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Abstract

The extraction of optimal features, in a classification
sense, is still quite challenging in the context of large-scale
classification problems (such as visual recognition), involv-
ing a large number of classes and significant amounts of
training data per class. We present an optimal, in the min-
imum Bayes error sense, algorithm for feature design that
combines the most appealing properties of the two strategies
that are currently dominant: feature extraction (FE) and fea-
ture selection (FS). The new algorithm proceeds by interleav-
ing pairs of FS and FE steps, which amount to a sequential
search for the most discriminant directions in a collectionof
two dimensional subspaces. It combines the fast convergence
rate of FS with the ability of FE to uncover optimal features
that are not part of the original basis functions, leading toso-
lutions that are better than those achievable by either FE or
FS alone, in a small number of iterations. Because the basic
iteration has very low complexity, the new algorithm is scal-
able in the number of classes of the recognition problem, a
property that is currently only available for feature extrac-
tion methods that are either sub-optimal or optimal under
restrictive assumptions that do not hold for generic recog-
nition. Experimental results show significant improvements
over these methods, either through much greater robustness
to local minima or by achieving significantly faster conver-
gence.

1. Introduction

The formulation of visual recognition as a problem of sta-
tistical classification (see e.g. [13, 2, 4, 8, 10, 15]) has re-
sulted in solutions of unprecedented success for problems
such as face detection [11, 14]. This success is due, in large
part, to the fact that the statistical formulation supportsfea-
ture extraction strategies that are data-driven and explicitly
minimize classification error. While there are multiple ways
to achieve this goal, e.g. through the search for the optimal

weight configuration for the hidden nodes of a neural net-
work [4, 11], the selection of a best set of basis functions
from a predefined set [8, 14], or the selection of feature con-
figurations [10, 15], the end product is invariably a set of
features that are optimal, in the classification sense, for the
recognition problem.

Typically, this is accomplished by posing the problem of
feature extraction or selection as one of learning a discrimi-
nant classifier, e.g. a neural net, a support vector machine,or
a boosted perceptron. While embedding feature design in the
design of the overall classifier has the advantage of explicitly
optimizing performance for the recognition task at hand, it
also has significant drawbacks. The most challenging among
these is a significant computational complexity: assuming
that the initial pool of features is large, the complex prob-
lem of designing a complete classifier on a high-dimensional
feature space has to be solved at each step of feature extrac-
tion. Since most of the state-of-the-art algorithms for thede-
sign of discriminant classifiers (e.g. backpropagation, SVM
learning, or boosting) do not scale well with the number of
classes that need to be discriminated, the task is virtuallyim-
possible in the context of large-scale recognition systems, i.e.
recognition systems applicable to problems containing thou-
sands of classes and significant amounts of training data per
class. For this reason, sub-optimal feature extraction tech-
niques such as principal component analysis (PCA) [13], or
linear discriminant analysis (LDA) [2], remain the most pop-
ular for problems such as face, object, or texture recognition.

It should be noted that the simultaneous design of classi-
fier and feature set is not a necessary requirement for achiev-
ing optimal (in a classification sense) features. In particular,
it is known from Bayesian decision theory that 1) the proba-
bility of error of any classifier is lower bounded by theBayes
error (BE), 2) the BE only depends on the feature space, not
the classifier itself, and 3) there is always at least one clas-
sifier that achieves this lower bound (the Bayes classifier).
Hence, at least from a theoretical point of view, it should be
possible to find the optimal feature space for a given classifi-
cation problem without designing the classifier itself: it suf-

1



fices to find the feature transformation that leads to the fea-
ture space where the BE is minimum. By avoiding the com-
plexity of iterated classifier design, this strategy is morescal-
able, in the number of classes of the recognition problem,
than those requiring simultaneous feature and classifier de-
sign.

