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Abstract

For a specific set of features chosen for representing images, the performance of

a content-based image retrieval (CBIR) system depends critically on the similarity

or dissimilarity measure used. Instead of manually choosing a distance function in

advance, a more promising approach is to learn a good distance function from data

automatically. In this paper, we propose a kernel approach to improve the retrieval

performance of CBIR systems by learning a distance metric based on pairwise con-

straints between images as supervisory information. Unlike most existing metric

learning methods which learn a Mahalanobis metric corresponding to performing

linear transformation in the original image space, we define the transformation in
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the kernel-induced feature space which is nonlinearly related to the image space.

Experiments performed on two real-world image databases show that our method

not only improves the retrieval performance of Euclidean distance without distance

learning, but it also outperforms other distance learning methods significantly due

to its higher flexibility in metric learning.

Keywords: Metric Learning, Kernel Method, Content-Based Image Retrieval,

Relevance Feedback
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1 Introduction

1.1 Content-Based Image Retrieval

With the emergence and increased popularity of the World Wide Web (WWW) over the

past decade, retrieval of images based on content, often referred to as content-based image

retrieval (CBIR), has gained a lot of research interests [1]. On the WWW where many

images can be found, it is convenient to search for the target images in possibly very large

image databases by presenting query images as examples. Thus, more and more Web

search engines (e.g., Yahoo) are now equipped with CBIR facilities for retrieving images

on a query-by-image-example basis.

The two determining factors for image retrieval performance are the features used to rep-

resent the images and the distance function used to measure the similarity between a

query image and the images in the database. For a specific feature representation chosen,

the retrieval performance depends critically on the similarity measure used. Let f i =

(f i
1, f

i
2, . . . , f

i
n) denote a feature vector representing image i, where n is the number of fea-

tures. For example, f i represents a color histogram with n being the number of histogram

bins. There exist many methods for measuring the distance between feature vectors.

Swain and Ballard [2] proposed the intersection distance measure d∩ =
∑n

k=1 min(f i
k, f

j
k),

which has the same ordinal properties as the L1 norm (distance). In [3], the distance be-

tween two histograms is defined as the weighted form dW(f i, f j) =
√

(f i − f j)TW(f i − f j),

where each weight wij in W denotes the similarity between features i and j. Note

that this distance measure includes the Mahalanobis distance as a special case. Other

commonly used distance functions for color histograms include the Minkowski distance

dr(f
i, f j) = (

∑n
k=1 |f i

k − f j
k |r)1/r. However, this distance metric may lead to high false
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negative rate [4].

Unfortunately, the effectiveness of these distance functions is rather limited. Instead of

choosing a distance function in advance, a more promising approach is to learn a good

distance function from data automatically. Recently, this challenging new direction has

aroused great interest in the research community.

1.2 Related Work

Relevance feedback has been used in the traditional information retrieval community to

improve the performance of information retrieval systems based on user feedback. This

interactive approach has also emerged as a popular approach in CBIR [5]. The user is

provided with the option of labeling (some of the) previously retrieved images as either rel-

evant or irrelevant. Based on this feedback information, the CBIR system can iteratively

refine the retrieval results by learning a more appropriate (dis)similarity measure. For

example, relevance feedback can be used to modify the weights in the weighted Euclidean

distance [5] or the generalized Euclidean distance [6]. The same approach has also been

applied to a correlation-based metric [7, 8], which usually outperforms Euclidean-based

measures. In [9], the authors presented an approach to generate an adaptive quasiconfor-

mal kernel distance metric based on relevance feedback. Dong and Bhanu [10] proposed a

new semi-supervised expectation-maximization (EM) algorithm for image retrieval tasks,

with the image distribution in the feature space modeled as Gaussian mixtures. Pseudo

feedback strategy based on peer indexing was proposed recently to optimize the similarity

metric and the initial query vectors [11], where the global and personal image peer indexes

are learned interactively and incrementally from user feedback information. Some recent

work makes use of the manifold structure of image data in the feature space for image
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retrieval [12, 13]. Other methods include biased discriminant analysis [14], support vector

machine (SVM) active learning [15, 16, 17], boosting methods [18], and so on.

