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Abstract. We present a variational approach to the problem of register-
ing planar shapes despite missing parts. Registration is achieved through
the evolution of a partial differential equation that simultaneously esti-
mates the shape of the missing region, the underlying “complete shape”
and the collection of group elements (Euclidean or affine) corresponding
to the registration. Our technique applies both to shapes, for instance
represented as characteristic functions (binary images), and to grayscale
images, where all intensity levels evolve simultaneously in a partial differ-
ential equation. It can therefore be used to perform “region inpainting”
and to register collections of images despite occlusions. The novelty of
the approach lies on the fact that, rather than estimating the missing
region in each image independently, we pose the problem as a joint reg-
istration with respect to an underlying “complete shape” from which the
complete version of the original data is obtained via a group action.
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1 Introduction

Consider different images of the same scene, taken for instance from a moving
camera, where one or more of the images have been corrupted, so that an entire
part is missing. This problem arises, for instance, in image registration with
missing data, in the presence of occlusions, in shape recognition when one or
more parts of an object may be absent in each view, and in “movie inpainting”
where one or more frames are damaged and one wants to “transfer” adjacent
frames to fill in the damaged part.

We consider a simplified version of the problem, where we have a compact
region in each image i, bounded by a closed planar contour, γi, and a region of the
image, with support described by a characteristic function χi, is damaged. We do
not know a-priori what the region χi is, and we do not know the transformation
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mapping one image onto the other. However, we make the assumption that such
a transformation can be well approximated by a finite-dimensional group gi, for
instance the affine or the projective group. In addition, we do not know the value
of the image in the missing region. Therefore, given a sequence of images, one
has to simultaneously infer the missing regions χi as well as the transformations
gi and the occluded portions of each contour γi.

We propose an algorithm that stems from a simple generative model, where
an unknown contour µ0, the “complete shape,” is first transformed by a group
action gi, and then occluded by a region χi (Figure 1). Therefore, one only
estimates the complete shape and the group actions:

ĝ1, . . . , ĝk, µ̂0, χ̂1, . . . , χ̂k = arg min
gi,µ0

k∑

i=1

φ(χi(γi), χi ◦ gi(µ0)) (1)

for a given discrepancy measure φ. A simpler case is when the occlusion occurs at
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Fig. 1. A contour undergoes a global motion and local occlusions.

the same location in all shapes; in this case, there is only one indicator function
χ0 that acts on the complete shape µ0.



2 Background and prior work

The analysis of “Shape Spaces” was pioneered in Statistics by Kendall, Mar-
dia and Carne among others [12, 17, 6, 20]. Shapes are defined as the equiva-
lence classes of points modulo the similarity group, RMN/SE(M) × R. These
tools have proven useful in contexts where N distinct “landmarks” are avail-
able, for instance in comparing biological shapes with N distinct “parts.” Vari-
ous extensions to missing points have been proposed, mostly using expectation-
maximization (EM), alternating between computing the sufficient statistics of
the missing data and performing shape analysis in the standard framework of
shape spaces. However, since this framework is essentially tied to representing
shapes as collections of points, they do not extend to the case of continuous
curves and surfaces in a straightforward way, and we will therefore not pursue
them further here.

In computational vision, a wide literature exists for the problem of “match-
ing” or “aligning” discrete representations of collections of points, for instance
organized in graphs or trees [16, 8]. A survey of shape matching algorithms is
presented in [29]. Just to highlight some representative algorithms, Belongie et
al. [2] propose comparing planar contours based on the “shape context” of each
point along the contour. This work is positioned somewhere in between land-
mark or feature-based approaches and image-based ones, similarly to [7]. Kang
et al. [11] have recently approached the multiple image inpainting problem using
a shape context representation.

Deformable templates, pioneered by Grenander [9], do not rely on a point-
wise representation; rather, images are deformed under the action of a group
(possibly infinite-dimensional) and compared for the best match in an image-
based approach [32, 3]. Grenander’s work sparked a current that has been par-
ticularly successful in the analysis of medical images, for instance [10]. In this
work we would like to retain some of the features of deformable templates, but
extend them to modeling missing parts. A somewhat different line of work is
based on variational methods and the solution of partial differential equations
(PDEs) to deform planar contours and quantify their “distance.” Not only can
the notion of alignment or distance be made precise [1, 31, 21, 14, 26], but quite
sophisticated theories of shape, that encompass perceptually relevant aspects,
can be formalized in terms of the properties of the evolution of PDEs (e.g. [15,
13]). The variational framework has also been proven very effective in the analy-
sis of medical images [19, 28, 18]. Zhu et al. [33] have also extended some of these
ideas to a probabilistic context.