The search for the optimal set of features, in the mini-
mum BE sense, for a given classification problem can be ad-
dressed in two ways: by 1)feature extraction(FE) or 2)fea-
ture selection(FS). Denoting theobservation spaceassoci-
ated with the classification problem byX (typically high-
dimensional), the goal of both FE and FS is to find the best
transformW into a feature spaceY (typically lower dimen-
sional) where learning is easier. While in the case of FE there
are few constraints onW, for FS the transformation is con-
strained to be a projection, i.e. the components of afeature
vector in Y are a subset of the components of the associ-
ated vector inX . While both FS or FE can be used for the
minimization of BE, both approaches have non-trivial limi-
tations.

On one hand, FS requires the solution of a significantly
simpler computational problem, since it consists of selecting
the best subset from a set of already available basis functions.
On the other, because it cannot produce features that are not
part of the original set, the resulting transformation is usu-
ally sub-optimal. For example, two features that (as a pair)
are highly discriminant but also highly correlated can have
marginal distributions of small discriminant power. Such fea-
ture pairs cannot be reduced to a single new discriminant fea-
ture by FS techniques. FE avoids this problem by designing
the basis itself, through the search for the overall optimalW,
but requires the solution of a significantly more difficult op-
timization problem. In fact, because BE is a non-linear func-
tion of the feature transformation, which does not have well-
defined derivatives everywhere, its minimization by straight-
forward application of standard gradient-descent procedures
can be quite challenging. Perhaps due to this, only a surpris-
ingly small amount of work has addressed the direct mini-
mization of BE in both the FE and FS literatures [12, 1].

In this paper, we introduce an algorithm for the computa-
tion of the minimum-BE feature set for a given classification
problem. This algorithm combines the appealing properties
of FS and FE. Like FS methods, it progresses in a sequence
of steps where, at each step, the best features among those
not yet selected are identified. However, unlike FS methods,
it does not blindly include these features in the selected set.
Instead, it considers the set of 2-D subspaces spanned by all
pairs of features such that one feature is in the selected set
and the other in the candidate set. It then performs FE in
each of these subspaces, to find the direction that leads to the
largest decrease in BE, and includes that direction in the se-
lected set.

When compared to standard FE procedures, the new al-
gorithm has the advantage of immediately zooming in on

the optimal features that may already exist in the initial fea-
ture set. This leads to a significantly improved rate of con-
vergence. When compared to FS procedures, it has the ad-
vantage of not being restricted to the original feature set.Ex-
perimental evaluation on multi-class visual recognition tasks
shows that it converges to minimum Bayes error solutions
in a very small number of iterations. The new algorithm is
compared to the FE solutions in common use in the large-
scale classification context - PCA, LDA and heteroscedastic
discriminant analysis (HDA) [7] - and to an alternative FE
solution based on gradient descent on a tight upper bound
of the BE. It significantly outperforms these solutions, ei-
ther by having much greater robustness to local minima or
by achieving significantly faster convergence.

2. Minimum Bayes error features
Consider a set of training data{xl, cl}

N
l=1 drawn from a

continuous-valued random variableX such thatxl ∈ ℜn×1,
and a discrete random variableC that generates class labels
cl ∈ {1, ..., |C|}. The goal of FE is to find a linear feature
transformationW : X ⊂ ℜn×1 → Y ⊂ ℜm×1, yl = Wxl,
m < n, that reduces the dimensionality of the data fromn to
m. Theminimum Bayes errorfeature transformatioñW is
the one that minimizes theBayes error(BE)[6] on the output
spaceY

L∗
Y = 1 − EY

[

max
c

PC|Y (c|y)
]

(1)

= 1 −

∫

ℜm

max
c

PC|Y (c|y)PY (y)dy, (2)

wherePC|Y (c|y) is the posterior distribution for classc on
Y andPY the probability density function fory. Formally,

W̃ = arg min
W,rank(W)=m

L∗
Y . (3)

2.1. Estimating the Bayes error
Typically one does not have access to the probabilities

PC|Y (c|y) or PY (y) and it is therefore impossible to evalu-
ate the BE through (2). Noting, however, that by the applica-
tion of Bayes rule

L∗
Y = 1 − EY

[

max
c

PY |C(yl|c)PC(c)
∑

c PY |C(yl|c)PC(c)