In the machine learning literature, supervisory information for semi-supervised distance

learning usually takes the form of limited labeled data or pairwise similarity or dissim-

ilarity constraints. The latter type of information is weaker in the sense that pairwise

constraints can be derived from labeled data but not vice versa. Relevance feedback,

which has been commonly used in CBIR, may be used to obtain the pairwise constraints.

Recently, some machine learning researchers have proposed different metric learning meth-

ods for semi-supervised clustering with pairwise similarity or dissimilarity side information

[19, 20, 21, 22]. Most of these methods try to learn a global Mahalanobis metric corre-

sponding to linear transformation in the original image space [19, 20, 22]. In particular,

an efficient, non-iterative algorithm called relevance component analysis (RCA) [19, 20]

has been used to improve image retrieval performance in CBIR tasks. This work was

later extended in [19] by incorporating both similarity and dissimilarity constraints into

the EM algorithm for model-based clustering based on Gaussian mixture models. More

recently, Hertz et al. [23, 24] proposed a nonmetric distance function learning algorithm

called DistBoost by boosting the hypothesis over the product space with Gaussian mixture

models as weak learners. Using DistBoost, they demonstrated very good image retrieval

results in CBIR tasks.

Most existing systems only make use of relevance feedback within a single query session.

More recently, some methods have been proposed for the so-called long-term learning

by accumulating relevance feedback from multiple query sessions which possibly involve

different users [25, 12, 13, 26]. However, [12] and [13] are based on the assumption that the

feature vectors representing the images form a Riemannian manifold in the feature space.

Unfortunately this assumption may not hold in real-world image databases. Moreover, the

5



log-based relevance feedback method [26] is expected to encounter the scale-up problem

as the number of relevance feedback log sessions increases.

1.3 This Paper

Metric learning based on pairwise constraints can be categorized into linear and nonlinear

methods. Most existing metric learning methods learn a Mahalanobis metric correspond-

ing to performing linear transformation in the original image space. However, for CBIR

tasks, the original image space is highly nonlinear due to high variability of the image con-

tent and style. In this paper, we define the transformation in the kernel-induced feature

space which is nonlinearly related to the image space. The transformation is then learned

based on side information in the form of pairwise (dis)similarity constraints. Moreover,

to address the efficiency problem for long-term learning, we boost the image retrieval

performance by adapting the distance metric in a stepwise manner based on relevance

feedback.

Our kernel-based distance metric learning method performs kernel PCA on the whole data

set, followed by metric learning in the feature space. It does not suffer from the small

sample size problem encountered by traditional Fisher discriminant analysis methods.

Therefore, our method is significantly different from many existing methods which aim

to address the small sample size problem in multimedia information retrieval, e.g., the

kernel-based biased discriminant analysis method proposed in [14].

In Section 2, we will propose a kernel-based method for nonlinear metric learning. In

Section 3, we will describe how this method can be used to improve the performance of

CBIR tasks. Our method will then be compared with other distance learning methods

based on two real-world image databases. The stepwise kernel-based metric learning
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algorithm that pays attention to both effectiveness and efficiency will be presented in

Section 4. Finally, some concluding remarks will be given in the last section.

2 Kernel-Based Metric Learning

Kernel methods typically comprise two parts. The first part maps (usually nonlinearly)

the input points to a feature space often of much higher or even infinite dimensionality,

and then the second part applies a relatively simple (usually linear) method in the feature

space. In this section, we propose a two-step method which first uses kernel principal

component analysis (PCA) [27] to embed the input points in terms of their nonlinear

principal components and then applies metric learning there.

