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Abstract weight configuration for the hidden nodes of a neural net-

work [4, 11], the selection of a best set of basis functions

The extraction of optimal features, in a classificatioffom a predefined set [8, 14], or the selection of feature con-
sense, is still quite challenging in the context of largatec figurations [10, 15], the end product is invariably a set of
classification problems (such as visual recognition), lavo features that are optimal, in the classification sense Her t
ing a large number of classes and significant amounts ¢gcognition problem.
training data per class. We present an optimal, in the min- Typically, this is accomplished by posing the problem of
imum Bayes error sense, algorithm for feature design thdeature extraction or selection as one of learning a diserim
combines the most appealing properties of the two stragegigant classifier, e.g. a neural net, a support vector macbine,
that are currently dominant: feature extraction (FE) andfe a boosted perceptron. While embedding feature design in the
ture selection (FS). The new algorithm proceeds by interlea design of the overall classifier has the advantage of exilici
ing pairs of FS and FE steps, which amount to a sequenti@ptimizing performance for the recognition task at hand, it
search for the most discriminant directions in a collectadn also has significant drawbacks. The most challenging among
two dimensional subspaces. It combines the fast conveggeribese is a significant computational complexity: assuming
rate of FS with the ability of FE to uncover optimal featureghat the initial pool of features is large, the complex prob-
that are not part of the original basis functions, leadingte  lem of designing a complete classifier on a high-dimensional
lutions that are better than those achievable by either FE dieature space has to be solved at each step of feature extrac-
FS alone, in a small number of iterations. Because the basii®n. Since most of the state-of-the-art algorithms fordiee
iteration has very low complexity, the new algorithm is scalsign of discriminant classifiers (e.g. backpropagationVSV
able in the number of classes of the recognition problem, lgarning, or boosting) do not scale well with the number of
property that is currently only available for feature extra classes that need to be discriminated, the task is virtiray
tion methods that are either sub-optimal or optimal undepossible in the context of large-scale recognition sysfems
restrictive assumptions that do not hold for generic recogrecognition systems applicable to problems containingtho
nition. Experimental results show significant improveraentsands of classes and significant amounts of training data per
over these methods, either through much greater robustneglgss. For this reason, sub-optimal feature extractioh-tec
to local minima or by achieving significantly faster converhiques such as principal component analysis (PCA) [13], or
gence. linear discriminant analysis (LDA) [2], remain the most pop

ular for problems such as face, object, or texture recammiti

It should be noted that the simultaneous design of classi-

1. Introduction fier and feature set is not a necessary requirement for achiev
ing optimal (in a classification sense) features. In paldicu

The formulation of visual recognition as a problem of stait is known from Bayesian decision theory that 1) the proba-
tistical classification (see e.g. [13, 2, 4, 8, 10, 15]) has reility of error of any classifier is lower bounded by tBayes
sulted in solutions of unprecedented success for probleragor (BE), 2) the BE only depends on the feature space, not
such as face detection [11, 14]. This success is due, in lartfee classifier itself, and 3) there is always at least one clas
part, to the fact that the statistical formulation suppfets  sifier that achieves this lower bound (the Bayes classifier).
ture extraction strategies that are data-driven and aitplic Hence, at least from a theoretical point of view, it should be
minimize classification error. While there are multiple way possible to find the optimal feature space for a given classifi
to achieve this goal, e.g. through the search for the optimaation problem without designing the classifier itself:uif-s



fices to find the feature transformation that leads to the fethhe optimal features that may already exist in the initial-fe
ture space where the BE is minimum. By avoiding the comture set. This leads to a significantly improved rate of con-
plexity of iterated classifier design, this strategy is nsm&l- vergence. When compared to FS procedures, it has the ad-
able, in the number of classes of the recognition problemantage of not being restricted to the original featureBet.
than those requiring simultaneous feature and classifier dgerimental evaluation on multi-class visual recognitiaskis
sign. shows that it converges to minimum Bayes error solutions