]

, (4)

it follows that, given the class-conditional densities
PY |C(yl|c), the priorsPC(c), and a sample{y1, . . . ,yN},
the expectation above can be estimated by the Monte-Carlo
approximation

L̂∗
Y = 1 −

1

N

∑

l

[

max
c

PY |C(yl|c)PC(c)
∑

c PY |C(yl|c)PC(c)

]

, (5)

which we denote by theempirical Bayes error(EBE). The
class priors are assumed known (but could also be estimated
from training data quite easily), while the class-conditional



densities are estimated by maximum likelihood (via the
expectation-maximization algorithm [5]) , using a Gaussian
mixture model

PX|C(xl|c) =

Kc
∑

k=1

λckG(xl; µck,Σck) (6)

in X , and leading to a Gaussian mixture inY

PY |C(yl|c) =

Kc
∑

k=1

λckG(Wxl;Wµck,WΣckW
T ). (7)

Note that this estimation is an initialization step that only has
to be performed once, typically when the images in the class
are added to the database, and is likely to be required for op-
erations other than feature design (e.g. the actual classifica-
tion of images presented to the recognition system). Hence,
it does not affect the complexity of the feature design algo-
rithms to be discussed in the subsequent sections.

2.2. Joint feature selection and extraction
The matrixW can be seen as the product of a matrixW0

whose rows form a basis ofX and the canonical projection
matrixΠm

n : ℜn → ℜm, Πm
n (x1, . . . , xn) = (x1, . . . , xm)

W = Πm
n W0. (8)

Under this interpretation, the rows ofW are simply the sub-
set of the basis vectors ofX that span a subspaceXs ⊂ X .
The BE onY is determined by how discriminant this sub-
space is, i.e. it will be minimum whenXs is the most discrim-
inantm-dimensional subspace ofX . Since discarding a dis-
criminant direction can lead to a drastic increase in BE, the
transformationW can be significantly improved by switch-
ing a basis vector ofX c

s (row-vectors ofW0 not inW) with
a basis vector ofXs (i.e. row vectors ofW) when the for-
mer is a better discriminant than the latter.

This is the basic operation of FS, and one that is very un-
likely under traditional FE. Because, when seen as points in
ℜn×m, the matricesW before and after the switch can be
arbitrarily far apart, it is highly likely that local minimaof
the BE surface will prevent a gradient-descent type of iter-
ation from reaching the latter when initiated at the former.
Due to this ability to avoid local optima (the step in solu-
tion space is not guided by the gradient) FS usually has a
significantly faster convergence rate than FE. The only prob-
lem is that it can never identify discriminant directions which
are not basis functions ofW0 already. This can be a signif-
icant limitation, as illustrated by Figure 1. In this example,
while the featuresx1 andx2 are (jointly) a highly discrim-
inant pair, their marginal class-conditional densities exhibit
a significant amount of overlap. Hence, because none of the
two features is significantly discriminant by itself, it is un-
likely that, in the context of a larger problem, the highly dis-
criminant pair would be identified by a standard FS step.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

Class 1
Class 2

−15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

x
1

Class 1
Class 2

−15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

x
2

Class 1
Class 2

Figure 1. A classification problem with a pair
of jointly discriminant features that, individu-
ally, are not very discriminant.

In order to achieve convergence rates equivalent to those
of FS, while avoiding this limitation, we introduce an algo-
rithm that performs joint FS and FE, which we denote by
FSE (feature selection and extraction). The basic idea is to
replace the simple evaluation of the goodness of the switch
between the two candidate vectors with a full FE step in the
plane spanned by them. Letwi be the vector inXs (the ith

row of W0, i ∈ {0, . . . , m − 1}) and wo the one inX c
s

(oth row of W0, o ∈ {m, . . . , n − 1}), and consider the
set of 2D rotation matricesR(i, o, θio) (whereR(i, o, θio)
is identical to then×n identity matrix with the exception of
Rii = cos(θio), Rio = sin(θio), Roi = − sin(θio), Roo =
cos(θio)). Instead of simply evaluating the EBE resulting
from the switch ofwi with wo, we search for the rotation
angleθio that leads to the overall transformation

