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Abstract

We present a probabilistic reliable-inference framework to address the issue of rapid detection of human actions with low error rates. The

approach determines the shortest video exposures needed for low-latency recognition by sequentially evaluating a series of posterior ratios for

different action classes. If a subsequence is deemed unreliable or confusing, additional video frames are incorporated until a reliable classification

to a particular action can be made. Results are presented for multiple action classes and subsequence durations, and are compared to alternative

probabilistic approaches. The framework provides a means to accurately classify human actions using the least amount of temporal information.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recognition of human actions is a challenging task that is

applicable to various domains including surveillance, video

annotation, human–computer interaction, and autonomous

robotics. A fundamental question regarding action recognition

is ‘how much time (or video frames) is actually necessary to

identify common human actions’? In the extreme case, people

can easily recognize several different actions from looking at

just a single picture—one need only flip through the pages of a

newspaper or magazine to make this point. Other actions may

require seeing additional video frames (perhaps the entire

action sequence).

There are several instances of how biological perception is

able to identify simple actions/gestures by observing just a

small portion of the motion. For example, [22] showed that

humans are capable of perceiving and distinguishing simple

actions, such as walking, running, and jumping-jacks, from

point-light exposures of only 200 ms. Clearly, no periodic

information is being exploited. Other instances of such

behavior can be seen with animal tricks/performances in

response to the trainer’s gesture commands. Often the animals

are trained on a closed set of gestures and are able to identify
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their trainer’s gesture from just an initial brief exposure of the

movement.

A system capable of recognizing human actions from the

smallest number of video frames would be particularly

advantageous to automatic video-based surveillance systems.

For instance, consider small unmanned aerial vehicles (UAVs)

equipped with video cameras. The UAV’s view area is

constantly and rapidly changing, and therefore, immediate

decisions about the activity in the scene are desirable within a

few frames. This is also the case for multi-camera surveillance

systems having limited computational processing time

scheduled per camera. Even when longer duration video is

available, rapid action detection may be particularly helpful in

bootstrapping more sophisticated action-specific tracking or

recognition approaches.

An important ability for a rapid (low-latency) action

recognition system is to automatically determine when enough

of a video sequence has been observed to permit a reliable

classification of the action occurring, as opposed to making

forced decisions on short (and potentially unreliable) video

exposures or instead waiting for the entire (long) video

sequence. This problem becomes even more challenging

when the observation could start from any point (temporal

offset) during the action sequence (i.e. the observed sequence

does not always begin at the expected start pose of the action).

For example, consider the case when a camera is switched on to

detect actions and there is already an action in progress.

In this paper, we present an approach for quickly

recognizing non-nested, temporally constrained human actions

from the smallest video exposure possible. The method is
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formulated in a probabilistic inference framework and is

trained with examples. First, the reliability of an input

frame/subsequence is examined with a series of a posteriori

ratio comparisons to the possible action classes (using Hidden

Markov Model (HMM) output likelihoods and action priors).

These reliability ratios assess the ‘goodness’ of an input for

inferring a particular action class with respect to the probability

of committing an error. If the input is deemed unreliable (not

strongly indicative of a particular action), then no action

classification takes place. In this case, the input is expande-

d/extended with additional video frames and then re-examined

with the posterior ratios for a reliable-inference. This process is

continued until either a reliable action inference is made or

there are no more video frames to include (e.g. the person

exited the scene). The worst-case scenario is that the entire

sequence is evaluated (the default for most other approaches).

Therefore, the approach is useful for recognizing actions that

have some distinct difference at some point prior to the end of

the action sequence. The method keeps tight bounds on the

classification error by incorporating additional information for

brief and confusing video inputs rather than forcing an early,

and likely erroneous, action classification with a fixed-length

sequence.

The main advantage of the proposed method is that the

system only makes classifications when it believes the input is

‘good enough’ for discrimination between the possible actions.

This is particularly favorable when there is a high cost for

making errors and low (or no) cost for passively waiting for

more video frames to arrive (advantageous with real-time

video). Other popular probabilistic approaches, such as

maximum likelihood (ML) and maximum a posteriori (MAP),

perform a forced-choice classification for a fixed-length input

regardless of the saliency/reliability of the input. To our

knowledge, no previous attempts have been made to accurately

classify human actions using the least amount of temporal

information.

We demonstrate our rapid-and-reliable action recognition

approach with sets of common actions having different video

exposures of the full action duration. First, we examine the

reliability of only a single frame to discriminate different

actions, and demonstrate how single frame action classification

can be a potential source of high confusion. We then address

the reliability of action subsequences (multiple frames).

Initially, we examine our method with a set of actions that

begin in the same starting pose but gradually diverge into the

different actions over time. Our goal here is to determine the

minimal video exposures from the start frame/pose needed to

reliably discriminate the actions. Next, we consider an even

more general and difficult scenario with subsequences that are

not constrained to begin with the start frame of the original

sequence. In each of the experiments, we compare our

recognition results with competing classification techniques.

We begin with a review of related methods for detecting and

recognizing actions in single frames and video sequences

(Section 2). We then formulate our probabilistic reliable-

inference approach (Section 3). Next, we compare the

approach to posterior analysis and discuss similar techniques
that are capable of rejecting uncertain inputs (Section 4). Then,

we present experimental evaluations and results with a

discussion (Section 5) and provide possible extensions to the

framework (Section 6). Lastly, we provide a summary and

conclusion of the work (Section 7).
2. Related work on action recognition

The importance of human action recognition is evident by

its increased attention in recent years (see surveys in [1,17,37]).

Previously, several action recognition techniques have been

proposed, but here we briefly mention only a few representa-

tive approaches that are relevant to comparing the single- and

multiple-frame analysis domains.

For identifying pedestrians in a single image, [29] used

wavelets to learn a characteristic pedestrian template and

employed support vector machines for classification. In [18], a

hierarchical coarse-to-fine template approach with edge maps

was used to detect pedestrians. In [32], a general unsupervised

recognition framework using clustering was employed to

recognize several silhouette poses. In the two frame category,

[23] used two simple properties (dispersedness, area) for

discriminating humans and vehicles from image difference

results, and maintained consistency over time with a temporal

classification histogram. A cascaded AdaBoost architecture

was proposed in [35] that used rectangular filters on intensity

and difference images for pedestrian detection. None of these

approaches attempt to recognize extended temporal actions

based on characteristic movement patterns.

