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Direct type-specific conic fitting and eigenvalue bias correction

Matthew Harker a,*, Paul O’Leary a, Paul Zsombor-Murray b

a Institute for Automation, University of Leoben, Austria
b Centre for Intelligent Machines, McGill University, Canada

A new method to fit specific types of conics to scattered data points is introduced. Direct, specific fitting of ellipses and hyperbolae is
achieved by imposing a quadratic constraint on the conic coefficients, whereby an improved partitioning of the design matrix is devised so
as to improve computational efficiency and numerical stability by eliminating redundant aspects of the fitting procedure. Fitting of
parabolas is achieved by determining an orthogonal basis vector set in the Grassmannian space of the quadratic terms’ coefficients. The
linear combination of the basis vectors that fulfills the parabolic condition and has a minimum residual norm is determined using
Lagrange multipliers. This is the first known direct solution for parabola specific fitting. Furthermore, the inherent bias of a linear conic fit
is addressed. We propose a linear method of correcting this bias, producing better geometric fits which are still constrained to specific
conic type.
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1. Introduction

This paper addresses the problem of fitting a specific
type of conic to scattered data, e.g. finding the best hyper-
bolic approximation to a set of data points. Solutions are
provided for all three types of conic, i.e. hyperbolae, ellip-
ses and parabolas, together with their degenerate forms.
This is especially useful when a-priori knowledge of the
problem indicates the type of conic to be fit.

This problem was addressed by Nievergelt [13], however
the quadratic constraint used by him leads to a general fit.
The result of the fit is tested for its type; if it is not of the
sought type then he proceeds to solve a geodetic equation
leading to the nearest conic of the desired type. Quadratic
constrained least squares was first successfully applied by
Fitzgibbon et al. [3,16] to the problem of ellipse specific fit-
ting – a task which was considered to be fundamentally
non-linear up to that time. The work of Fitzgibbon et al.

was extended by O’Leary et al. [14] to solve ellipse and
hyperbola specific fitting. However, a parabola specific fit
cannot be solved using standard quadratic constrained
least squares since it requires a zero constraint, which leads
to the trivial solution using the method of Lagrange
multipliers.

Fitzgibbon et al. [3] noted that the linear specific algo-
rithm for ellipses is biased, by which the ellipses tend away
from parabolic solutions. This is a bias with respect to the
semi-axes of the conic sections, which is present for the
ellipses as well as hyperbolae.

In some cases this produces undesirable results, an issue
which as of yet has not been addressed. The most impor-
tant contributions of this paper are

1. A new linear parabola specific fitting method.
2. An improved matrix partitioning, extending the work of

Halı́ř and Flusser [8]. An incremental orthogonal
residualization of the partitioned scatter matrix is
performed which corresponds to a generalization of the
Eckart-Young-Mirsky matrix approximation theorem
[6].
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3. A linear method for correcting the eccentricity bias of
linear specific fitting based on a pencil of conics, and
the so-called approximate mean square (AMS) distance
proposed by Taubin [18].

The theoretical background to the proposed methods is
presented and verified by comprehensive numerical testing.

2. Geometric background

The notation for the quadratic forms in the projective
plane, i.e. the conic sections, used in standard literature
on geometry [11] is,
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where K is the conic matrix, and p is a homogeneous point
with w the homogeneous coordinate. Expanding Eq. (1)
delivers the scalar point equation of the conic,

ax2 þ bxyþ cy2 þ dxwþ eywþ fw2 ¼ 0: ð2Þ
The type of conic is identified by the roots of Eq. (2) eval-
uated at infinity, i.e. with w = 0,

ax2 þ bxyþ cy2 ¼ 0: ð3Þ
Explicitly,

x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
y: ð4Þ

By means of the discriminant, the conics can be identified
as follows:

b2 � 4ac

> 0 real asymptotes ) hyperbola;

¼ 0 real parallel asymptotes ) parabola;

< 0 complex asymptotes ) ellipse:

8

>

<

>

:

ð5Þ
Hence, to constrain a conic to its type, one must constrain
the discriminant to its sign. Fig. 1 shows the space of the
quadratic portion of all conic sections. The equation
b2 � 4ac = 0 is a second order surface in this space, name-
ly, it is an elliptical cone with the origin as its vertex. This
surface represents all parabolas. All ellipses are contained
within the cone, whereas all hyperbolae are external to
the cone. Since the conic equation is homogeneous, the
quadratic portion can be scaled to have unit norm, which
is shown by the unit sphere in the figure.