W = Πm
n R(i, o, θio)W0, (9)

with smallest EBE

L̂∗
Y = 1 −

1

N

N
∑

l=1

max
c

PC|Y (c|yl) (10)

where PC|Y (c|yl) is obtained by combining (7) and the
class priors with Bayes rule. This is a one dimensional min-
imization problem that can, therefore, be solved very ef-
ficiently with standard exhaustive search procedures (e.g.
golden search [9]).

In fact, it is usually not even necessary to repeat this pro-
cedure for all possible pairs of basis vectors. One observation
that we have made quite consistently is that, whenW0 is a
sensible initializion (e.g. that provided by PCA), the vastma-
jority of the planes(wi,wo) either 1) are not very discrimi-
nant, or 2) already havewi as the most discriminant dimen-
sion. In these cases there is not much to be gained from the
rotation and it is unlikely that such planes will be selected.
To take advantage of this observation, we introduce an (op-
tional) pre-filtering step that eliminates the planes with small
ratio between 1) the EBE of the projection onwi

L̃∗
[wi]

= 1 − EX

[

max
c

PC|X(c|wi x)
]

, (11)



and 2) the EBE of the projection on the plane

L̃∗
[wi,wo] = 1 − EX

[

max
c

PC|X

(

c
∣

∣

[

wi

wo

]

x

)]

. (12)

Note that, because all the densities involved are one or two-
dimensional, this ratio can be computed using histogram-
based density estimates.Its complexity is therefore negli-
gible when compared to that of (10) and, ifp planes are
selected, the overall complexity is reduced by a factor of
sm(n − m)/p. The complete algorithm is as follows:

1. letW = Πm
n W0;

2. compute
L̃∗

[wi]

L̃∗
[wi,wo]

for all pairs(wi,wo) and select thep

pairs of smallest ratio.

3. for each of thep selected pairs find the rotation angle
θ∗io, using golden section search, that yields the smallest
possible EBE as given by (9) and (10)

4. find the plane(wi∗ ,wo∗) that leads to the smallest em-
pirical BE and updateW0 = R(i∗, o∗, θ∗i∗o∗)W0.

5. return to step 2 until the EBE difference between 2 suc-
cessive iterations is smaller than a constantt (set to
10−6 in our experiments).

The matrixW0 can be the identity but can also be a fea-
ture transformation itself. One sensible solution is to rely on
a feature transformation that experience has shown to per-
form reasonably well on the problem at hand. For example, a
principal component analysis or a wavelet decomposition in
visual recognition problems. In fact, as long asW0 is invert-
ible, there will be no loss of BE and, therefore, any orthogo-
nal or overcomplete decomposition qualifies.

2.3. Gradient descent
As a benchmark against which to compare the algorithm

of the previous section, we implemented an algorithm based
on FE alone. As is customary in the FE literature, this algo-
rithm performs gradient descent on the EBE surface. It turns
out that the solution to this problem is not straightforward
since, due to themax(·) operator in (2), the EBE surface
does not have well-defined derivatives everywhere. To over-
come this limitation, we relied on the upper bound resulting
from the replacement of themax(·) operator by thesoftmax
function

s({xi}; σ) =
∑

j

eσxj

∑

i eσxi
xj , (13)

whereσ > 0 is a scale parameter, and{xi} ≥ 0 the in-
put set [3]. As illustrated by Fig. 2 a), the softmax is a lower
bound to the max function that can be made arbitrarily tight
by takingσ to infinity. In practice, even for relatively small
values ofσ (e.g.σ = 10), the bound is a very good approxi-
mation to the max function. Consequently,

L̂∗
Y = 1 − EY





|C|
∑

c=1

eσPC|Y (c|y)

∑|C|
d=1 eσPC|Y (d|y)

PC|Y (c|y)