Other techniques rely on matching different representations, for instance
skeletons [13], that are somewhat robust to missing parts. In [27] a similar ap-
proach is derived using a generic representation of 2-D shape in the form of
structural descriptions from the shocks of a curve evolution process, acting on
bounding contours.

The possibility of making multiple registration by finding a mean shape and
a rigid transformation was studied by Pennec [24] in the case of 3D landmarks.
Leung, Burl and Perona [5] described an algorithm for locating quasi-frontal



views of human faces in cluttered scenes that can handle partial occlusions. The
algorithm is based on coupling a set of local feature detectors with a statistical
model of the mutual distances between facial features.

In this work, we intend to extend these techniques to situations where parts of
the image cannot be used for matching (see [30]) and at the same time landmark
approaches fail. In the paper of Berger and Gerig [4], a deformable area-based
template matching is applied to low contrast medical images. In particular, they
use a least squares template matching (LSM) with an automatic quality control
of the resulting match. Nastar, Moghaddam and Pentland [22] proposed to use
a statistical learning method for image matching and interpolation of missing
data. Their approach is based on the idea of modeling the image like a deformable
intensity surface represented by a 3D mesh and use principal component analysis
to provide a priori knowledge about object-specific deformations. Rangarajan,
Chui and Mjolsness [25] defined a novel distance measure for non-rigid image
matching where probabilistic generative models are constructed for the nonrigid
matching of point-sets.

2.1 Contributions of this paper

This work presents a framework and an algorithm to match regions despite miss-
ing parts. To the best of our knowledge, work in this area, using region-based
variational methods, is novel. Our framework relies on the notion of “complete
shape” which is inferred simultaneously with the group actions that map the
complete shape onto the incomplete ones. The complete shape and the registra-
tion parameters are defined as the ones that minimize a cost functional, and are
computed using an alternating minimization approach where a partial differen-
tial equation is integrated using level set methods [23].

3 Matching with missing parts

The formulation of the problem and the derivation of the evolution equations
are introduced in this section for the case of a planar shape under isometric
transformations (rigid motions). In this case, the dimension of the space is 2 and
the determinant of the Jacobian of the group is J(g) = 1 for all the elements
g of the group G. The main assumption about the shape is that it must be a
regular domain, that is an open and bounded subset of R2 with a finite number of
connected components and a piece-wise C∞ boundary. This regularity is required
to avoid singular pathologies and to make the computation possible. The main
notation that will be used in this section is listed below.
Notation

– γ̄i, µ̄ are regular domains in R2

– γi, µ are the boundaries of γ̄i, µ̄
– χ(γ) is the characteristic function of the set γ̄
– A(γ) is the area (volume) of the region γ̄
– 〈·, ·〉 is the usual inner product



3.1 Formulation of the problem

Let γ̄1, . . . , γ̄k be regular domains of R2, all obtained from the same regular
domain µ̄ ⊂ R2 by composition with characteristic functions

χ1, . . . , χk : R2 → R

and actions of Lie group elements g1, . . . , gk ∈ G. We want to find the best
solution in the sense expressed by the functional

φ =
k∑

i=1

A(γ̄i \ gi(µ̄)) + α A(µ̄) (2)

where A denotes the area, α is a design constant, µ̄, χi and gi are the unknowns
and the sets γ̄i and the structure of G are given. The rationale behind the choice
of the cost function φ is that one wants to maximize the overlap between the
incomplete shapes and the registered complete shape (first term) while keeping
the complete shape as small as possible (second term). This is equivalent to
minimizing the area of the γ̄i that is not covered by the image of the complete
shape after the application of the group action gi. At the same time, one needs
to minimize a quantity related to the complete shape (e.g. the area) to constrain
the solution to be non-singular. Without the second term, it is always possible
to choose a compact complete shape that covers all the incomplete ones (e.g. a
big square) and minimizes the first term.