3. Data preparation

Chojnacki et al. [2] showed that ensuring the data is
mean-free and scaled to have a root-mean-square distance
of

ffiffiffi

2
p

to the origin improves the numerical performance
and statistical behaviour of a fitting algorithm. In a planar
fit this involves subtracting centroid coordinates ð�x; �yÞ from

raw data (xi,yi) to give so-called mean-free coordinates
ðx̂i; ŷ iÞ ¼ ðxi � �x; y i � �yÞ. With n data points, the appropri-
ate scaling factor m imposes the metric, with

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
P

n

i¼1

ðx̂2i þ ŷ2i Þ

v

u

u

u

t

: ð6Þ

The data set therefore becomes ðxi; yiÞ,ðmx̂i;mŷ iÞ. The
algorithms presented in this paper assume that the data is
mean-free and scaled as described here.

4. Reduction of the scatter matrix

The conic equation, i.e. Eq. (2), can be written as a prod-
uct of vectors, i.e.

dz ¼ ½ x2 xy y2 x y 1 �½ a b c d e f �T ¼ 0

ð7Þ

with w = 1. The ‘‘design’’ d and coefficient z vectors are,
respectively, termed the dual-Grassmannian and Grass-
mannian coordinates of the conics. Given n points, the vec-
tor d becomes the n-row design matrix D. This results in a
vector r which is the residual vector of the n points in the
conic equation whose norm is to be minimized, and corre-
sponds to the algebraic distances of the points to the conic.
The partitioning of the design matrix D and coefficient vec-
tor z is proposed as follows:

Dz ¼ r ¼ ½D2 D1 D0 �
z2
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: ð8Þ

In this case, the matrices are partitioned into groupings of
their quadratic, linear, and constant terms, i.e.

Fig. 1. The space of quadratic forms defined by the coefficients a, b, and c.

The unit sphere representing all solutions shows the error density of a

specific set of data on its surface by means of a colour gradient. All conics

can be represented by the points on the unit sphere, i.e. a two-dimensional

manifold in the three-dimensional subspace. The parabolas are con-

strained by the condition b2 � 4ac = 0; this is the equation of the origin

centred elliptical cone that separates the ellipses from the hyperbolae.
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ð9Þ
and therefore,
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d
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� �

and z0 ¼ f : ð10Þ

The motivation behind this partitioning is the fact that the
column of ones is statistically invariant; similarly, the sta-
tistical nature of the quadratic data is different to that of
the linear data. Moreover, we wish to impose a constraint
on the quadratic coefficients only. With the partitioning,
the sum of the squared residuals is,

½ zT2 zT1 z0 �
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¼ rTr; ð11Þ

where the scatter matrices Sij, are defined as, Sij,D
T
i Dj, not-

ing of course that Sij ¼ S
T
ji and S00 = n. The unique mini-

mum of the least squares problem occurs when the set of
partial derivatives of Eq. (11) are equal to zero, i.e. when

S22z2 þ S21z1 þ S20z0 ¼ 0 ð12Þ
S
T
21z2 þ S11z1 þ S10z0 ¼ 0 ð13Þ
S
T
20z2 þ S

T
10z1 þ nz0 ¼ 0: ð14Þ

Noting that the solution to this set of equations is actually
the trivial solution, we must in fact put a constraint on the
coefficients. The partial derivative with respect to z0, Eq.
(14), implies that,

z0 ¼ � 1

n
½ST

20 S
T
10 �

z2

z1

� �

¼ �½ x2 xy y2 x y �
z2

z1

� �

:

ð15Þ
This directly states that the linear fit, which in this space is
a hyperplane, must pass through the centroid of the points
in the corresponding space. Nievergelt [12] applies this to
the fitting of hyperplanes and hyperspheres. Therefore,
with mean-free planar data, we should apply a transforma-
tion in the hyperspace such that,

D̂2 ,

x21 � x2 x1y1 � xy y21 � y2

.