The search for the optimal set of features, in the miniln @ very small number of iterations. The new algorithm is
mum BE sense, for a given classification problem can be agompared to the FE solutions in common use in the large-
dressed in two ways: by I@ature extractior(FE) or 2)fea- scale classification context - PCA, LDA and heteroscedastic
ture selection(FS). Denoting the@bservation spacassoci- discriminant analysis (HDA) [7] - and to an alternative FE
ated with the classification problem by (typically high- solution based on gradient descent on a tight upper bound
dimensional), the goal of both FE and FS is to find the be&f the BE. It significantly outperforms these solutions, ei-
transformW into afeature Space} (typ|ca||y lower dimen- ther by haVing much greater robustness to local minima or
sional) where learning is easier. While in the case of FEethePY achieving significantly faster convergence.
are few constraints oWV, for FS the transformation is con- 2. Minimum Bayeserror features
strained to be a projection, i.e. the components fefadure Consider a set of training dafa;, cl}i\il drawn from a
vectorin ) are a subset of the components of the assoGtontinuous-valued random variab¥such thatc; € R**1,
ated vector int. While both FS or FE can be used for theand a discrete random varialflethat generates class labels
minimization of BE, both approaches have non-trivial limi-¢, {1,...,|C|}. The goal of FE is to find a linear feature
tations. transformatioW : X ¢ R — Y c R™*!y; = Wx;,

On one hand, FS requires the solution of a significantly: < n, that reduces the dimensionality of the data freto
simpler computational problem, since it consists of seélgct m. The minimum Bayes errofeature transformatioW is
the best subset from a set of already available basis fursctio the one that minimizes tHgayes error(BE)[6] on the output
On the other, because it cannot produce features that are apace)
part of the original set, the resulting transformation ig-us
ally sub-optimal. For example, two features that (as a pair) Ly = 1-FEy [max Peyy (cly) (1)
are highly discriminant but also highly correlated can have ¢
marginal distributions of small discriminant power. Sueb{
ture pairs cannot be reduced to a single new discriminant fea
ture by FS techniques. FE avoids this problem by designinghere Py (c|y) is the posterior distribution for clagson
the basis itself, through the search for the overall optWal ) and Py the probability density function fog. Formally,
but requires the solution of a significantly more difficultop .
timization problem. In fact, because BE is a non-linear func W= arg rm%i(%v)— L. 3)
tion of the feature transformation, which does not have-well ' -
defined derivatives everywhere, its minimization by stn&ig . .
forward application of standard gradient-descent proresiu 2.1. Estimating the Bayeserror
can be quite challenging. Perhaps due to this, only a surpris Typically one does not have access to the probabilities
ingly small amount of work has addressed the direct miniPc|y (cly) or Py (y) and it is therefore impossible to evalu-
mization of BE in both the FE and FS literatures [12, 1].  ate the BE through (2). Noting, however, that by the applica-

In this paper, we introduce an algorithm for the computalion of Bayes rule
tion of the minimum-BE feature set for a given classification Py o(yile) Pole)
problem. This algorithm combines the appealing properties Ly =1-FEy {max ’;ch i i) ] , 4
of FS and FE. Like FS methods, it progresses in a sequence ¢ 2 Pyiclyile)Pe(e)
of steps where, at each step, the best features among thasq| o5 that, given the class-conditional densities
not yet selected are identified. However, unlike FS method ;
it doyes not blindly include these features in the selected s‘%y'C(y”c)’ the priorsF:(c), and a sampldy,. . ... y .
) iy he expectation above can be estimated by the Monte-Carlo
Instead, it considers the set of 2-D subspaces spanned bya?dbroximation
pairs of features such that one feature is in the selected set
and the other in the candidate set. It then performs FE in Pr 1 1 Py c(yile)Pe(c) .
each of these subspaces, to find the direction that leade to th ~¥ = * — / Z max . Pric(yil9)Pa(o) ] (5)
largest decrease in BE, and includes that direction in the se ! ¢

lected set. which we denote by thempirical Bayes erro(EBE). The
When compared to standard FE procedures, the new alass priors are assumed known (but could also be estimated
gorithm has the advantage of immediately zooming in ofrom training data quite easily), while the class-conditib