2.1 Centering in the Feature Space

Let xi (i = 1, . . . , n) be n points in the input space X . Suppose we use a kernel function

k̂ which induces a nonlinear mapping φ̂ from X to some feature space F .1 The “images”

of the n points in F are φ̂(xi) (i = 1, . . . , n), which in general are not centered (i.e.,

their sample mean is not zero). The corresponding kernel matrix K̂ =
[
k̂(xi,xj)

]
n×n

=[
〈φ̂(xi), φ̂(xj)〉

]
n×n

.

We want to transform (simply by translating) the coordinate system of F such that the

new origin is at the sample mean of the n points. As a result, we also convert the kernel

matrix K̂ to K = [k(xi,xj)]n×n = [〈φ(xi), φ(xj)〉]n×n.

Let Y = [φ(x1), . . . , φ(xn)]
T , Ŷ = [φ̂(x1), . . . , φ̂(xn)]T and H = I − 1

n
11T , where 1 is a

1We use RBF kernel in this paper.
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column vector of ones. We can express Y = HŶ. Hence,

K = YYT = HŶŶTH = HK̂H. (1)

2.2 Step 1: Kernel PCA

We briefly review the kernel PCA algorithm here. More details can be found in [27].

We first apply the centering transform as in Equation (1) to get the kernel matrix K. We

then solve the eigenvalue equation for K: Kα = ξα. Let ξ1 ≥ · · · ≥ ξp > 0 denote the

p ≤ n positive eigenvalues of K and α1, . . . , αp be the corresponding eigenvectors. The

embedding dimensionality p may be set to the rank of K, or, more commonly, a smaller

value to ignore the insignificant dimensions with very small eigenvalues, as in ordinary

PCA.

For any input x, the kth principal component ỹk of φ(x) is given by

ỹk =
1√
ξk

n∑
i=1

αik〈φ(xi), φ(x)〉. (2)

If x = xj for some 1 ≤ j ≤ n, i.e., x is one of the n original points, then the kth principal

component ỹjk of φ(xj) becomes

ỹjk =
1√
ξk

(Kαk)j =
1√
ξk

(ξkαk)j =
√

ξkαjk, (3)

which is proportional to the expansion coefficient αjk. Thus, the input points xi (i =

1, . . . , n) are now represented as ỹi (i = 1, . . . , n).
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2.3 Step 2: Linear Metric Learning

To perform metric learning, we further transform ỹi (i = 1, . . . , n) by applying a linear

transform A to each point based on the pairwise similarity and dissimilarity information

in S and D, respectively.

We define a matrix CS based on S as follows:

CS =
1

|S|
∑

(xi,xj)∈S

[(
ỹi − ỹi + ỹj

2

)(
ỹi − ỹi + ỹj

2

)T

+

(
ỹj − ỹi + ỹj

2

) (
ỹj − ỹi + ỹj

2

)T
]

=
1

2|S|
∑

(xi,xj)∈S
(ỹi − ỹj)(ỹi − ỹj)

T , (4)

where |S| denotes the number of similar pairs in S. Note that this form is similar to that

used in RCA [19] by treating each pair in S as a chunklet. This slight variation makes it

easier to extend the method to incorporate pairwise dissimilarity constraints into metric

learning, as illustrated here. Similarly, we define a matrix CD based on D:

CD =
1

2|D|
∑

(xk,xl)∈D
(ỹk − ỹl)(ỹk − ỹl)

T , (5)

where |D| denotes the number of similar pairs in D.

The linear transform A is defined as

A = C
1
2
DC

− 1
2

S . (6)

Each point ỹ, whether or not corresponding to one of the n original points, is then

transformed to z = Aỹ = C
1
2
DC

− 1
2

S ỹ. The Euclidean metric in the transformed feature

space thus corresponds to a modified metric in the original space to better characterize

the implicit similarity relationships between data points.
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3 Image Retrieval Experiments

In this section, we apply the kernel-based metric learning method to improve the retrieval

performance of CBIR tasks. We also compare the retrieval performance of this method

with other distance learning methods.