Dynamic action recognition methods from multiple frames

or sequences typically involve analysis of trajectories or

templates. For periodic actions such as walking and running,

trajectory-based approaches for single and multiple cycle

exposures include frequency-based Fourier methods [24],

feature-based properties (e.g. stride) [11], spatio-temporal

patterns [28], and HMMs [9]. With no part tracking, a different

approach is to use spatio-temporal templates derived from the

image sequence directly, including generic layered tem-

plates [6] and other periodic template representations

[10,25,26,30].

Our work here is focused on action recognition from the

shortest-duration video exposures needed to achieve high

recognition rates with low recognition latency. In previous

work, we presented initial results of the proposed reliable-

inference framework for discriminating actions from single

frames (poses) [13] and also provided a hierarchical extension

for multiple frames using Motion History Images (MHIs) [12].

In this paper, we extend our prior work to efficiently examine

multiple subsequence durations for different actions and

incorporate HMM temporal models (instead of hierarchical

MHIs) for the probabilistic evaluations. Many of the action

recognition approaches described above could be potentially

incorporated into our framework, however, we are not aware of

any other general approaches related to our goal of reliable, yet

minimal-latency, action recognition.
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3. Reliable-inference

We base our reliable-inference (RI) approach on the ‘key

feature’ proposal of [20] which states that the success of

inferring a world property § from a measurable feature f in

context C can be formulated as the a posteriori probability

pð§jf ;CÞ. In our domain of action recognition, we consider the

world property § to be an action A to recognize (e.g.

walking). The context C refers to a particular closed-world

domain of actions CZ fA1;A2;.;Ang that can occur in some

situation (a closed-world context is an assumption used in most

popular ML/MAP recognition techniques). The context-

dependent reasoning provides a limited domain of actions for

consideration during recognition. For example, if we know the

person is traversing the scene, we could possibly limit the

context to only locomotory behaviors such as walking and

running to greatly reduce the search space of solutions.

According to [20], a ‘reliable-inference’ of action Ai from

feature f will have a large posterior probability pðAijf ;CÞ and a

small probability of error pðlAijf ;CÞz0, where

lAiZ ðgjsiAjÞ. Hence, the reliability of feature f for inferring

a particular actionAi can be measured by the ratio of these two

probabilities:
Rpost½Ai;f �Z
pðAijf ;CÞ

pðlAijf ;CÞ
Z

pðf jAi;CÞpðAijCÞ

pðf jlAi;CÞpðlAijCÞ

Z
pðf jAi;CÞpðAijCÞP
jsi pðf jAj;CÞpðAjjCÞ

(1)
When Rpost[Ai,f][1, the feature f is said to be a highly

reliable indicator of Ai. Thus both a large likelihood ratio and

context-dependent prior ratio is required. The presence of a

large likelihood ratio indicates that the observed feature f arises

consistently with the existence of action Ai, but not in its

absence. A significant prior ratio states that the action Ai

appears regularly/often.

As we are interested in the reliable-inference of different

action classes given partial/limited video sequence exposures,

we rewrite Eq. (1) for a target action class Ai and an observed

video subsequence Ot1:t2
from time t1 to t2 (the new feature f)
RI Test RI Test 

Im1(x,y)

Ot1

Im1(x,y)

Im2(x,y)

Ot1:t1+1

Fail

Pass

Classification

Pass

Classification

RI Test

Im1(x,y)
Im2(x,y)

Im3(x,y)

Ot1:t1+

Pass

Classification

Fail

Fig. 1. RI approach to r
as:

Rpost½Ai;Ot1:t2
�Z

pðOt1:t2
jAi;CÞpðAijCÞP

jsi pðOt1:t2
jAj;CÞpðAjjCÞ

(2)

For subsequence Ot1:t2
to be a reliable indicator of actionAi,

we want Rpost½Ai;Ot1:t2 �[1. But how large does the Rpost

value need to be for Ot1:t2
to be considered a reliable indicator

of Ai? In other words, what is the value of the decision

threshold lAi
such that Rpost½Ai;Ot1:t2

�OlAi
only for those

Ot1:t2
subsequences belonging to class Ai?

We could simply choose the action class in C with the

highest Rpost (the most reliable estimate) for classification,

which is equivalent to the MAP classification (see Appendix

A), but this can result in an error when the input is unreliable

(not enough discriminating information is present in Ot1:t2
). Our

approach is to select a threshold lAi
for each action Ai to

classify Ot1:t2
only when it is truly reliable for discriminating

the actions. Therefore, if any subsequence Ot1:t2
yields an Rpost

value below the threshold for all actions it is ‘held’ from

classification and instead is extended with more video frames

(to provide more information) and re-evaluated. This process is

continued until a valid Rpost for some action class is found

(a threshold is exceeded) or all input frames have been exhausted.

The Rpost reliability threshold lAi
can be learned by

selecting the maximum Rpost value for action class Ai using

the subsequences of alllAi training examples. Thus, no non-

class subsequence (fromlAi) produces an Rpost value for class

Ai that is above lAi
. For any true subsequence of Ai that

happens to produce an Rpost value below this threshold, it is not

considered to be an error. Rather, it only states that this

subsequence is unreliable for classification to Ai (in

comparison to the other lAi examples) and that more

information/video is required before it should be classified.

Only when an Rpost threshold is exceeded does a classification

occur (or when no new frames can be incorporated). If the

number of training examples is sufficiently large, a threshold

selected for each action class in such a manner as described

above will avoid most classification errors during testing with

new examples.

The overall approach to recognition is shown in Fig. 1,

where each stage labeled ‘RI Test’ refers to Algorithm 1.

Initially, a single input video frame Ot1
at time t1 is evaluated.
2

RI Test

Ot1:t2

Pass

Classification

Fail If {end of sequence} then
Choose the most
reliable class 

end

Im1(x,y)
Im2(x,y)

Imn(x,y)

eliable recognition.
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We compute the Rpost½Ai;Ot1
� value for all actionsAi2C and

compare each Rpost value with its decision threshold lAi
. For

any action’s Rpost value for Ot1
that meets its decision

threshold, the action label is placed into a clique of potential

classifications. If after examining all actions the resulting

clique contains a single action class, then we reliably classify

Ot1
to that class. In the event that the clique contains more than

one class (due to independent l thresholds for each action), we

choose the class within the clique having the highest Rpost (as it

has the most reliable valid inference). If the clique is empty

after examining all of the actions, we make no commitment to a

class and extend the input by incorporating one additional

video frame Ot1
/Ot1:t1C1. Then the Rpost reliability is

examined with the new expanded input Ot1:t1C1 (two frames).

The expansion process continues until time t2, where the first

reliable classification to an action can be made (using Ot1:t2
) or

when no new video frames can be included (in which case the

action with the largest Rpost is selected). We refer to this

classification technique as ‘thresholded Rpost’ (T-Rpost).