1- ; m§XPc|Y(C|Y)PY(Y)dy, (2




densities are estimated by maximum likelihood (via the
expectation-maximization algorithm [5]) , using a Gaussia
mixture model

K.
Pxic(xile) = Y AekG (X5 ek, Ser) (6)
k=1

in X, and leading to a Gaussian mixture)n

Ke Figure 1. A classification problem with a pair
Pyic(yile) =D AerG(Wxi; W, WEGWT). (7) of jointly discriminant features that, individu-
k=1 ally, are not very discriminant.

Note that this estimation is an initialization step thatydmhs
to be performed once, typically when the images in the class

are added to the database, and is likely to be required for op- In order to achieve convergence rates equivalent to those
erations other than feature design (e.g. the actual clessifi Of FS, while avoiding this limitation, we introduce an algo-
tion of images presented to the recognition system). Hend&hm that performs joint FS and FE, which we denote by
it does not affect the complexity of the feature design a|ngSE (feature selection and extraction). The basic idea is to

rithms to be discussed in the subsequent sections. replace the simple evaluation of the goodness of the switch
between the two candidate vectors with a full FE step in the
2.2. Joint feature selection and extraction plane spanned by them. Let; be the vector inY, (theit"

The matrixW can be seen as the product of a maw, ~ row of Wy, i € {0,...,m — 1}) andw, the one inxy
whose rows form a basis of and the canonical projection (0" row of Wo,o € {m,...,n — 1}), and consider the
matrix I : R™ — R™ 1™ (21, ..., 20) = (21, ..., Tm) set of 2D rotation matrice(i, o, 6;,) (Where R(¢,0,6;,)

is identical to then x n identity matrix with the exception of
W = HanQ (8) Rii = COS(@iO),RiO = sin(@i(,),Roi == —sin(@io),Roo =

cos(#;,)). Instead of simply evaluating the EBE resulting
Under this interpretation, the rows 8V are simply the sub- from the switch ofw; with w,,, we search for the rotation
set of the basis vectors df that span a subspace C X.  angles;, that leads to the overall transformation
The BE on) is determined by how discriminant this sub-
spaceis, i.e. it will be minimum whef, is the most discrim- W =1I"R(i, 0,6;,)Wo, 9)
inantm-dimensional subspace &f. Since discarding a dis-
criminant direction can lead to a drastic increase in BE, th&ith smallest EBE

transformatior’W can be significantly improved by switch- LN
ing a l_)a3|s vector o?(sc (row-vectors ofW, not in W) with Ly=1- ~ Z max Pojy (clyr) (10)
a basis vector oft; (i.e. row vectors ofW) when the for- -

mer is a better discriminant than the latter.