3.1 Image Databases and Feature Representation

Our image retrieval experiments are based on two image databases. One database is a

subset of the Corel Photo Gallery, which contains 1010 images belonging to 10 differ-

ent classes. The 10 classes include bear (122), butterfly (109), cactus (58), dog (101),

eagle (116), elephant (105), horse (110), penguin (76), rose (98), and tiger (115). An-

other database contains 547 images belonging to six classes that we downloaded from the

Internet. The image classes are manually defined based on high-level semantics.

We first represent the images in the HSV color space, and then compute the color co-

herence vector (CCV) [28] as the feature vector for each image, as was done in [23, 24].

Specifically, we quantize each image to 8 × 8 × 8 color bins, and then represent the im-

age as a 1024-dimensional CCV (α1, β1, . . . , α512, β512)
T , with αi and βi representing the

numbers of coherent and non-coherent pixels, respectively, in the ith color bin. The CCV

representation stores the number of coherent versus non-coherent pixels with each color

and gives finer distinctions than the use of color histograms. Thus it usually gives better

image retrieval results. For computational efficiency, we first apply ordinary PCA to re-

tain the 60 dominating principal components before applying metric learning as described

in the previous section.
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3.2 Comparative Study

We want to compare the image retrieval performance of the two-step kernel method with

the baseline method of using Euclidean distance without distance learning as well as some

other distance learning methods. In particular, we consider two distance learning methods:

Mahalanobis distance learning with RCA and distance learning with DistBoost.2 RCA

makes use of the pairwise similarity constraints to learn a Mahalanobis distance, which

essentially assigns large weights to relevant components and low weights to irrelevant

components with relevance estimated based on the connected components composed of

similar patterns. DistBoost, as discussed in Section 1.2, is a nonmetric distance learning

method that makes use of the pairwise constraints and performs boosting. Since both

DistBoost and our kernel method can make use of dissimilarity constraints in addition

to similarity constraints, we conduct experiments with and without such supervisory

information for the two methods. In summary, the following four methods are included

in our comparative study:

1. Euclidean distance without distance learning

2. Mahalanobis distance learning with RCA

3. Nonmetric distance learning with DistBoost (with and without dissimilarity con-

straints)

4. Metric distance learning with our kernel method (with and without dissimilarity

constraints)

2The program code for RCA and DistBoost was obtained from the authors of [19, 24, 20].
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3.3 Performance Measures

We use two performance measures in our comparative study. The first one, based on

precision and recall, is commonly used in information retrieval. The second one, used

in [23, 24], is based on cumulative neighbor purity curves. Cumulative neighbor purity

measures the percentage of correctly retrieved images in the k nearest neighbors of the

query image, averaged over all queries, with k up to some value K (K = 30 in our

experiments).

For each retrieval task, we compute the average performance statistics over all queries of

five randomly generated sets of similar and dissimilar image pairs. For both databases, the

number of similar image pairs is set to 150, which is about 0.3% and 0.6%, respectively, of

the total number of possible image pairs in the databases. The pairs of similar images are

randomly selected based on the true class labels. The number of dissimilar image pairs

used in DistBoost and our kernel method is also set to 150. For each set of similar and

dissimilar image pairs, we set the number of boosting iterations in DistBoost to 50.

3.4 Experimental Results

Figure 1 shows the retrieval results on the first image database based on both cumulative

neighbor purity and precision/recall. We can see that metric learning with the two-step

kernel method significantly improves the retrieval performance and outperforms other dis-

tance learning methods especially with respect to the cumulative neighbor purity measure.

The retrieval results on the second image database are shown in Figure 2. Again, our

kernel method significantly outperforms the other methods. For both databases, using

dissimilarity constraints in DistBoost and the kernel method can improve the retrieval

12



performance slightly.