.

.
.
.
.

.

.

.

x2n � x2 xnyn � xy y2n � y2

2

6

6

4

3

7

7

5

; ð16Þ

and redefine the quadratic design matrix and associated
scatter matrices accordingly as ‘‘mean-free’’, i.e.

Ŝ22 ¼ D̂
T
2 D̂2 and Ŝ21 ¼ D̂

T
2 D̂1: ð17Þ

Since we have assumed the data is mean-free and scaled
according to Section 3, the scatter matrix Ŝ11 and S11 are
in fact equivalent. With this transformation, Eq. (15) is sat-

isfied by z0 = 0. This effectively forces the hyperplane
through the centroid of the data, satisfying the partial
derivative with respect to the coordinate z0. This transfor-
mation not only ensures the Euclidean invariance of the fit,
but also reduces the dimensionality of the problem. The
column of ones, D0, is redundant to the problem at hand.
This is a reduction of dimensionality that has been over-
looked in past literature. The problem is reduced to deter-
mining the orientation of the hyperplane to be fit, as the
relative shift is now known. The reduced system of partial
derivatives is now,

Ŝ22z2 þ Ŝ21z1 ¼ 0 ð18Þ
Ŝ
T
21z2 þ Ŝ11z1 ¼ 0: ð19Þ

Solving the partial derivative with respect to z1, Eq. (19),
for the linear terms’ coefficient vector yields z1 when z2 is
held constant, i.e.

z1 ¼ �Ŝ
�1
11 Ŝ

T
21z2: ð20Þ

Substitution of this relation and z0 = 0 into the least squar-
es problem in Eq. (11) results in a function in the quadratic
coefficients only, and free of the redundant column of ones
D0, i.e.

zT2 Ŝ22 � Ŝ21Ŝ
�1
11 Ŝ

T
21

� �

z2 ¼ rTr: ð21Þ

The matrix,

M , Ŝ22 � Ŝ21Ŝ
�1
11 Ŝ

T
21 ð22Þ

¼ D̂
T
2 ðIn � D̂1D̂

þ
1 ÞD̂2; ð23Þ

is the reduced scatter matrix sought, and is the Schur Com-

plement [15] of Ŝ11 in the scatter matrix. The matrix D̂
þ
1 is

the pseudo-inverse matrix of D̂1, i.e. a least squares map-
ping based on the planar data. The matrix product D̂1D̂

þ
1

is the set of orthogonal projections on to the range space
of D̂1, and is – to a scaling factor – the covariance of the
residuals of the linear portion of the data. Specifically, if
r1 and r2 are the singular values of D̂1 which correspond
to the residual vectors r1 and r2, then,

D̂1D̂
þ
1 ¼ 1

r2
1

r1r
T
1 þ

1

r2
2

r2r
T
2 : ð24Þ

This implies that matrix M is the result of subtracting the
quadratic residual elements predicted by the linear portion
from the residuals of the quadratic portion. This allows an
optimization to be performed in the space of the coeffi-
cients z2, a subspace for which corresponding z1 vectors
have a residual of minimal norm. In other words, the map-
ping in Eq. (20) corresponds to z1 ¼ �D̂

þ
1 D̂2z2, and is thus

the least squares mapping of z1 from the residual vector
of z2, and essentially refits the linear portion given the spe-
cific quadratic coefficients. The Schur Complement men-
tioned above that leads to the dimensional reduction of
the problem in fact corresponds to the generalization of
the Eckart-Young-Mirsky matrix approximation theorem
proposed by Golub et al. [6]. Essentially, the scatter matrix
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is approximated by a matrix of lower rank, i.e. the reduced
scatter matrix M.

5. Fitting conics with a quadratic constraint

The problem of the linear fitting of a conic with a qua-
dratic constraint on the roots at infinity can now be stated
as,

zT2Mz2 ¼ min
z2 6¼0

subject to zT2Cz2 ¼ a; ð25Þ

where the matrix C describes a quadratic constraint on the
coefficients a, b, and c. As Bookstein [1] showed, the mini-
mization problem can be stated as a Lagrange multiplier
problem, and solved as a generalized eigenvector problem.
Combining the function to be minimized and the constraint
with a Lagrange multiplier, results in the system

Hðz2; kÞ ¼ zT2Mz2 þ kðzT2Cz2 � aÞ; ð26Þ
which is solved for its partial derivatives with respect to z2
and k, i.e.