3.2 Minimization with respect to shape

The functional φ can be written in integral form

φ =
k∑

i=1

∫

γ̄i

(1− giµ̄)dx + α

∫

µ̄

dx (3)

and using the characteristic function notation

φ =
k∑

i=1

∫
χ(γi)(1− χ(giµ))dx + α

∫
χ(µ)dx (4)

=
k∑

i=1

∫
χ(γi)dx−

k∑

i=1

∫
χ(γi)χ(giµ))dx + α

∫
χ(µ)dx. (5)

Since the first term of φ is independent of µ, g and remembering that gi are
isometries, the problem of minimizing φ is equivalent to that of finding the
minimum of the energy

E(gi, µ) =
∫

µ̄

(
α−

k∑

i=1

χ(g−1
i γi)

)
dx. (6)



One can show that the first variation of this integral along the normal direction
of the contour is simply its integrand, by using the divergence theorem, and
therefore conclude that a gradient flow that minimizes the energy E with respect
to the shape of the contour µ is given by

∂µ

∂t
=

(
α−

k∑

i=1

χ(g−1
i γi)

)
N (7)

where N is the normal vector field of the contour µ.

3.3 Minimization with respect to the group action

In order to compute the variation of the functional φ with respect to the group
actions gi, we first notice that there is only one term that depends on gi in
equation (6). Therefore, we are left with having to compute the variation of

−
∫

µ̄

χ(g−1
i γi)dx. (8)

In order to simplify the notation, we note that the term above is of the generic
form

W (g) .=
∫

µ̄

f(g(x))dx (9)

with f = χ(γi). Therefore, we consider the variation of W with respect to the
components of the exponential coordinates1 ξi of the group gi = e

bξi

∂W

∂ξi

=
∂

∂ξi

∫

µ̄

f(g(x))dx (10)

=
∫

µ̄

∇f(g(x))
∂

∂ξi

g(x)dx. (11)

Using Green’s theorem it is possible to write the variation as an integral along
the contour of µ and one over g(µ̄) with a divergence integrand

∂W

∂ξi

(g) =
∫

µ

f(g(x))
〈

∂

∂ξi

g(x), g∗N
〉

d s−
∫

g(µ̄)

f(y)∇y ·
(

∂

∂ξi

g(g−1(y))
)

d y.

(12)
Therefore, the derivative with respect of the group action is

∂φ

∂ξi

=
∫

µ̄∩g−1
i (γi)

〈
∂

∂ξi

gi(x), g∗i Ni

〉
d s. (13)

Where N is the normal vector field to the boundary of g−1
i (γi) and g∗i is the push

forward induced by the map gi. Detailed calculations are reported in Appendix
A.
1 Every finite-dimensional Lie group admits exponential coordinates. For the simple case of

the isometries of the plane, the exponential coordinates can be computed in closed-form
using Rodrigues’ formula.



3.4 Evolution equations

Within the level set framework, a function ψ is evolved instead of the contour µ.
The function ψ is negative inside µ, positive outside and zero on the contour. The
evolution of ψ depends on the velocity of µ via the Hamilton-Jacobi equation

{
ut +

(
α−∑k

i=1 χ(g−1
i γi)

)
|∇u| = 0,

u(0, x) = ψ(t)(x).
(14)

The evolution equations follow

ψ(t+1)(x) = u(1, x |ψ(t)) (15)
µ̄(t) = {x : ψ(x) < 0} (16)

ξ
(t+1)
i = ξ

(t)
i − βξ

∫

µ̄∩g−1
i (γi)

〈
∂

∂ξi

gi(x), g∗i Ni

〉
d s (17)

where βξ is a step parameter and u(·, · |ψ(t)) is the solution of (14) with initial
condition u(0, x) = ψ(t)(x).

3.5 Generalization to graylevel images

There are many possible generalizations of the above formulas. Here we present
the case of gray level images. The case of color images is very similar so the
equations will not be stated. The main idea is to work with a generic level set
between the minimum and the maximum intensity levels and write the functional
to match all the level sets simultaneously using the partial differential equation in
Eq. (25). To derive this equation, let k images of the same object Ii, i = 1, . . . , k
be given and

γ̄δ
i = {x : Ii < δ} (18)

be the generic δ-underlevel of Ii, where δ is a positive constant. Then let

µ : R2 → R (19)

be a function that represents the complete image intensity (the choice of the
name µ is not casual, since this will turn out to be the complete shape for the
case of greylevel images) and

µ̄δ = {x : µ < δ}
µδ = ∂µ̄δ

(20)

respectively its underlevel and the boundary of the underlevel. From the same
considerations developed for the case of a contour, we write the functional φ as

φ =
k∑

i=1

n∑

j=1

A(γ̄δ
i \ gi(µ̄j)) + α

n∑

j=1

A(µj) (21)



where j is a discretization of the level set δ

φ =
k∑

i=1

n∑

j=1

∫
χ(γδ

i )(1− χ(giµ
j))dx + α

n∑

j=1

∫
χ(µj)dx (22)

and in the same way the derivatives of the functional can be obtained as

∂µj

∂t
=

(
α−

k∑

i=1

χ(g−1
i γδ

i )