*** Figure 1 to be inserted here ***

*** Figure 2 to be inserted here ***

Some typical retrieval results on the first and second databases are shown in Figure 3(a)

and (b), respectively. For each query image, we show the retrieved images in three rows,

corresponding, from top to bottom, to the use of Euclidean distance without distance

learning and distance learning with DistBoost and our kernel method based on similarity

and dissimilarity information. Each row shows the 7 nearest neighbors of the query image

with respect to the distance used, with dissimilarity based on the distance increasing from

left to right. The query image is shown with a frame around it. Note that the query image

may not be the nearest neighbor using the DistBoost method since it learns nonmetric

distance functions which, among other things, may not satisfy d(x,x) = 0 and the triangle

inequality condition. We can see that both DistBoost and our kernel method improve the

retrieval performance, with our method outperforming DistBoost slightly.

*** Figure 3 to be inserted here ***

While the experiments above use the images in the databases as query images, another

scenario that exists in some CBIR systems is to use query images that are not in the image

databases. We have also performed some experiments on the first database under this

setting, with a separate set of query images that are not used for distance learning. We

split the database into the training (70%) and test (30%) sets, with the former used for

distance learning and the latter serving as query images. Figure 4 presents the retrieval

results, which show that the kernel-based metric learning method still outperforms other

methods.
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*** Figure 4 to be inserted here ***

3.5 Discussions

We have demonstrated the promising performance of our kernel-based metric learning

method for CBIR tasks. Unlike other metric learning methods which learn a Mahalanobis

metric corresponding to performing linear transformation in the original image space, we

define the transformation in the kernel-induced feature space which is nonlinearly related

to the image space. Metric learning estimates a linear transformation in the higher-

dimensional feature space induced by the kernel used in kernel PCA. Any query image,

either inside or outside the image database, is then mapped to the transformed feature

space where the Euclidean metric can capture better the similarity relationships between

patterns. Moreover, it is worthy to note that our kernel-based metric learning method is

very efficient. In our experiments, it is more than 10 times faster than DistBoost for the

same retrieval tasks.

We want to investigate further on how practical it is to incorporate distance learning

into real-world CBIR tasks. As discussed above, relevance feedback is commonly used

in CBIR systems for improving the retrieval performance [10, 7, 15, 9, 6, 5, 16, 17, 14].

The pairwise (dis)similarity constraints used by the kernel method can make better use

of the relevance feedback from users, not only from one specific query but also from all

previous ones. Specifically, similarity (dissimilarity) constraints can be obtained from the

relevance feedback, with each relevant (irrelevant) image and the query image forming a

similar (dissimilar) image pair. The set of similar and dissimilar image pairs (or pairwise

similarity and dissimilarity constraints) is incrementally built up as relevance feedback

is collected from users. Thus, later retrieval tasks can make use of an increasing set of
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similar and dissimilar image pairs for metric learning. Figure 5 gives a functional diagram

that summarizes how metric learning can be realized in CBIR systems.

*** Figure 5 to be inserted here ***

4 Stepwise Metric Learning for Image Retrieval

The kernel-based metric learning algorithm incorporates pairwise constraints to perform

metric learning. In the experiments performed in Section 3 above, we accumulate the

similarity constraints over multiple query sessions before applying metric learning. Ex-

perimental results show that more pairwise constraints can lead to greater improvement.

However, this also implies higher computational demand.

4.1 Stepwise Kernel-Based Metric Learning

As a compromise, we can perform stepwise kernel-based metric learning by incorporating

the pairwise constraints in reasonably small, incremental batches each of a certain size

ω. Whenever the batch of newly collected pairwise constraints reaches this size, metric

learning will be performed with this batch to obtain a new metric. The batch of similarity

constraints is then discarded. This process will be repeated continuously with the arrival

of more relevance feedback from users. In so doing, knowledge acquired from relevance

feedback in one session can be best utilized to give long-term improvement in subsequent

sessions. This stepwise metric adaptation algorithm is summarized in Figure 6.