Algorithm 1. Reliable-inference test

procedure RI TESTOt1 :t2

Calculate Rpost½Ai;Ot1:t2
� for all classes Ai

CliqueZ{ }

for all classes Ai do

if Rpost½Ai;Ot1:t2
�OlAi

then

add Ai to Clique

end if

end for

if CliqueZ{ } then

Fail

else

Select class AZAi2Clique arg maxfRpost½Ai�g

Pass

end if

end procedure
3.1. Statistical modeling with HMMs

To evaluate the Rpost for a video subsequence Ot1:t2
to a

particular action class (using Eq. (2)), we require the likelihood

probability of Ot1:t2
for each class (i.e. pðOt1:t2

jAi;CÞ,cAi2C)

and the class priors pðAijCÞ. We model the class likelihoods

from training data using HMMs and manually assign

appropriate context-dependent class priors. Other temporal

binding and evaluation approaches, such as Bayesian networks

and hierarchical Motion History Images [12], could also be

considered. We now present our HMM training and evaluation

approach.

A HMMwith M states (for an action classAi) is represented

by a three-tuple

LAi
Z ðT ;B;pÞ (3)

where TZ{tpq} is the state transition probability distribution

and tpq denotes the probability of transition from state p to state
q (1%p, q%M).Next,BZ{bq(Ot)} is the observation probability

distribution, where bq(Ot) is the probability of observing frameOt

in state q. Lastly, pZ{pp} is the initial (prior) state distribution

having
P

pppZ1. In the training phase, we learn the HMM

parameters for each class from the training data.

The number of HMM states in each experiment is typically

determined empirically and intuitively such that each state

reflects a natural phase in the action. For example, a four-state

HMM can be used to adequately capture the different feet/leg

positions during a walk/run cycle (see Fig. 12). We first

roughly hand-segment the training data sequences into M

temporal phases and estimate the output probability distri-

bution for an image in each state separately. These estimates

are used as the starting point (initialization) for the standard

forward–backward algorithm [31] to learn the entire parameter

set LAi
for the HMM. The forward–backward algorithm

initialized in such a way will try to maintain the desired logical

phases of an action while maximizing the likelihood of the

training sequences.

Gaussian Mixture Models (GMMs) are commonly used to

model the probability density bq(Ot) inside each state of a

HMM, where the number of components can be selected in an

information theoretic manner using the Bayesian Information

Criterion (BIC). Both GMMs and BIC were used by [4,21] for

model selection in an HMM, but other clustering methods

could also be employed (e.g. [5,7]). We model the likelihood of

frame Ot (of subsequence Ot1:t2
) appearing from a particular

state q of an HMM, using a feature vector f of Ot and a GMM,

as

bqðOtÞZ pðfjqqÞZ
XK

kZ1

wk$gkðfjmk;SkÞ (4)

where gk(fjmk,Sk) is the likelihood of f (feature representation

of Ot) appearing from the kth Gaussian distribution para-

meterized by the mean mk and covariance Sk, with mixture

weight wk. For estimating the parameters qq, we employ the

Expectation Maximization (EM) algorithm [14] that maxi-

mizes the class log-likelihood

Lðqqjf
1;.;fNÞZ

XN

nZ1

logðpðfnjqqÞÞ (5)

for N training examples (f1,.,fN) of frames associated with

state q.

Initial values for the means, covariances, and mixture

weights in Eq. (4) can be estimated using a K-means clustering

of the training samples. As the clustering result can vary

depending on the seed values (initial means), the entire EM

algorithm is repeated multiple times, each time using a

K-means clustering result from a different random seed

initialization. We then choose the EM mixture model that

produces the maximum class log-likelihood (Eq. (5)).

One issue regarding mixture models is the number of

clusters/distributions K needed to model the data. Rather than

manually selecting an arbitrary K, we automatically select from

models of different K, the model that maximizes the Bayesian
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Information Criterion (BIC) [33]. The BIC for a given model

parametrization qq is computed as

BICðqqÞZ 2Lðqqjf
1;.;fNÞKP logðNÞ (6)

where P is the number of independent model parameters to be

estimated. In our formulation, we have

P ZK mC
m2 Cm

2

� �
C ðKK1Þ (7)

with K distributions, (mC(m2Cm)/2) independent parameters

for each mean and covariance (mZdim(f)), and (KK1)

independent mixture weights (constrained to
P

wkZ1).

Since the class log-likelihood of the mixture model (Eq. (5))

improves when more parameters are added to the model (i.e.

larger K), the term P log(N) is subtracted from (twice) the class

log-likelihood in Eq. (6) to penalize models of increasing

complexity. The BIC is maximized in an information theoretic

manner for more parsimonious parameterizations. An iterative

split-sample training and validation method can be employed

where 50% of the training examples are randomly selected and

used by K-means/EM to estimate the model parameters, and

the remaining 50% of the samples are used to compute the BIC

for that model.

To evaluate a new subsequence and calculate its Rpost, we

compute the likelihood probabilities of the given subsequence

(with each frame represented by a feature vector) to the

different action class HMMs (we use manually assigned class

priors). For a given HMM, we compute the likelihood for the

subsequence using only the forward pass of the forward–

backward learning procedure. The process of adding frames to

a subsequence also becomes computationally efficient using

the forward pass due to the recursive calculation of the forward

probability [31].
4. Comparative evaluation of RI technique

In this section, we first compare the proposed reliable-

inference method with direct posterior probability analysis for
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as compared to the posterior measure.
classification. Next, we describe related techniques for dealing

with classification uncertainty.
4.1. Comparison to direct posterior analysis

In the case with temporal data, often the likelihoods (e.g.

from an HMM) increase or decrease with the addition of new

information. In situations where an input can likely belong to

two or more action classes (a confusing input), classification

with ML/MAP-based methods is prone to error, as they are

forced-choice approaches. The Rpost ratio, in contrast, reflects

the reliability based on the relative strength of an action class

with respect to all other action classes. Hence, we can

simultaneously evaluate when we should classify (and to

which action class) and when we should not make a decision.

In Fig. 2, we show the posterior and Rpost values over time

for an action sequence O to classesA1,A2, andA3 (the graphs

were generated from a Bend sequence and the HMMs trained

for Bend ðA1Þ, Crouch ðA2Þ, and Sit ðA3Þ from Section 5.2).

As shown in Fig. 2(a), the initial portion of the sequence

produces very similar posteriors for all three actions (and thus

will yield MAP classification errors), but as more information

is added, the posteriors begin to diverge and the true class A1

slowly becomes the most probable class for the input O (the

true class). However, in the example shown in Fig. 2(b), the

separation of A1 is more pronounced and much appears much

earlier on the Rpost scale.