 (14)
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Figure 2. The softmax function represents a
tight bound of the max function.

is a very good approximation to (2). This is illustrated by
Fig. 2 b), which presents the BE on a problem withn = 2,
m = 1, |C| = 2, as a function of the angle of the line into
which the input space is projected (see Fig.3 a)). Clearly, the
extrema of the two functions are co-located. Furthermore,
because (14) has continuously differentiable derivatives, it
can be minimized with standard gradient descent

W(t+1) = W(t) − η

(

∂L̂∗
Y

∂W

)

(t)

, (15)

where t represents the time step, andη is a learning rate
(in our implementation the value that produces the largest
decay of the cost among a set of pre-defined values). Re-
placing all expectations by the empirical meansEY [f(y)] =
1
N

∑

l f(yl), it follows, after some algebraic manipulation1,
that

∂L̂∗
Y

∂W
≈

− 1
N

∑N
l=1

[

∑|C|
c=1

e
σPC|Y (c|yl)

∑

|C|

d=1
e

σPC|Y (d|yl)

(

∂PC|Y (c|yl)

∂W

)

]

(16)
where, by application of Bayes rule,

∂PC|Y (c|yl)

∂W
=

[

1

PY (yl)

(

∂PY |C(yl|c)

∂W

)

PC(c)

−

(

PC|Y (c|yl)

PY (yl)

)(

∂PY (yl)

∂W

)]

, (17)

with

PY (yl) =

|C|
∑

c=1

PY |C(yl|c)PC(c),

∂PY (yl)

∂W
=

|C|
∑

c=1

∂PY |C(yl|c)

∂W
PC(c),

1 Assuming that s

(

PC|Y (c|yl)
∂PC|Y (c|yl)

∂W
;σ

)

≈

s

(

PC|Y (c|yl)s

(

∂PC|Y (c|yl)

∂W
;σ

)

;σ

)

, which is an equal-

ity whens({.}, σ) is replaced bymax({.})
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Figure 3. Various toy problems and the solu-
tions obtained by LDA, HDA, and gradient de-
scent. In all cases the best 1D subspace is
represented by the solid bar.

andPC(c) = 1
|C| . Under the Gauss mixture assumption of (7)

∂PY |C(yl|c)

∂W
=

∂PY |C(Wxl|c)

∂W
(18)

=

Kc
∑

k=1

λckΨ(c, k) (−Ω(c, k) − Γ(c, k,xl)) β(c, k,xl),

with

Ω(c, k) = (WΣckW
T )−1WΣck

Ψ(c, k) = (2π)−
m
2

∣

∣WΣckW
T
∣

∣

− 1
2

Γ(c, k,xl) = (WΣckW
T )−1W(xl − µck)(xl − µck)T

(

I − WT (WΣckW
T )−1WΣck

)

β(c, k,xl) = e−
1
2 (W(xl−µck))T (WΣckWT )−1(W(xl−µck)).

Finally, the scale parameter is set toσ = argmaxσ

∥

∥

∥

∂L̂∗
Y

∂W

∥

∥

∥
,

i.e. the value that maximizes the gradient of the cost func-
tion.

3. Experiments
To evaluate the algorithms introduced in this work, we

applied them to various visual recognition problems, ranging
from simple toy examples that provide intuition to full-blown
recognition tasks involving many classes in domains such as
face or texture recognition. We started with a set of prob-
lems designed to compare the performance of the new al-
gorithms to that of the classical solutions, namely LDA and
HDA. The first set of experiments were performed on a col-
lection of toy problems (projection of two classes from2 to
1 dimension) that provide some intuition about the advan-
tages of minimizing BE. As illustrated by Fig. 3 a), all meth-
ods performed perfectly on Gaussian problems with classes
of equal covariance. However, as shown in b) and c), LDA
broke down even for Gaussian problems of unequal class co-
variance. This is a well known problem and the motivation
for HDA [7, 12]. Both HDA and the two minimum BE algo-
rithms converged to the optimal solution, shown in c).