This is the basic operation of FS, and one that is very utvhere Pc|y (c|y:) is obtained by combining (7) and the
likely under traditional FE. Because, when seen as points fi{ass priors with Bayes rule. This is a one dimensional min-
Rxm  the matriceSW before and after the switch can beimization problem that can, therefore, be solved very ef-
arbitrarily far apart, it is highly likely that local minimaf ~ficiently with standard exhaustive search procedures (e.g.
the BE surface will prevent a gradient-descent type of ite@olden search [9]).
ation from reaching the latter when initiated at the former. Infact, itis usually not even necessary to repeat this pro-
Due to this ability to avoid local optima (the step in solu-cedure for all possible pairs of basis vectors. One observat
tion space is not guided by the gradient) FS usually hastBat we have made quite consistently is that, wN€p is a
significantly faster convergence rate than FE. The onlyproi§ensible initializion (e.g. that provided by PCA), the vast
lem is that it can never identify discriminant directionsiarh  jority of the planegw;, w,) either 1) are not very discrimi-
are not basis functions 3V, already. This can be a signif- Nant, or 2) already have; as the most discriminant dimen-
icant limitation, as illustrated by Figure 1. In this exaepl sion. In these cases there is not much to be gained from the
while the features:; andz, are (jointly) a highly discrim- rotation and it is unlikely that such planes will be selected
inant pair, their marginal class-conditional densitiekibit ~ TO take advantage of this observation, we introduce an (op-
a significant amount of overlap. Hence, because none of tfienal) pre-filtering step that eliminates the planes witia
two features is significantly discriminant by itself, it ig-u ratio between 1) the EBE of the projectionan
likely that, in the context of a larger problem, the highlg-di .
criminant pair would be identified by a standard FS step. Liwj=1-Ex [mgx Pex (c|w; X)} ; (11)



and 2) the EBE of the projection on the plane Comparison - max and softmax

— 1-max(pl,1-pl) — max(BE)
=% 1 w; 0.6
L[Wi7wo] =1-FEx |:In§lX Peox <c‘ [ . } x>] . (12) .

-- 1-softmax(pl,1-pl;0) 0| === softmax(BE)
Note that, because all the densities involved are one or two’| - = "o:w
dimensional, this ratio can be computed using histogram-"t" >
based density estimates.lts complexity is therefore negli:i
gible when compared to that of (10) and,pifplanes are

selected, the overall complexity is reduced by a factor of vz e s e OO hion g redins 2
sm(n —m)/p. The complete algorithm is as follows: a) b)
1. letW =1II"Wo; Figure 2. The softmax function represents a

L . i ion.
2. computer—~— for all pairs(w;, w,) and select the tight bound of the  max function

[wi,wol]

pairs of smallest ratio.

3. for each of they selected pairs find the rotation angleis a very good approximation to (2). This is illustrated by
07, using golden section search, that yields the smallekig. 2 b), which presents the BE on a problem with= 2,

possible EBE as given by (9) and (10) m = 1, |C| = 2, as a function of the angle of the line into

4. find the planéw;., w,- ) that leads to the smallest em-WhiCh the input space is projected (see Fig.3 a)). Cledrey, t
pirical BE and upéaté?Vo = R(i*, 0", 0% ,. )W, extrema of the two functions are co-located. Furthermore,

) e because (14) has continuously differentiable derivatiites
5. returnto step 2 until the EBE difference between 2 sug:; 1, he minimized with standard gradient descent

cessive iterations is smaller than a constaifset to
10~% in our experiments).

The matrixW can be the identity but can also be a fea-
ture transformation itself. One sensible solution is ty ol
a feature transformation that experience has shown to p

oL3,
Wiy =We —n W ; (15)
(t)

heret represents the time step, ands a learning rate

form reasonably well on the problem at hand. For example our implementation the value that produces the largest
‘decay of the cost among a set of pre-defined values). Re-

principal component analysis or a wavelet decomposition i laci I ati by th irical -~
visual recognition problems. In fact, as long\4, is invert- placmg a ex-??oﬁé Ic;antZr Siﬂi?g{'gggﬁlﬂ(ygﬁ;n
ible, there will be no loss of BE and, therefore, any orthogotﬁa%:l Flyo WS, 9 : Ipu

nal or overcomplete decomposition qualifies.