In another example (see Fig. 3), we show that determining

the class threshold based on multiple examples is more

applicable (and useful) for Rpost than for an a posterior

distribution (motivated by the study in [2] for likelihood

decisions). In Fig. 3(a), we show (synthetic) distributions for

two classes A1 and A2 (two 1D Gaussians with standard

deviation 15 and means centered at G25) from which we

sampled data points. In Fig. 3(b), we show the distribution of

the data examples on the log Rpost scale (x-axis) to class A1

(i.e. log Rpost½A1�). If we choose the previously mentioned

T-Rpost thresholding policy (i.e. selecting the threshold for class

Ai as the maximum Rpost value of the examples from class
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lAi), 49.26% of the classA1 examples are correctly classified

(50.74% are deemed unreliable), while 100% of the class A2

examples are correctly rejected. A similar set of distributions is

shown in Fig. 3(c), but now we use the log a posteriori scale to

class A1 on the x-axis. With a similar thresholding strategy

(using the maximum posterior value of the class A2 examples

to class A1 as the threshold), only 1.38% of the class A1

examples are correctly classified (100% of the class A2

examples are correctly rejected). This worse classification

result in comparison to Rpost is due to the fact that there is more

overlap of classA2 in class A1 on the a posteriori scale. Even

if we instead use the distribution cross-over points in the Rpost

and a posteriori scales as the thresholds, 95.14% of the class

A1 and A2 examples are correctly classified in the Rpost scale,

and a lower 93% of examples for classA1 andA2 are correctly

classified in the a posterior scale. Other threshold methods

could certainly be employed, but their comparison here may

not be straightforward.

4.2. Comparison to other classification techniques that handle

uncertainty

In this section, we briefly mention and compare a few

alternative classification techniques that are capable of non-

forced decision making, and hence could be used for reliable-

inference.
4.2.1. Sequential probability ratio test

Sequential analysis [36] is a method of statistical inference

where one can collect several observations with the aim of

improving the classification confidence with each new

measurement. In the two-hypothesis sequential probability

ratio test (SPRT), the cumulative likelihood ratio of m

observations of random variable x1:m is given by

lmðxÞZ
pðx1:mjA1Þ

pðx1:mjA2Þ
(8)

and is compared to thresholds lA1
and lA2

(where lA1
OlA2

).

If lmðx1:mÞOlA1
, classA1 is chosen, or if lmðx1:mÞ!lA2

, class

A2 is chosen. If lA2
% lmðx1:mÞ%lA1

then classification is

avoided and new observations are incorporated. One standard

method to compute the probabilities with multiple observations

(given class A) is to assume independence:

pðx1:mjAÞZ
Ym

iZ1

pðxijAÞ (9)

We could possibly apply the SPRT sequential analysis

technique to our reliable-inference task for action recognition.

However, instead of multiple measurements of the same

random variable (as in traditional SPRT), our measurements

are temporally ordered video frames (of an action). Hence,

other temporally constrained approaches (e.g. HMM) would be
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more appropriate to calculate the probabilities than with

Eq. (9). Also, the problem of sequential testing for multiple

classes ðA1/AnÞ is relatively more difficult in SPRT than

with the two-class case. Several ad hoc methods and simple

(non-optimal or asymptotically optimal) extensions of SPRT

have been proposed to handle multiple classes [3].
4.2.2. Bayes risk

Another classification method from classical decision

theory is to obtain a reliable classification by minimizing the

overall Bayes risk [15,34]. To incorporate the idea of confusion

in this approach, a ‘dummy class’ is introduced and a loss

function is selected such that the cost associated with a

misclassification is higher than the cost of classifying to the

dummy class. The method provides an upper bound on the total

probability of error rather than a bound for each class.

Let the loss function beL, such thatLðaijAjÞ describes the

loss incurred for classifying to class ai when the actual

classification is Aj2C. Here, ai2(CgF) where F is the

dummy class for classification when the input is confusing. The

expected loss or conditional risk for classifying a video

subsequence Ot1:t2
can now be defined as

RðaijOt1:t2
ÞZ

X
j

LðaijAjÞPðAjjOt1:t2
Þ (10)

with

LðAjjAjÞZ 0 (11)

LðAijAjÞZ b; isj (12)

LðFjAjÞZ l; 0%l%
cK1

c
b

� �
(13)

where c is the number of classes and l is the penalty for

classifying to the dummy class. For the standard zero-one loss

formulation [15], bZ1 in Eq. (12) and (13). The decision rule

on Eq. (10) divides the feature space into c acceptance areas

and one reject area. Class ai that minimizes the Bayes risk in

Eq. (10) is selected as the final classification.

In comparison, our reliable-inference method makes use of

individual class thresholds (as opposed to one single

threshold), and hence one can have different bounds on the

error for each class. Also for practicality, our framework learns

the class thresholds such that it can correctly reject all non-

class examples in the training data. Furthermore, the Bayes risk

method operates on the posterior probabilities rather than on

the more discriminating Rpost metric.
4.2.3. Cascade architecture

A cascaded architecture, such as one used in [35] with

AdaBoost for pedestrian detection, could potentially be

adopted for rapid and reliable-inference. The cascade was

designed with the goal of maintaining a high detection rate at

each level while systematically reducing the false positive rate

at each stage as it is traversed. At any level, if a true negative is

detected (e.g. a ‘non-pedestrian’ in [35]) the input is rejected
and the processing stops, otherwise the input is continually

tested for a true positive in all of the later levels (until the last

stage of the cascade is reached or it is classified as a true

negative).

Instead of eliminating true negatives at each successive

level of the cascade, we could reverse the process for reliable-

inference and construct the classifiers such that only the

reliable inputs (true positives) are classified at each level, and

any confusing inputs are examined in the subsequent levels. By

adding more information at each new level we could construct

a more effective classifier to reduce the confusion as we

traverse through the cascade.

Such an architecture will have certain problems if blindly

used on action sequences. First, the size of the cascade will

grow as the average length of the actions increases (e.g. one

level per frame). Second, this approach will have issues when

comparing action sequences of different length; hence external

warping techniques (such as dynamic time warping) will be

required. Finally, this architecture does not correctly handle

periodic/repeating actions. However, we note that our proposed

approach, as shown in Fig. 1, is a type of cascade that is

specifically designed to avoid the aforementioned problems.

5. Experimental evaluation

We evaluated our reliable-inference framework for different

video exposure lengths of several common human actions

(walking, running, standing, bending-forward, crouching-

down, and sitting) of different people and at different views.

