7539 0.9993

Unseen 12 0.6017 0.3353 0.8941 0.7838 0.5223 0.9965

Table 2

Correlation coefficients between the estimated data and real data of the FETM using a RBFN

AU N Parm Perc Seen/unseen N Avg Min Max

6,12,25 40 30 95.59 Seen 35 99.66 93.55 1

Unseen 5 77.99 62.80 99.99

1,2,5,26 20 10 89.18 Seen 15 99.07 87.49 99.95

Unseen 5 77.58 31.66 87.49

15,17 17 10 92.03 Seen 14 97.73 73.67 99.99

Unseen 3 63.51 50.11 73.67

Total 77 N/A N/A Seen 64 98.82 73.67 1

Unseen 13 73.027 31.66 99.99
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shape free. Column one consists of shape free original

images of individuals depicting neutral expressions.

Column two consists of shape free original images of

individuals depicting AU6CAU12CAU25 as described by

the FACS. Column three consists of synthetic images of

individuals portraying AU6CAU12CAU25 as calculated

by the RBF network with neutral image parameters as input.

Columns 4–6 are the same as the first three columns,

respectively, except with shape taken into consideration.

The shapes in column 6 are calculated using a Linear

Network in conjunction with the FESM.

In order to evaluate the performance of this technique we

find the correlation coefficient between the estimated data

and the real data. Table 1 shows the correlation coefficients

between the estimated and real principal components for the

FESM using a linear network and a FHMN. NI is the number

of images in the experiments, NT is the number of identities

involved, Parm is the number of principal components used

during the training of the neural networks and Perc is the
Fig. 11. Original and synthesi
percentage of variance that Parm can describe. NS is the

number of individuals used for training and testing

the mapping functions while Avg, Max and Min are the

average, maximum and minimum correlation coefficients

between the estimated shape parameters and the real shape

parameters.

Table 2 shows the correlation coefficients between the

estimated and real principal components for the FETM

using a RBFN. NI, NT, Parm, Perc, Parm and NS are the

same as in Table 1, while Avg, Max and Min are the

average, maximum and minimum correlation coefficients

between the estimated texture parameters and the real

texture parameters. Fig. 11 is of a person who was present

during learning phase while Fig. 12 are of people who were

not present during learning phase. In Figs. 11 and 12, the

shape is calculated using the FESM and a LN while the

texture is calculated using the FETM and a RBFN.

It is shown that the average correlation coefficient is

aavgZ0.757 using the FESM with the LN and the FETM
sed image of seen data.



Fig. 12. Original and synthesised images of unseen data.

Fig. 13. Error of the mapping of the FETM using a RBFN.
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with the RBFN. Using a similar technique Yangzhou and

Xueyin [38] showed how a uniform function (i.e. a function

that is not person specific) achieves results of aavgZ0.51.

This technique improves on this by computing a uniform

function that achieves considerably better results. Fig. 13

shows the error of the mapping within the FETM. The

histogram on the left is due to the mapping error for all

images in the training set and the histogram on the right

shows the error for all the unseen images.
6. Conclusion and future work

This paper demonstrated the construction of a universal

mapping function that maps a neutral image of a face to one
depicting a desired facial expression. This was achieved by

constructing a FESM and a FETM. Using these models,

several networks were trained which could accurately map a

neutral image of a face to an image of the same subject

portraying an alternative expression.

These models were based on the FACS, an anatomical

analysis of facial actions. The FACS provided us with a

universal method of analysing facial expression and allowed

for the generation of shape and texture models that were

independent of subject (age, sex, skin, colour, etc.).

A FHMN was used to compute mapping functions which

map an image of a neutral face to one depicting a AU6C
AU12CAU25, AU1CAU2CAU5CAU26 and AU15C
AU17. This type of network achieved good results with the

FESM but poor results with the FETM as Fig. 9 illustrates.
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This network over generalised the mapping and hence much

of the identity of a subject was lost during the calculations.

To improve the results on both models a linear network was

used with the FESM and a more sophisticated RBF network

was used with the FETM. These networks greatly improved

the results and a correlation coefficient between synthesised

and authentic images on unseen data of aavgZ0.757 was

achieved. The results can be seen more clearly in Fig. 10.

The first-two rows of this diagram show expression

synthesis on data that was used during the training phase,

this diagram shows how this technique successfully

differentiates between skin colour. The images in the last

three rows are images that were not present during the

training phase. These images illustrate how this technique

can generate a synthetic expression of a subject regardless

of sex, age and skin colour.
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