*** Figure 6 to be inserted here ***
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4.2 Evaluation on CBIR Tasks

To evaluate the stepwise kernel-based metric learning algorithm described above, we devise

an automatic evaluation scheme to simulate a typical CBIR system with the relevance

feedback mechanism implemented. More specifically, for a prespecified maximum batch

size ω, we randomly select ω images from the database as query images. In each query

session based on one of the ω images, the system returns the top 20 images from the

database based on the current distance function, which is Euclidean initially. Of these 20

images, five relevant images are then randomly chosen, simulating the relevance feedback

process performed by a user.3 Our kernel-based metric learning method is performed once

after every ω sessions.

Figure 7 shows the cumulative neighbor purity curves for the retrieval results on the Corel

image database based on stepwise metric learning with different maximum batch sizes ω.

As we can see, long-term metric learning based on stepwise metric learning can result

in continuous improvement of retrieval performance. Moreover, to incorporate the same

amount of relevance feedback from users, it seems more effective to use larger batch sizes.

For example, after incorporating 40 query sessions from the same starting point, the final

metric (metric4) of Figure 7(a) is not as good as that (metric2) of Figure 7(b), which in

turn is (slightly) worse than that of Figure 7(c). Thus, provided that the computational

resources permit, one should perform each metric learning step using relevance feedback

3In real-world CBIR tasks, users intuitively select the most relevant images from the returned (say

top 20) images. The selected images are not necessarily the nearest ones computed based on the (learned)

distance metric. To simulate real-world CBIR tasks, we use five randomly selected images as relevance

feedback from the user. In fact, for the purpose of metric learning, selecting more “distant” yet relevant

images as similar pairs is even better, as the distance metric can be improved to a greater extent in the

subsequent metric learning process.
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from more query sessions.

*** Figure 7 to be inserted here ***

5 Concluding Remarks

In this paper, we have proposed an efficient kernel-based distance metric learning method

and demonstrated its promising performance for CBIR tasks. Not only does our method

based on semi-supervised metric learning improve the retrieval performance of Euclidean

distance without distance learning, it also outperforms other distance learning methods

significantly due to its higher flexibility in metric learning. Moreover, unlike most existing

relevance feedback methods which only improve the retrieval results within a single query

session, we propose a stepwise metric learning algorithm to boost the retrieval performance

continuously by accumulating relevance feedback collected over multiple query sessions.

Despite its promising performance, there is still room to further enhance our proposed

method. In our kernel method, the kernel PCA embedding step does not make use of the

supervisory information available. One potential direction to pursue is to combine the

two steps into one using the kernel trick and reformulate the metric learning problem as

a kernel learning problem. Other possible research directions include applying the idea of

kernel-based metric learning to other pattern recognition tasks.
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Figure 1: Retrieval results on the first image database (1010 images, 10 classes). (a) cu-

mulative neighbor purity curves; (b) precision/recall curves.
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Figure 2: Retrieval results on the second image database (547 images, 6 classes). (a) cu-

mulative neighbor purity curves; (b) precision/recall curves.
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(a)

(b)

Figure 3: Typical retrieval results on the two databases ((a) and (b)) based on Euclidean

distance (top row), DistBoost (middle row) and our kernel method (bottom row). Each

row shows the 7 nearest neighbors including the query image (framed).
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Figure 4: Retrieval results on the first image database based on a separate set of query

images. (a) cumulative neighbor purity curves; (b) precision/recall curves.
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Figure 5: Functional diagram for metric learning in CBIR.
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Input: Image database X , maximum batch size ω

Begin

Set Euclidean metric as initial distance metric

Repeat {
Obtain relevance feedback from new query session

Save relevance feedback to current batch

If batch size = ω

Adapt distance metric by kernel-based metric learning

Clear current batch of feedback information

}
End

Figure 6: Stepwise kernel-based metric learning algorithm for boosting image retrieval

performance
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Figure 7: Retrieval results based on stepwise kernel-based metric learning with different

maximum batch sizes. (a) ω = 10 sessions; (b) ω = 20 sessions; (c) ω = 40 sessions.
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Responses to Reviewers’ Comments

We thank the reviewers for their constructive comments.