Each atomic action (e.g. walking) is assigned a particular class,

and our experiments are designed to examine the recognition

capability of the approach using different types of action

subsequences. In many of these scenarios, certain actions have

strong similarities that provide ideal testing sets for the

proposed reliable-inference approach.

Initially, we examine action discrimination from single

frames (at multiple views) for a person walking, running, and

standing (Section 5.1). Next, we evaluate the framework’s

recognition capability for video subsequences. In the first

subsequence-based experiment (Section 5.2), we test the

framework using multiple examples of Bend, Crouch, and Sit

actions with subsequences starting at the first frame of the

action (i.e. O1:t) and examine how much of the video sequence

is necessary to reliably distinguish each action. In the next

experiment (Section 5.3), we examine periodic Walk-left,

Walk-right, Run-left, and Run-right actions with subsequences

that start at any time within the action cycle (i.e. Ot1:t2
). We

assume equal priors for the action classes, though the approach

is general to any set of priors. We note that the framework is

not specific for these actions, but is general to any collection of

non-nested actions that can be probabilistically modeled.

For all of the experiments, the video sequences were first

processed using standard background-subtraction (or thresh-

olding) techniques to create sequences of silhouette images.

We represented each silhouette image using a compact subset

of similitude moments [19]. For a binary silhouette image I, the

similitude moments hij are derived from the central moments



Fig. 4. Similitude moments. Images show the relative weight of each pixel for a particular moment before final aggregation over the entire image.
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vij and are given by

hij Z
nij

ðn00Þ
iCj
2
C1

(14)

nij Z
X

x

X
y

ðxK �xÞiðyK �yÞjIðx;yÞ (15)

for orders (iCj)R2. These moments produce excellent global

shape descriptors for binary (and grayscale) images in a

translation- and scale-invariant manner. If rotation invariance

is also desired, absolute moment invariants [19] could be

employed. In Fig. 4, we visually show how the similitude

moments relatively weight different portions of the silhouette.

The moment images show the value ðxK �xÞiðyK �yÞj for each
pixel location (x,y) in the image (these values are summed in

the image and scaled to get hij). We note that other types of

features could be employed (e.g. Zernike moments, Principal

Components Analysis, Fourier descriptors, etc.1). For our

experiments, we additionally whitened [15] the similitude

feature space to work with uncorrelated feature dimensions.

5.1. Discrimination from a single frame

We first evaluated our RI framework with the action classes

Walk, Run, and Stand from different viewpoints to determine

the feasibility of using individual poses/frames for discrimi-

nation. We examined the individual Rpost discrimination results

for the actions using the T-Rpost method and compared them to

MAP recognition results.

To examine a large number of views for the actions in a

controlled manner, we generated synthetic silhouettes from

actual motion-captured human actions. We first motion-

captured a person performing the Walking, Running, and

Standing actions at different efforts/styles using a Vicon-8

motion-capture system. For Walking and Running, one cycle at
1 We also tested Principal Components Analysis and Fourier descriptors in

several of our experiments. The different feature sets provided similar

recognition performance, and thus we chose to use similitude moments due

to their conciseness and simplicity.
each pace (slow, medium, fast) was extracted. For Standing,

slight variations of two different postures were captured. Maya

animation software was then used to create a 3D person model

that could be consistently rendered at any desired viewpoint.

The motion-capture data was mapped to the 3D body model

and rendered (orthographic projection) as silhouettes from

multiple viewpoints using OpenGL. Each pose was rendered at

21 different viewpoints separated by 308 horizontal and vertical

intervals. In Fig. 5, we show silhouettes of the different actions

(at different styles) and the 21 views for a single walking pose.

The total number of images for classes Walk, Run, and Stand

were 2184, 1512, and 1974, respectively.

The first seven similitude moment features (i.e. orders

2%(iCj)%3) capturing the variance and skewness of the

silhouette were used to represent each rendered image, and the

distribution for each action was modeled as a GMM (i.e. a

single-state HMM). For each K under consideration in the

GMM (KZ2–24 components, in steps of 2), the Kmeans/EM

algorithm was repeated five times (EM itself was limited to 20

iterations). This entire process was repeated for three different

split-sample partitions of the class data and the model having

the overall largest BIC was selected as the final likelihood

model. In Fig. 6(a), we show the BIC values as a function of K

for the running data using three different split-sample

iterations. The resulting mixture model corresponding to the

maximum BIC (at KZ4) is shown in Fig. 6(b).

As described in Section 3, we selected each class detection

threshold l as the maximum Rpost value of the non-class

training examples. The T-Rpost recognition results for the

actions using these thresholds are reported in Table 1. By

design, the RI method does not commit any classification errors

on the training data, but the resulting confusion is quite high for

two of the classes (71, 61, and 12%, for Walk, Run, and Stand,

respectively). Hence, it appears that only a small fraction of

poses (at certain views) are distinct in this moment feature

space. For comparison, we also report the corresponding

recognition results using MAP (with the same trained

likelihood models and priors). Though MAP is able to correctly

classify most of the poses, it makes several errors (3–15% in



Fig. 5. Example silhouettes for action classes Walk, Run, and Stand. Each class has multiple efforts/styles (top row), and each pose is rendered at 21 different views

(bottom image).
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each class) due to its inability to detect and deal with

unreliable/confusing inputs.

Overall, single images of actions can be a source of high

confusion and thus do not usually provide sufficiently reliable

classification results. However, if more frames in a temporal

sequence are available, then adding this information should

help to improve the recognition performance. Once a sufficient

length of an action is seen, only then should a commitment to a

class be made. Note that the entire sequence may not need to be

examined to make a reliable classification. Our aim in the
Table 1

Recognition rates comparing T-Rpost and MAP classification using equal class prio

Input Method

Walk Run

Walk T-Rpost 639 0

MAP 2129 48

Run T-Rpost 0 587

MAP 223 1280

Stand T-Rpost 0 0

MAP 91 11
following experiments was to find the minimal exposure

lengths of actions required to make reliable classifications.
5.2. Subsequences starting from the initial frame (O1:t)

In this experiment, actions Bend, Crouch, and Sit at a side

view were examined. Each action starts in a common standing

pose (identical initial frame for each action), but becomes more

distinct over time from the other actions. A total of 30 video

sequences per action were collected, with five different people
rs

Classification % Confusion/error

Stand Confusions

0 1545 70.74/0.00

7 – 0.00/2.52

0 925 61.18/0.00

9 – 0.00/15.34

1736 238 12.06/0.00

1869 – 0.00/5.32



Fig. 7. Three-state HMMs labeled with transition probabilities for actions (a)

Bend, (b) Crouch, and (c) Sit.
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performing each action six times. Each sequence was trimmed

to the start and end frames of the action. Of these, 20 sequences

were used to train the system, and the remaining 10 were used

for testing. The first seven similitude moment features (Eq.