The problem on Figures 3 d)-3 f) consists of a Gaussian
class and a second class which is a mixture of two Gaussians.
In this case, the BE surface has a local minimum that, as
shown in d), is also the optimal solution for LDA and HDA.
Fig. 3 e) and f) illustrate the susceptibility of the gradient de-
scent algorithm to local minima of the BE. As can be seen
in e), if the initialW is close to a local minimum then gra-
dient descent will converge to it. There is however, as shown
in f), a much larger region of the solution space that will lead
to convergence to the global minimum. Finally, this prob-
lem demonstrates the increased robustness of FSE to local
minima. Because the optimal direction is found by exhaus-
tive search we were not able to find, under FSE, an initial-
ization that would prevent convergence to the global mini-
mum.

The second set of experiments was performed on a face
recognition task using the ORL database. This database con-
tains 20 classes, each composed of 10112 × 92 images,
which were scaled down to15× 13 (by smoothing and bicu-
bic interpolation). This set was split into a training database
(first 8 images of each class) and a test database (remaining
2 images). The matrixW0 was the PCA matrix of the train-
ing data, as used in the popular eigenfaces technique [13],
which was also used as the initial basis for HDA. Recog-
nition was performed with a maximum likelihood classifier
g∗(Wxl) = argmaxc PY |C(Wxl|c), wherexl is a face
from the test database, andPY |C(y|c) the Gaussian learned
from the training images of classc. Table 1 shows the val-
ues of EBE obtained on the training and test sets whenW is
learned with PCA, HDA, and FSE algorithm. Besides the fact
that FSE outperforms the two other techniques, it is interest-
ing to notice the correlation between the Bayes error and the
actual probability of error. This correlation is confirmed by
Fig. 4, which presents a scatter plot of the two quantities,
obtained by varying the transformationW and the output di-
mensionalitym. This is particularly interesting given that the
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classifier is sub-optimal (it is unlikely that the PCA features
are exactly Gaussian) and there were, therefore, no guaran-
tees that the recognition error would behave like the BE.

FSE PCA HDA
BE training set 0.0011 0.0124 0.0015
BE testing set 0.0026 0.0575 0.19

Recognition rate 70% 66.7% 48.3 %

Table 1. BE and recognition rates on the ORL
face recognition experiment.

Brodatz is also interesting in the sense that it poses a sig-
nificant problem for many classification architectures. For
example, the straightforward application of a support vec-
tor machine (SVM) to this database tends to perform quite
poorly. Table 2 presents the best results that we were able
to obtain, at several image resolutions, for an SVM with a
Gaussian kernel, after a substantial amount of tuning of both
the kernel variance and the SVM capacity parameter2. We

Resolution Recognition rate
8 × 8 32.08

16 × 16 32.08
32 × 32 31.25

128 × 128 33

Table 2. Recognition rates on Brodatz for an
SVM classifier at different image resolutions.

believe that this strongly disappointing performance is due to

2 We started from a kernel variance equal to the median Euclidean dis-
tance between the training vectors and a capacity of1, and then man-
ually tried various variations of the two parameters aroundthese initial
values. The combination that lead to smallest error was selected.
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Figure 5. a) empirical BE vs number of itera-
tions for gradient descent and FSE on the test
and training datasets of Brodatz. b) empirical
BE vs computational time required for conver-
gence by FSE as a function of the parameter p
(solid line), initial BE (dashed) and BE vs com-
putational cost of gradient descent (dot).

the fact that the1−vs−all strategy required to turn the multi-
class problem (that the SVM cannot handle directly) into
a collection of binary problems (which are then combined
into a multi-class decision) may be strongly sub-optimal on
Brodatz. We have also previously shown that other currently
popular representations in learning and vision, e.g. an inde-
pendent component analysis (ICA) type of decomposition,
do not work well on this database [1]. In fact, an extensive
study comparing the performance of various feature spaces
(including PCA, ICA, and wavelets), have shown that the dis-
crete cosine transform (DCT) is a top performer on Brodatz
(see [1] for details). We therefore used the DCT as initial ba-
sis W0, in an attempt to determine if further optimization,
by either FSE or gradient descent, could lead to visible im-
provement over this already very good solution.