Mz2 þ kCz2 ¼ 0 ð27Þ
zT2Cz2 ¼ a: ð28Þ
Solving Eq. (27) as a generalized eigenvector problem
yields eigenvectors which minimize zT2Mz2. The inertia of
an eigensystem is, in short, the set of signs of its eigen-
values. By the Sylvester Law of Inertia [7] it can be shown
that the inertia of the generalized eigenvalue problem has
the same inertia as that of the eigenvalues of the matrix
C
�1 i.e.

signðkðM;CÞÞ ¼ signðkðC�1ÞÞ; ð29Þ
since the matrix M is positive (semi)definite [3]. Moreover, if
(ki,ei) is a solution to the generalized eigenvector problem
then,

signðkiÞ ¼ signðeTi CeiÞ: ð30Þ
The combination of Eqs. (29) and (30) states that the sign
of the constraint, eTi Cei, takes on the sign of the eigenvalues
of the matrix C

�1 for each generalized eigenvector ei. This
fact is essential to specific fitting since the sign of the con-
straint defines the conic type. Further simplification occurs
if the matrix C is non-singular, in which case the general-
ized eigenvector problem can be solved as the eigenvector
problem,

C
�1
Mz2 ¼ kz2: ð31Þ

With an approach proposed by O’Leary and Zsombor-
Murray [14] the constraint,

b2 � 4ac ¼ zT2

0 0 �2
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�2 0 0
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z2 ¼ a ð32Þ

is applied. In this case the matrix C
�1 has the eigenvalues

� 1
2
; 1

2
, and 1, that is, there is always one elliptical solution,

and two hyperbolic solutions. It was shown that two of the

resulting eigenvectors correspond to the best elliptical and
best hyperbolic solutions. The solutions are extracted by
evaluating the condition b2 � 4ac in terms of the resulting
eigenvectors e1, e2, and e3, i.e.

ji ¼ eTi Cei: ð33Þ
The ellipse is found as,

ez2 ¼ eu where u ¼ min
i
ðjiÞ; ð34Þ

and the hyperbola as,

hz2 ¼ ev where v ¼ min
i 6¼u;ji>0

jkij; ð35Þ

and ki is the generalized eigenvalue corresponding to the ith
eigenvector. In other words, the ellipse is the eigenvector
whose corresponding condition value is the lone negative
value. The two positive values correspond to two hyperbol-
ic solutions, whereby the solution with the eigenvalue of
minimum magnitude is selected. This is due to the fact that
the eigenvectors are local extrema of the Rayleigh quotient
[7],

k ¼ zT2Mz2

zT2Cz2
: ð36Þ

The resulting best fitting conics are hence constrained min-
ima of the algebraic distance cost function.

6. The parabola

If one wishes to fit a parabola to scattered data, the
eigenvector problem in Eq. (31) cannot be applied, as the
explicit solution to the Lagrange multiplier problem results
in the trivial solution when applying the null constraint
b2 � 4ac = 0. Also, the secular equation proposed by Gan-
der [5], does not apply when a = 0. If the constraint matrix
C is the identity matrix, then the system is solved with the
constraint a2 + b2 + c2 = 1, which is implicit in the evalua-
tion of eigenvector and singular value problems. The
resulting eigenvectors e1, e2, and e3, with the corresponding
eigenvalues k1, k2, and k3, form an orthonormal basis vec-
tor set for the space of the coefficients of the quadratic
terms of all conics. The eigenvalues and corresponding vec-
tors should be ordered such that,

jk1jP jk2jP jk3jP 0; ð37Þ
since usually, the eigenvector corresponding to the eigen-
value of smallest magnitude is the best fit solution to the
linear conic fit. The above constraint ensures that all solu-
tions lie on the unit sphere centred at the origin. The re-
quired condition for a parabola, i.e. b2 � 4ac = 0, is the
equation of a quadric; specifically, it is an elliptical cone
(see Fig. 1) that forms the boundary between the ellipses
and hyperbolae in this space. The elliptical solutions lay
within the cone, whereas the hyperbolic solutions are exter-
nal to the cone. The curve of intersection of the two quad-
rics, i.e. the cone and the sphere, is a fourth order curve
which represents the parabolic solutions of unit norm. To