(14)) were used to represent each silhouette image (from

background-subtraction). For each action class, we trained a

three-state HMM, where the states were selected to represent

the initial standing phase, intermediate phase, and final

terminating phase of each action. The resulting HMMs for

Bend, Crouch, and Sit (and representative silhouettes for each

phase/state) are shown in Fig. 7. Since all training and testing

subsequences start from the first frame in the sequence, the first

HMM state prior was set to p1Z1.

In Table 2 (top), we show the T-Rpost recognition details for

the training sequences, reporting the percentage of subse-

quences O1:t classified (i.e. subsequences with a valid Rpost to

an action class). We also report the average percent duration of

the sequence to the initial classification point ((kC1)/

length(O)!100 for sequence O, where k is the length of
Table 2

T-Rpost recognition statistics for Bend, Crouch, and Sit actions

Analysis using O1:t Bend Crouch Sit

% Subsequences classified (non-confusing) 71.0 71.8 82.4

Avg. % duration to initial classification point 31.4 31.2 18.6

Analysis using Ot Bend Crouch Sit

% Subsequences classified (non-confusing) 66.6 77.1 76.3

Avg. % duration to initial classification point 35.8 26.0 24.2
longest confused subsequence of O) for all sequences that are

classified. As shown in the table, Sit was typically the first

action to be recognized, where an average of only 19% of the

entire sequence length needed to be observed before a reliable

class commitment was made. Bend and Crouch each required

around 31% of the sequence length before a reliable

classification was made. The low percentages of subsequence

duration reinforce the fact that only the initial smaller/shorter

subsequences were more prone to confusion.

We additionally compared the T-Rpost subsequence recog-

nition results with MAP and a thresholded a posteriori (T-AP)

approach. The T-AP threshold for each action class was set to

the maximum a posteriori value of all non-class subsequences

and only when the posterior probability of a subsequence passed

the threshold was a classification made (similar to the T-Rpost

approach, but using individual posteriors rather than the ratios).

In Fig. 8, we show the detection counts (true positives) for the

three classes, for various subsequence durations (starting from

the first frame) of the training data. Both the T-Rpost and MAP

methods correctly classified each full-length sequence. The T-

Rpost and MAP methods also converge to nearly 95%

recognition around 60, 80, and 30% of the sequence duration

for Bend, Crouch, and Sit, respectively. Though the forced-

choice MAP approach achieves a faster recognition conver-

gence than T-Rpost, MAP makes several classification errors on

the shorter subsequences of the training data (4–12% of the total

number of subsequences). The T-Rpost method commits no

classification errors on the training data by instead waiting for

more information/frames to make a reliable classification.

In comparison to T-AP, the plots show a much faster

convergence to the correct classification with T-Rpost (and

MAP), where T-AP could not even classify most full-length

sequences (see Bend and Crouch) due to high posterior

thresholds. When learning the T-AP threshold of class Ai

from negative examples, if any non-class ðlAiÞ example has

(1) a much longer duration than the standard sequence length

for class Ai and has (2) a likelihood O1 for each frame of the

sequence (possible with continuous density estimates), then the

resulting posterior probability for the non-class sequence toAi

can be larger than the posterior of any shorter true class

example. This is the pitfall with the T-AP approach, and the

effect can be seen in the Bend and Crouch results where a

longer Sit example corrupted the reliability thresholds for both

Bend and Crouch. However, the T-Rpost method employs the

ratio of class-to-non-class posteriors and thus the effect of

sequence length is offset due to the ratio of posteriors to

different classes.

In Fig. 9, we show the classification rate and recognition

errors for the testing sequences (10 sequences per action).

Again, the recognition rates of T-Rpost and MAP are more

comparable (MAP converges slightly faster) and better than the

worse T-AP approach. There are fewer errors by T-Rpost as

compared to MAP on the new testing sequences, specifically in

the shorter sequences. The errors in T-Rpost are mainly due to

the thresholds computed from a limited set of training

examples. With T-AP, there were no classification errors

(only a few Sit classification commitments were made).
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A natural question that may arise with the framework is

whether the approach is actually making use of the temporal

information or if the method is instead only looking/waiting for

the first distinguishing frame/pose. To address this question, we

compared the previous T-Rpost results with a new, limited

T-Rpost method that uses only the current frame/pose instead of

employing the subsequence information. The results using

individual frames are reported in Table 2 (bottom), and show

that it takes slightly longer to reliably classify Bend and Sit from

the single-frame examples, thus giving a lower rate of the

number of classifiable subsequences. In Fig. 10, we show the

detection counts (true positives) obtained from the T-Rpost

recognition method on single frames versus subsequences (for

the training sequences). The x-axis in these plots denotes the

percentage length of the observed video sequence, and the y-axis

shows the number of true detections at that exposure length (or

the pose at that point in the sequence). Overall, we again see that

the subsequence information provides more information to

allow shorter exposures to be recognized quicker.
Fig. 11. Silhouettes for (a) Walk-left, (b) Walk-right, (c) Run-left, and

(d) Run-right.
5.3. Subsequences starting at any frame ðOt1:t2
Þ

In the next experiment, we considered a more difficult

scenario of recognizing actions from subsequences, which can
start at any point in time during the action. We examined new

periodic walking and running actions with the aim to rapidly

discriminate between Walk-left, Walk-right, Run-left, and

Run-right examples recorded at a nearly side view (see

example silhouettes in Fig. 11). To make the recognition task

even more difficult, we removed the translation component of

each person (to focus only on the changing body shape) and

used only five moment features to represent the silhouettes

extracted from the images (three second-order moments h20,

h02, and h11 capturing variance, and two third-order moments

h30 and h03 capturing skewness). Approximately 40 video

sequences per action were collected, with eight people

performing each action multiple times (with a minimum of

two cycles in each sequence). From these recorded sequences,



Fig. 12. HMM for Run-right labeled with transition probabilities.
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we extracted all one-cycle length sequences such that they

could start at any time in the action cycle. Approximately 60%

of the sequences were used for training, and the rest were used

for testing. For each action class, we initialized and trained a

four-state HMM representing four phases in the periodic

actions (see the HMM for Run-right in Fig. 12). A typical run/

walk action will phase through the states as 1/2/3/4/
3/2/1. The HMM state priors were each set to .25 since the

subsequences could start at any point in the action.