We started by comparing the performance of the
minimum-BE feature sets obtained by FSE and gradient de-
scent, saving the matrixW at each iteration and measur-
ing the corresponding EBE on both the training and test sets,
to make sure that there was no over-fitting. Fig. 5 presents
the evolution of the EBE as a function of the iteration num-
ber, showing that the convergence rate of FSE is significantly



faster (at least one order of magnitude) than that of gra-
dient descent. By running the algorithms for an extended
number of iterations, we also observed that the curves re-
mained flat after50 iterations. This means that gradient
descent was trapped in a local minimum that prevented con-
vergence to the better solution reached by FSE. In summary,
gradient descent required a significantly larger number of it-
erations to converge to a worse solution than that found by
FSE.

In order to compare the computational cost of the two al-
gorithms (and evaluate the trade-off between BE and com-
plexity due to the filtering step of FSE), we ran FSE with
various values of the plane-retention parameterp. Fig. 5 b)
shows the variation of the final value of BE, forp = 1
and p ∈ {1%, 5%, 10%, 20%, 50%, 100%} of all possible
planes, as a function of the CPU time3. Also shown are the
BE achieved by gradient descent and the corresponding time
and the initial BE. Clearly, simply picking the best plane is
enough to reach a solution that is very close to the best possi-
ble (and better than the gradient descent solution), at a com-
putational cost more than two orders of magnitude smaller
than that of either the overall best or gradient descent.

Finally, we compared the recognition performance of the
FSE solution with that of the initial DCT features. Recog-
nition was performed with a maximum likelihood classifier
g∗(Wxl) = argmaxc PY |C(Wxl|c), wherexl is an image
from the test database, andPY |C(y|c) the Gaussian mixture
learned from the training images of classc. Table 3 shows
the recognition rates obtained, confirming that the FSE solu-
tion is the best one and reduces the error rate of the DCT fea-
tures by about12%. Given that the DCT features already per-

Features Recognition rate
DCT 92.92
FSE 93.75

Table 3. Recognition rates on Brodatz for a
mixture classifier based on the DCT and FSE
feature spaces.

form very well for most test images, we believe that this im-
provement is significant.

In fact, visual inspection of the classification results ob-
tained for each test image revealed no instances where FSE
did worse than the DCT. On the contrary, FSE tends to im-
prove performance for test images belonging to classes that
are visually quite similar to other classes in the database.
These are the most difficult images to classify and the re-
sults above suggest that, for12% of them, FSE is helpful.
Furthermore, we have noticed that this gain is not achieved

3 Computer configuration: Intel Xeon processor at 2.4GHz with 4GB of
memory.
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Figure 6. Recognition results obtained on Bro-
datz with the DCT-based (a) and FSE-based
(b) classifiers. In each case, the classes in the
database are ordered by decreasing likelihood
with respect to the test image. For each class,
we show a representative image.

at the cost of a loss of the generalization ability of the clas-
sifier. On the contrary, the FSE-based classifier appears to be
more robust than the DCT-based counterpart and produces



judgments of similarity that seem more correlated to those of
human perception. These points are illustrated by Figure 6,
where we show the classification results obtained with the
two classifiers for various test images. The top two exam-
ples of Figures 6 a) and 6 b) illustrate how the FSE-based
classifier has better ability to generalize, producing an order-
ing of the classes that seems to be closer to human judgments
of similarity. The bottom two examples of Figures 6 a) and 6
b) show instances where, even though close, the DCT-based
classifier produces an error. In these cases, the FSE-based
classifier is able to recover the correct ordering without al-
tering the third match. All examples (as well as others that
are omitted for brevity) support the argument that FSE pro-
duces a layout of the feature space that, locally, allows a finer
discrimination between similar classes but, globally, brings
those classes closer together.
Acknowledgements: We would like to thank Allan Jepson
for useful suggestions during the preparation of this paper.
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