)
N j , (23)

∂φ

∂ξi

= −
n∑

j=1

∫

µ̄j∩g−1
i (γδ

i )

〈
∂

∂ξi

gi(x), g∗i N δ
i

〉
d s. (24)

After letting j go to the limit, Eq. (23) gives the Hamilton-Jacobi equation for
the function µ:

µt(t, x) +

(
k∑

i=1

H (Ii(gi(x))− µ(t, x))− α

)
|∇µ(t, x)| = 0 (25)

where

H(s) =

{
1 if s > 0,

0 if s ≤ 0.
(26)

Therefore, the evolution equation for both the function µ and the parameters gi

is given by




µ(t+1)(x) = µ(t)(x)− βµ

(∑k
i=1 H

(
Ii(g

(t)
i (x))− µ(t)(x)

)
− α

)
|∇µ(t)(x)|

ξ
(t+1)
i = ξ

(t)
i − βξ

∫
H

(
Ii(g

(t)
i )− µ(t)

) 〈
∂g

(t)
i

∂ξ
(t)
i

, (∇γi)(g
(t)
i (x))

〉
dx

(27)
where βµ and βξ are step parameters.

4 Experiments

A numerical implementation of the evolution equations (15),(16),(17) has been
written within the level set framework proposed by Osher and Sethian [23] using
an ultra narrow band algorithm and an alternating minimization scheme. A set
of common shapes (hands, leaves, mice, letters) has been chosen and converted
into binary images of 256 × 256 pixels. For each image of this set, a group of
binary images with missing parts and with different poses has been generated
(Figures 2, 4 curves γ1, . . . , γ5).

The following level set evolution equation has been used

µt +

(
α−

k∑

i=1

χ(g−1
i γi)

)
|∇µ| = 0 (28)
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Fig. 2. Hands. (Top) a collection of images of the same hand in different poses with dif-
ferent missing parts. The support of the missing parts is unknown. (Middle) similarity
group, visualized as a “registered” image. (Bottom) estimated template corresponding
to the similarity group (“complete shape”).

with a first-order central scheme approximation. The evolution of the pose pa-
rameters has been carried out using the integral (17) with the following approx-
imation of the arclength ds

ds ≈ |∇(µ)|dx. (29)

The evolution has been initialized with the following settings

µt=0 = γ1

Ti = Bγi −Bγ1

Ri =
(

cos θi − sin θi

sin θi cos θi

)
, with θi = ̂EγiOEγ1

(30)

where Bγi is the baricenter of γi and Eγi is the principal axis of inertia of the
region γ̄i. The value of α has been set between 0 and 1. Ri, Ti are the rotational
and translational components of gi = (Ri, Ti) ∈ SE(2).

In Figures 2, 4 some results have been illustrated. γj are the starting curves
and µ is the complete shape in an absolute system after the computation. The
figures show the computed gj(µ), the estimated rigid motions.
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Fig. 3. Hands Evolution. (Top) evolution of the complete shape for t = 0, . . . , 20.
(Bottom) evolution of g2(µ) for t = 0, . . . , 20.

Figure 6 shows the method applied to grayscale images of a face, where
different portions have been purposefully erased.

Figure 8 shows the results of matching a collection of images of the corpus
callosum of a patient. One way to further improve this technique is to use richer
finite-dimensional groups G that can account for more than simple rotations and
translations. Simple examples include the affine and projective groups, for which
the derivation is essentially the same, except for a few changes of measure due
to the fact that they are not isometric.

The experiments show that this method works very well even when the miss-
ing part in each image is pretty significant, up to about 20% of the area.
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Fig. 7. Face evolution. (Top) evolution of the complete image for t = 0, . . . , 189.
(Bottom) evolution of g5(µ) for t = 0, . . . , 189.
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Fig. 8. Corpus Callosum. (Top) a collection of images of the same corpus callo-
sum in different poses with different missing parts. The support of the missing parts
is unknown. (Middle) similarity group, visualized as a “registered” image. (Bottom)
estimated template corresponding to the similarity group (“complete image”).
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Fig. 9. Corpus Callosum evolution. (Top) evolution of the complete image for
t = 0, . . . , 199. (Bottom) evolution of g2(µ) for t = 0, . . . , 199.