In this experiment, we examined all possible subsequences

of the action cycle (i.e. Ot1:t2
with 1%t1%Nc and 1%jt2Kt1C

1j%Nc, where Nc is the number of frames in the cycle). This

resulted in 835, 830, 569, and 599 training sequences and 559,

551, 346, and 345 testing sequences for Walk-left, Walk-right,

Run-left, and Run-right, respectively. The recognition task is

analogous to turning on the video camera at any point during

the action and examining the video until a reliable-inference

can be made.

In Table 3, we show the recognition details of the T-Rpost

recognition method for the training sequences. Both of the Run

action classes had more reliable subsequences (92–96% of the

total number of subsequences) than the Walk actions (86–91%).

For the Run classes, reliable decisions were made within an 11%

exposure of the cycle length on average, regardless of the starting

point of the subsequences. For the Walk classes, 12–16% of the

cycle was required on average for classification.

We compared the T-Rpost recognition results for the training

sequences with the MAP and T-AP approaches. As shown in

Fig. 13, both the T-Rpost and MAP methods correctly classified

each full-length sequence. The T-Rpost and MAP methods also

converged to nearly 95% recognition around 50, 50, 60, and

40% of the sequence duration for Walk-left, Walk-right, Run-

left, and Run-right, respectively. The forced-choice MAP

approach still achieved a faster recognition convergence than

T-Rpost, though it committed some classification errors (!3%).

As expected, the T-Rpost approach committed no classification

errors on the training data. As in the previous experiment,

the T-AP approach showed very poor recognition results.
Table 3

T-Rpost recognition statistics for Walk-left, Walk-right, Run-left, and Run-right

Analysis using Ot1:t2
Walk-left Walk-right Run-left Run-right

% Subsequences

classified

(non-confusing)

86.1 90.9 92.4 95.6

% Duration to initial

classification point

16.2 12.0 11.2 8.3
In Fig. 14, we show the correct classifications and the number

of errors for the testing sequences. Fewer recognition errors

were committed by T-Rpost as compared to MAP on the test

sequences, and T-AP was unable to classify most of the

sequences.

5.4. Discussion of results

In our experiments, we evaluated different temporal

scenarios for action recognition. In the first experiment with

single frames for actions Walk, Run, and Stand, we showed

how a forced classification technique such as MAP will result

in several erroneous classifications (3–15%), while the

reliable-inference approach can be used to avoid these errors

but in turn produces high confusion rates (12–71%) due to the

lack of sufficient distinguishing information.

We then experimented with subsequences of actions, where

in the first experiment with actions Bend, Crouch, and Sit, we

demonstrated how only a short video exposure is sufficient to

disambiguate the classes. The proposed T-Rpost method

successfully identified (and ignored) the confusing standing

phase in all of the actions (initial 18–30% of each action) and

avoided most of the errors committed by MAP. The usefulness

of thresholding with the Rpost metric (i.e. T-Rpost) over the

similarly thresholded a posteriori measure (i.e. T-AP) was also

demonstrated. Moreover, the advantage of using temporal

information versus single frame classification was shown in

another experiment with the Bend, Crouch, and Sit dataset.

Finally, similar results were obtained for an even more

complex scenario of recognizing walking and running human

action classes from different directions where the subsequences

were allowed to start at any point of time during the action

cycle. Again, most of the confusions were found in the smaller

subsequences (8–16% of full cycle duration on an average)

using the T-Rpost method. The competitive MAP and T-AP

methods were shown to have higher classification errors and

lower detection rates, respectively.

Though the approach was successful with several simple

human actions (includingBend, Crouch, Sit,Walk, andRun), it is

worthwhile to note certain limitations with the present method.

First, we currently use a separate HMM model for each view

direction of each action, which for several actions/views will

require training a large number of HMMs. This problem is

common for most view-based methods, and possible solutions to

reduce the number of HMMs could include the use of 3Dmodels

or view-invariant features (though at a much higher compu-

tational cost). Another issue not addressed with the current

framework is the recognition of nested actions that contain

sub-action phases that are the same as another action class to

detect. For example, consider an crouching action class and a

‘free-throw’ basketball action class (where the player moves to

the free-throw line, crouches down, moves/stretches up, and

throws the basketball). In this example, a crouching action is

nested inside (a part of) the longer free-throw action. Thus during

training, an extremely high reliability threshold will be set for the

isolated crouching class, as certain subsequences of the free-

throw actions appear identical to the crouching actions (causing
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Fig. 13. Number of examples detected using MAP, T-AP, and T-Rpost approaches for different subsequence lengths of training examples: (a) Walk-left, (b) Walk-

right, (c) Run-left, and (d) Run-right.
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most true crouching examples to be unreliable). However, the

free-throwmodel will only be slightly affected. Lastly, the use of

standard HMMs can be applicable to several types of actions, but

other more complex activities with phase variability (e.g.

performing an activity one of many ways or in different order)

and multi-agent interactionsmay bemore appropriately modeled

with coupled [8], hierarchical [16], or switching [38] HMMs or

Bayesian networks [27]. However, if the activities can be

probabilistically modeled, then the reliable-inference approach

can be employed.
6. Framework extensions

The Rpost formulation is defined over a closed-world context

of actions, but there will be situations when the input does not

belong to any of the action classes in the context. In such cases,

we should refrain from even calculating the Rpost values and

attempting any classification. An input that violates the

expected context should never trigger the RI calculations. A

context-checking ability can be incorporated into the frame-

work by having a threshold to which we can simply compare

the likelihood of the input to determine if it is truly ‘in the

context’ before attempting a reliable-inference. Furthermore,

for an input that is found to be in context, after a reliable

decision is assigned we need only to ‘follow’ (continually
verify) this action label as more frames are added rather than

computing the Rpost for all classes repeatedly for each new

frame. Additionally, any violation during the following stage

should reset the entire process (to validate the context). An

example state model capturing this extended framework is

shown in Fig. 15.

For any new sequence, the likelihood of each frame

(independently) is first checked for context validity by

comparing it to a likelihood threshold (gi) for each action

class Ai. The context threshold gi for class Ai can be

computed with giZmKks, where m and s are the mean and

standard deviation of the likelihood values of the frames

belonging to class Ai and k defines the lower threshold bound

(e.g. kZ2.5). Once a frame from the sequence comes into

context (the likelihood is above at least one gi), the RI

framework is engaged and used to find the earliest reliable

classification point for the incoming video frames (while

continually checking for context violations and resetting if

necessary). Once a class commitment is made by RI using

T-Rpost, the action is then continually followed by comparing the

incoming frames to a new temporally constrained likelihood

threshold (ti) for the detected action. As before, any violation

resets the system to the initial context validation state.