oL
2.3. Gradient descent W~
o P, (elyy)
As a benchmark against which to compare the algorithm —+ S, {Zlf_l & C;;C‘Yyid‘yl) (6PC‘6YW(C‘”))
of the previous section, we implemented an algorithm based a=1¢ (16)

on FE alone. As is customary in the FE literature, this algq’-\/h b licati
. ! , t f B le,
rithm performs gradient descent on the EBE surface. It turns ere, by application ot Bayes ruie

out that the solution to this problem is not straightforward 9Foiy (cly) 1 0Py c(yilc) Pe(e)
since, due to thenax(-) operator in (2), the EBE surface A% Py (y1) oW ¢
does not have well-defined derivatives everywhere. To over- Peyy (clyr) 0Py (y1) 17
come this limitation, we relied on the upper bound resulting - Py (y1) OW ,(17)
from the replacement of thaax(-) operator by thesoftmax with
function o
(A J
s({z;};0) = Z S oo xj, (13) c|
i ' Py(y = P, yi|lc)Pc(c),
wheres > 0 is a scale parameter, afd;} > 0 the in- v (v) ; vie(yile)Fe(e)
put set [3]. As illustrated by Fig. 2 a), the softmax is a lower Ic|
bound to the max function that can be made arbitrarily tight M = Z aPL(‘W'C)PC(C)’
by takingo to infinity. In practice, even for relatively small oW =1 oW
values ofs (e.g.c = 10), the bound is a very good approxi-
mation to the max function. Consequently, 1 Assuming  that s PC‘Y(c|yl)‘9PC‘8YVf,C‘y”;o) ~
€l oPcy (cly) 9Pc |y (clyr) . .
- P, — s ) ;0 ), which I-
L;, —1-By Z e Pc|y(0|y) (14) s( C‘y(C‘yl)S( W ,cr) ,o) which is an equal

Zlﬂl eoPoy (dly) ity whens({.}, ) is replaced bynax({.})

c=1
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Figure 3. Various toy problems and the solu-
tions obtained by LDA, HDA, and gradient de-
scent. In all cases the best 1D subspace is
represented by the solid bar.

3. Experiments

To evaluate the algorithms introduced in this work, we
applied them to various visual recognition problems, raggi
from simple toy examples that provide intuition to full-talo
recognition tasks involving many classes in domains such as
face or texture recognition. We started with a set of prob-
lems designed to compare the performance of the new al-
gorithms to that of the classical solutions, namely LDA and
HDA. The first set of experiments were performed on a col-
lection of toy problems (projection of two classes fra@rto
1 dimension) that provide some intuition about the advan-
tages of minimizing BE. As illustrated by Fig. 3 a), all meth-
ods performed perfectly on Gaussian problems with classes
of equal covariance. However, as shown in b) and c), LDA
broke down even for Gaussian problems of unequal class co-
variance. This is a well known problem and the motivation
for HDA [7, 12]. Both HDA and the two minimum BE algo-
rithms converged to the optimal solution, shown in c).

The problem on Figures 3 d)-3 f) consists of a Gaussian
class and a second class which is a mixture of two Gaussians.
In this case, the BE surface has a local minimum that, as
shown in d), is also the optimal solution for LDA and HDA.
Fig. 3 e) and f) illustrate the susceptibility of the gradide-
scent algorithm to local minima of the BE. As can be seen
in e), if the initial W is close to a local minimum then gra-
dient descent will converge to it. There is however, as shown
in f), a much larger region of the solution space that wiltlea
to convergence to the global minimum. Finally, this prob-
lem demonstrates the increased robustness of FSE to local
minima. Because the optimal direction is found by exhaus-
tive search we were not able to find, under FSE, an initial-
ization that would prevent convergence to the global mini-
mum.

The second set of experiments was performed on a face

andPc(c) = . Under the Gauss mixture assumption of (ﬁecognmon task using the ORL database. This database con-

lcr

OPy|c(yile)  OPyic(Wxi|c)
oW - oW

K.
> Ack¥(c, k) (—Q(e, k) — (e, k,x1)) Ble, k. %),

(18)

with
Qlc,k) = (WE kWT)‘1WEck
U(e,k) = (2m) % |[WX, kWT|
L(c,k,x) = (WS W)W — prer) (1 — prer)”
(I - WT (W, W 'WE,)
Blek,xi) = e 3WE—na) T (WEaW) ™ (Wxi—per)),