Reviewer 1

Comment: All the equations should be labeled.

Response: We accept the suggestion to add labels to all equations in the revised paper.

Comment: Author didn’t state how to solve the eigenvalue equation of small sample

size.

Response: Our kernel-based distance metric learning method performs kernel PCA on

the whole data set, followed by metric learning in the feature space. It does not suffer from

the small sample size problem encountered by traditional Fisher discriminant analysis

methods. In the revised paper, we have added some brief explanation on this point in

Section 1.3.

Comment: The idea in this paper is similar to Kernel BDA (in ref.[14]). Maybe the

author should clarify what’s the big difference between them.

Response: In fact our method is totally different from the kernel-based biased discrim-

inant analysis (BDA) method proposed in [14], which aims to address the small sample

size problem in multimedia information retrieval. We have added a short paragraph in

Section 1.3 to clarify the difference between them.

29



Reviewer 2

Comment: The method itself is clearly formulated, though the review of the kernel PCA

algorithm in section 2.2 could be shortened.

Response: We have shortened the review of kernel PCA in Section 2.2.

Comment: Some of the design decisions are not or poorly motivated: (1) Why create a

1024 dimensional color coherence vector (CCV) from a 8x8x8 (512 color bins) quantized

image? (2) Why decide for the first 60 PCA components?

Response: (1) Color histograms are commonly used for image representation in CBIR

tasks. However, color histograms do not capture spatial information in the images, so

images with very different appearances may end up having similar histograms. On the

other hand, color coherence vectors (CCV) store the number of coherent versus non-

coherent pixels with each color, and they have been shown to outperform color histograms

for image retrieval tasks, e.g., in [28]. In fact, CCVs are also commonly used for image

representation in CBIR tasks, e.g., [23, 24]. (2) To reduce the dimensionality of the

image data, we apply PCA to discard the dimensions corresponding to zero or very small

eigenvalues. Similar settings are also used in related work, e.g, [20, 23].

In the revised paper, we have added some explanations in Section 3.1 to clarify these two

points.

Comment: (Section 3) The performance evaluation with precision recall graphs is only

performed for 5 randomly generated image sets. It is not discussed on which basis the

similar image pairs have been chosen. Since the well known Corel image database is
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used, it would be more meaningful to show averaged class-wise precision recall graphs. In

addition the results could be easier cross compared with other algorithms.

Response: The similar image pairs are randomly selected based on the true class labels.

We believe this experimental setting is fair for comparative study of different metric

learning methods, as was also used by other researchers, e.g., in [19, 20, 23, 24].

In our experiments, every image in the image data set may be selected as the query

image. The precision and recall are averaged over all queries of the 5 randomly selected

similar image sets to give the average performances statistics. Precision/recall curve is

commonly used in information retrieval to measure the overall retrieval performance, so we

also use it here as a complement to the cumulative neighbor purity curve, which measures

the percentage of correctly retrieved images in the k nearest neighbors. Based on both

measures, we can clearly compare our method with other related methods, as shown in

Figures 1, 2 and 4.

We have modified Section 3.3 accordingly to clarify these points.

Comment: The stepwise metric learning approach in section 4 is an interesting method

though the 5 random chosen images might decrease the performance. Wouldn’t it be more

useful to manually select the “real” relevant images?

Response: In real-world CBIR tasks, users intuitively select the most relevant images

from the returned (say top 20) images. The selected images are not necessarily the nearest

ones computed based on the (learned) distance metric. To simulate real-world CBIR tasks,

we use five randomly selected images as relevance feedback from the user. In fact, for

the purpose of metric learning, selecting more “distant” yet relevant images as similar

pairs is even better, as the distance metric can be improved to a greater extent in the
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subsequent metric learning process. We have added Footnote 3 in Section 4.2 to explain

this experimental setting more clearly.
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