During following, if we compute the compounded like-

lihoods generated for the new incoming frames using the HMM
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Fig. 15. State model for context verification/reliable-inference/action

following.
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for the detected action, unfortunately we may require a

substantial amount of invalid frames before the entire sequence

likelihood falls below a certain threshold (as the initial

sequence portion examined in RI may produce a very high

likelihood). On the other hand, just computing only the

likelihood of each frame individually may help to detect

deviations much sooner, but we loose any required temporal

relationships of the frames. For example, if we are following a

walk action, and the person comes to a stop (in a standing

pose), then even though the standing poses will individually

have a valid likelihood to the walk model, we desire the

following module to identify this change in behavior and stop

classifying the action as walking.

One potential solution to the action following task is to

compute the individual frame likelihoods, but also penalize the

likelihood for each frameby the time duration since the lastHMM

state transition. For a given HMM and a new frame Ot, we obtain

the likelihood value of Ot for each HMM state. We then remove

any likelihood values for those states which cannot be reached by

a transition from the previously selected state (for OtK1). The

frame likelihood for Ot is chosen as the maximum likelihood of

the valid states, and Ot is assigned to state s, which produced that

maximumvalid likelihood.Wealso retain thememory of the time

d spent in state s since transitioning into it and weight the

likelihood probability of Ot with td
ss, where tss is the self-loop

probability of the selected state s. This weighting term ensures

that a particular frame/pose only occurs for the expected duration

(as learned from training examples). The following threshold ti

for action class Ai can be computed in a similar manner as the

context threshold, using tiZmKks, where now m and s are the

mean and standard deviations of the penalized frame likelihood

values of the positive training examples.
7. Summary and conclusion

We presented a probabilistic reliable-inference approach to

rapid action recognition. The method ‘confirms the reliability’
of an input subsequence before making any classification

commitment. If the subsequence is deemed unreliable, then

more video frames are collected in the hopes to remove the

confusion. The proposed framework classifies an input to a

particular action A only if it has a relatively higher posterior

probability forA as compared to other all other actionslA in

the context C. The measure of relative strength of one class

over the others is quantified by the Rpost metric that forms the

ratio of class to non-class a posteriori probabilities. A threshold

lAi
is learned for each classAi2C using thelA training data

to ensure that all non-class training examples in lAi are

correctly rejected.

To classify a novel (unknown) action subsequence Ot1:t2
,

first all of the Rpost½Ai;Ot1:t2
� values are calculatedcAi2C.

We then select the class with the highest Rpost from

amongst those classes whose Rpost values are above their

respective class thresholds. If a given subsequence is

deemed unreliable for all actions (no acceptable Rpost

values), we then examine longer sequences (if possible) to

include more information until a reliable decision can be

made. The advantage of the proposed approach is that

instead of forcing a possibly erroneous classification for

brief video exposures or requiring fixed-length or long-

duration videos, the method re-evaluates extended subse-

quences (with additional frames) only until the ambiguity is

resolved.

We evaluated our framework with experiments using

different video exposure lengths of several common human

actions. The experimental results with the method analyzing

Walking, Running, and Standing at multiple views from

individual frames/poses showed that single images could only

be used in a very limited manner to discriminate the actions,

and that many frames are unreliable for classification. In the

task of reliable action recognition from subsequences,

experiments with multiple action sets (Bend, Crouch, Sit,

Walk-left, Walk-right, Run-left, Run-right) demonstrated how

our thresholded Rpost method (T-Rpost) could be used to

successfully classify the actions by observing only a small

part of the action sequence (on average) while committing

fewer errors on test data than with a MAP classification.

Furthermore, the use of our recognition method was shown to

outperform a similarly thresholded a posterior method (T-AP).

In all cases, our method converged to high detection rates

while avoiding most of the classification errors associated

with MAP.

In future work, we plan to investigate alternative threshold

selection methods and to further examine the generalization of

the models and combined validation/inference/following

framework with new test data. We also plan to examine other

multi-phase actions, and employ the approach for selecting

optimal camera views for discriminating different actions. We

expect that rapid-and-reliable action recognition methods, such

as the proposed RI framework, will become an area of

increased study, and that these approaches will be used to

increase the responsiveness of real-time surveillance and

interactive systems.
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Appendix A. Equivalence of MAP and maximum Rpost

Consider NC1 classes A*, A1,., AN (note: class A* can be

any one of the NC1 action classes, but we name it differently

for the notational convenience of the proof). The corresponding

Rpost values of feature f to these classes are (in all subsequent

cases, 1%i%N)

Rpost½A
�;f �Z

pðA* jf Þ

PN
jZ1

pðAjjf Þ

(A1)

Rpost½Ai;f �Z
pðAijf Þ

pðA�jf ÞC
PN

jZ1;jsi

pðAjjf Þ

(A2)

where:

pðA�jf ÞO0; pðAijf ÞO0 (A3)

Note that we have dropped the explicit reference to the

context C for notational convenience. Given the following

relation holds, MAP will choose class A� as the classification

for the given feature f if

pðA�jf ÞRpðAijf Þ (A4)

We can manipulate Eq. (A4) as follows:

pðA�jf ÞRpðAijf Þ (A5)

pðA�jf Þ

pðA�jf ÞC
PN
jZ1

pðAjjf Þ

R
pðAijf Þ

pðA�jf ÞC
PN
jZ1

pðAjjf Þ

(A6)

pðA�jf ÞC
PN
jZ1

pðAjjf Þ

pðA�jf Þ
%

pðA�jf ÞC
PN
jZ1

pðAjjf Þ

pðAijf Þ
(A7)

1C

PN
jZ1

pðAjjf Þ

pðA�jf Þ
%1C

pðA�jf ÞC
PN

jZ1;jsi

pðAjjf Þ

pðAijf Þ
(A8)

PN
jZ1

pðAjjf Þ

pðA�jf Þ
%

pðA�jf ÞC
PN

jZ1;jsi

pðAjjf Þ

pðAijf Þ
(A9)

pðA�jf Þ

PN
jZ1

pðAjjf Þ

R
pðAijf Þ

pðA�jf ÞC
PN

jZ1;jsi

pðAjjf Þ

(A10)

Rpost½A
�;f �RRpost½Ai;f � (A11)
As shown above, Eq. (A5) implies Eq. (A11), and hence the

maximum Rpost will also select class A� as the classification for

the given feature f. Therefore, in all cases both MAP and

maximum Rpost result in the same classification.
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