7%

Finally, the scale parameter is setitc= arg max, || zwr||»

tains 20 classes, each composed of118@ x 92 images,
which were scaled down tth x 13 (by smoothing and bicu-

bic interpolation). This set was split into a training data®
(first 8 images of each class) and a test database (remaining
2 images). The matri¥¥, was the PCA matrix of the train-
ing data, as used in the popular eigenfaces technique [13],
which was also used as the initial basis for HDA. Recog-
nition was performed with a maximum likelihood classifier
g*(Wx;) = argmax. Py|c(Wx|c), wherex; is a face
from the test database, afy |- (y|c) the Gaussian learned
from the training images of clags Table 1 shows the val-
ues of EBE obtained on the training and test sets vi\eis
learned with PCA, HDA, and FSE algorithm. Besides the fact
that FSE outperforms the two other techniques, it is interes
ing to notice the correlation between the Bayes error and the
actual probability of error. This correlation is confirmeg b
Fig. 4, which presents a scatter plot of the two quantities,

i.e. the value that maximizes the gradient of the cost fun@btained by varying the transformati® and the output di-

tion.

mensionalityn. This is particularly interesting given that the
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Figure 4. BE vs error rate on the ORL data-

BE vs. CPU time
base. ‘
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classifier is sub-optimal (it is unlikely that the PCA featsir
are exactly Gaussian) and there were, therefore, no guaran- y 042
tees that the recognition error would behave like the BE. 04 .
0.38 pal 5 2% 100%
FSE | PCA | HDA el o s
BE training set | 0.0011] 0.0124| 0.0015 P gty inseconss © P

BE testing set
Recognition rate| 70%
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Figure 5. a) empirical BE vs number of itera-

tions for gradient descent and FSE on the test

and training datasets of Brodatz. b) empirical

BE vs computational time required for conver-

gence by FSE as a function of the parameter p

(solid line), initial BE (dashed) and BE vs com-
Brodatz is also interesting in the sense that it poses a sig- putational cost of gradient descent (dot).

nificant problem for many classification architectures. For

example, the straightforward application of a support vec-

tpoor ornjc?;%ele(ivpl\r/g Stg nttrsnsth(la:)aet;atlsre; stilr':(sjstr:gtpvs(raﬂ\)/;g glgé e factthat the —vs—all strategy required to turn_the mul_ti—

to obtain, at several image resolutions, for an SVM with §'ass pr(_)blem (t_hat the SVM cann(_)t handle directly) _mto

Gaussian kernel, after a substantial amount of tuning df bof' collection of binary problems (which are then combined

the kernel variance and the SVM capacity paranietéle Into a multi-class decision) may be strongly sub-optimal on
Brodatz. We have also previously shown that other currently

popular representations in learning and vision, e.g. ae-ind

Table 1. BE and recognition rates on the ORL
face recognition experiment.

Resolution | Recognition rate pendent component analysis (ICA) type of decomposition,
8 x 8 32.08 do not work well on this database [1]. In fact, an extensive
16 x 16 32.08 study comparing the performance of various feature spaces
32 x 32 31.25 (including PCA, ICA, and wavelets), have shown that the dis-
128 x 128 33 crete cosine transform (DCT) is a top performer on Brodatz

(see [1] for details). We therefore used the DCT as initial ba
sis Wy, in an attempt to determine if further optimization,
by either FSE or gradient descent, could lead to visible im-
provement over this already very good solution.

We started by comparing the performance of the
minimum-BE feature sets obtained by FSE and gradient de-
scent, saving the matriXV at each iteration and measur-
ing the corresponding EBE on both the training and test sets,
to make sure that there was no over-fitting. Fig. 5 presents
the evolution of the EBE as a function of the iteration num-
ber, showing that the convergence rate of FSE is signifigantl

Table 2. Recognition rates on Brodatz for an
SVM classifier at different image resolutions.

believe that this strongly disappointing performance is tiu

2 We started from a kernel variance equal to the median Eatidlis-
tance between the training vectors and a capacity, @hd then man-
ually tried various variations of the two parameters arotiase initial
values. The combination that lead to smallest error wastegle



faster (at least one order of magnitude) than that of gra-
dient descent. By running the algorithms for an extended
number of iterations, we also observed that the curves re-

test image

. ; . . . ]
mained flat after50 iterations. This means that gradient %‘&"‘
descent was trapped in a local minimum that prevented con- ‘;‘,o'.!:a::_'éf
vergence to the better solution reached by FSE. In summary, class22

gradient descent required a significantly larger numbetr of i
erations to converge to a worse solution than that found by
FSE.

In order to compare the computational cost of the two al-
gorithms (and evaluate the trade-off between BE and com-
plexity due to the filtering step of FSE), we ran FSE with test image
various values of the plane-retention parametefig. 5 b)
shows the variation of the final value of BE, fpr = 1
andp € {1%,5%,10%, 20%, 50%, 100%} of all possible
planes, as a function of the CPU tifné\lso shown are the
BE achieved by gradient descent and the corresponding time
and the initial BE. Clearly, simply picking the best plane is
enough to reach a solution that is very close to the bestpossi
ble (and better than the gradient descent solution), at a com
putational cost more than two orders of magnitude smaller
than that of either the overall best or gradient descent.

Finally, we compared the recognition performance of the
FSE solution with that of the initial DCT features. Recog-
nition was performed with a maximum likelihood classifier
9" (Wx;) = argmax. Py|c(Wx|c), wherex; is an image
from the test database, afgh ¢ (y|c) the Gaussian mixture
learned from the training images of classTable 3 shows
the recognition rates obtained, confirming that the FSE-solu
tion is the best one and reduces the error rate of the DCT fea-
tures by about2%. Given that the DCT features already per-

test image

classé

class9

test image

class6

test image

Features | Recognition rate R
DCT 92.92
FSE 9375 class9
Table 3. Recognition rates on Brodatz for a st image =

mixture classifier based on the DCT and FSE S 4 e ]
feature spaces. .
<

class27 class27 class23 class31

b)

form very well for most test images, we believe that this im-

provementis significant. Figure 6. Recognition results obtained on Bro-
In fact, visual inspection of the classification results ob- datz with the DCT-based (a) and FSE-based

tained for each test image revealed no instances where FSE(b) classifiers. In each case, the classes in the

did worse than the DCT. On the contrary, FSE tends to im- database are ordered by decreasing likelihood

prove performance for test images belonging to classes thatwith respect to the test image. For each class,

are visually quite similar to other classes in the database. we show a representative image.

These are the most difficult images to classify and the re-

sults above suggest that, fo2% of them, FSE is helpful.

Furthermore, we have noticed that this gain is not achieved

at the cost of a loss of the generalization ability of theclas

3 Computer configuration: Intel Xeon processor at 2.4GHaWEB of  sifier. On the contrary, the FSE-based classifier appeass to b
memory. more robust than the DCT-based counterpart and produces




judgments of similarity that seem more correlated to thdse o
human perception. These points are illustrated by Figure 6,
where we show the classification results obtained with the
two classifiers for various test images. The top two exam-
ples of Figures 6 a) and 6 b) illustrate how the FSE-based
classifier has better ability to generalize, producing ateor

ing of the classes that seems to be closer to human judgments
of similarity. The bottom two examples of Figures 6 a) and 6
b) show instances where, even though close, the DCT-based
classifier produces an error. In these cases, the FSE-based
classifier is able to recover the correct ordering without al
tering the third match. All examples (as well as others that
are omitted for brevity) support the argument that FSE pro-
duces a layout of the feature space that, locally, allowsa fin
discrimination between similar classes but, globallyngsi
those classes closer together.
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