4



fit a parabola, we must find a minimizing point on this
cone. We therefore take the quadratic coefficients of the
parabola to be a linear combination of the eigenvectors
of the matrix M, i.e.

pz2 ¼ e3 þ se2 þ te1: ð38Þ

Since the singular values of the matrix M, i.e. the square-
roots of the eigenvalues of MT

M, are the 2-norm distances
of the respective vectors to the null-space of M, then the
eigenvector associated with the smallest singular value
can be considered the minimizing solution. Thus, we as-
sume e3 is the best fit, and use combinations of the other
two eigenvectors to find optimal parabolic solutions. Since
the equations are homogeneous, only two parameters are
needed to fully describe the space. The error associated
with taking this linear combination is the magnitude of
the resulting residual vector, that is,

kMðpz2Þk , Dðs; tÞ ¼ ðpz2ÞTMT
Mðpz2Þ

¼ ðe3 þ se2 þ te1ÞTMT
Mðe3 þ se2 þ te1Þ

¼ eT3M
T
Me3 þ eT2M

T
Me2s

2 þ eT1Me1t
2

¼ k
2
3 þ k

2
2s

2 þ k
2
1t

2
:

ð39Þ
In the quadratic coefficient space, this error function is
essentially an ellipsoid-shaped error density with semi-axes
proportional to the singular values of the reduced scatter
matrix M. Referring again to Fig. 1, this error density is
shown on the unit sphere as a colour gradient, whereby
the darker the colour, the higher algebraic error is for the
corresponding conic. In the space of the parameters s and
t, it is an ellipse-shaped error density with semi-axes pro-
portional to the first and second largest singular values.
The constraint to ensure that pz2 is indeed parabolic is
found by expanding the constraint b2 � 4ac = 0 in terms
of the assumed solution with parametric coefficients a, b
and c, i.e.

ðe32 þ e22sþ e12tÞ2 � 4ðe31 þ e21sþ e11tÞðe33 þ e23sþ e13tÞ ¼ 0;

ð40Þ

where eij is the jth element of the ith eigenvector. Expand-
ing this expression yields an expression in the form,

Cðs; tÞ ¼ c1s
2 þ c2stþ c3t

2 þ c4sþ c5tþ c6 ¼ 0; ð41Þ
which is a conic in the parameter space. The problem is
thus to minimize the error function of Eq. (39), i.e.
D(s, t), upon the points of the constraint conic. This can
be formulated as the Lagrange multiplier1 problem,

Hðs; t; lÞ ¼ Dðs; tÞ þ lCðs; tÞ: ð42Þ
Upon solving the partial derivatives of H(s, t,l), a fourth
order polynomial in l is obtained. Defining the coefficients,

a1 ¼ k21; a2 ¼ k22; a3 ¼ a1a2

k1 ¼ 4c3c6 � c25; k2 ¼ c2c6 �
1

2
c4c5; k3 ¼

1

2
c2c5 � c3c4

k4 ¼ 4c6c1 � c24; k5 ¼ 4c1c3 � c22; k6 ¼ c2c4 � 2c1c5

k7 ¼ �4ðc1a1 þ a2c3Þ; k8 ¼ c1k1 � c2k2 þ c4k3;

ð43Þ
the polynomial coefficients are given as,

K4 ¼ k5k8 K3 ¼ 2k7k8

K2 ¼ 4½ð2c2k2 þ 4k8Þa3 þ c1k4a
2
1 þ c3K1a

2
2�

K1 ¼ �8a3ðk1a2 þ k4a1Þ K0 ¼ 16c6a
2
3:

ð44Þ

Thus, solving

K4l
4 þ K3l

3 þ K2l
2 þ K1lþ K0 ¼ 0; ð45Þ

yields four solutions for l. The best fitting parabola can be
extracted as it corresponds usually, but not always, to the
real Lagrange multiplier with the smallest magnitude, i.e.

l� ¼ min
i

jlij; li 2 R: ð46Þ

Backsubstitution for the corresponding s* and t* is in the
form,

s� ¼
2l�
u�

ðk3l� þ a1c4Þ and t� ¼
l�
u�

ðk6l� þ 2a2c5Þ; ð47Þ

where

u� ¼ k5l
2
� þ k7l� þ 4a3: ð48Þ

The quadratic coefficients of the parabola are found by
backsubstitution of the s* and t* into the linear combina-
tion of the eigenvectors, i.e. pz2 = e3 + s*e2 + t*e1.

7. Backsubstitution

Given the quadratic solution vectors of the conics, z2, be
it the ellipse ez2, hyperbola hz2, or parabola pz2, backsubsti-
tution is the same. The quadratic coefficients are known,
and thus the directions of the asymptotes are also known.
The backsubstitution then determines the shift of the conic
centre as well as its scaling factor as to how far it is from
the mere product of the asymptotes, i.e. a degenerate conic.
The backsubstitution can be accomplished in concise
matrix form, that is,

z ¼
I3

�S
�1
11 Ŝ

T
21

�x2 �xy �y2

2

6

4

3

7

5
z2,Bz2; ð49Þ

where I3 is the 3 · 3 identity matrix. Thus, B is a 6 · 3 ma-
trix, and the resulting vector z is the set of corresponding
conic coefficients, i.e. the Grassmannian coefficients. As
noted above, the mapping of the linear portion is a least
squares mapping from the quadratic residual vector, and
the constant term corresponds to pushing the hyperplane
back to fit through the actual centroid of the data in the
hyperspace.

1 Eigenvalue and Lagrange multiplier problems are analogous, and both

use k. To avoid confusion, l has been chosen to denote the Lagrange

multiplier here.
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In the plane, the transformation which will place the
conic back onto the original data is the same transforma-
tion that was applied to prepare data, but in the form of
the similarity transformation K* = T

T
KT, where

T ¼
m 0 �m�x

0 m �m�y

0 0 1

2

6

4

3

7

5
: ð50Þ

8. Bias correction and fitting with a pencil of conics

8.1. Correction of low ellipse eccentricity bias

As discussed in Fitzgibbon et al. [3] the ellipse specific
fitting algorithm is biased to fitting ellipses of low eccentric-
ity. The ellipse and hyperbola specific fits provide a means
of correcting this bias while maintaining the specific conic
type. This is based on a pencil of conics defined by the
ellipse and hyperbola, and the so-called approximate mean
square distance (AMS) proposed by Taubin [17,18]. Upon
the backsubstitution step for the ellipse and hyperbola, let

ze ¼
I3

�Ŝ
�1
11 Ŝ

T
21

� �

ez2 and zh ¼
I3

�Ŝ
�1
11 Ŝ

T
21

� �

hz2

ð51Þ

due to the dimensionality required for the proposed solu-
tion. The remaining coordinate, z0, will again be deter-
mined by forcing the hyperplane through the centroid. A
pencil of conics is described by the two conic sections
and a single parameter, l, in the form,

zðlÞ ¼ ð1� lÞze þ lzh; l 2 R: ð52Þ

More commonly the pencil is described by the conic matri-
ces; however, it is equivalently described by the Grassman-
nian coefficients. In this case, the pencil is defined such that
z(0) = ze, and z(1) = zh. The pencil of conics describes all
conics which pass through the four intersection points of
the ellipse and hyperbola. We combine this notion with
the so-called approximate mean square distance, given by

e2ðzÞ ¼ kD̂zk2

kD̂xzk2 þ kD̂yzk2
; ð53Þ

which is the sum-of-squared distances from the points to
the first order approximations of the conic about each
point. The matrices D̂x and D̂y are, respectively, the partial
derivatives of the design matrix with respect to x and y, i.e.

D̂x ¼
2x1 y1 0 1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2xn yn 0 1 0

2

6

6

4

3

7

7

5

and D̂y ¼
0 x1 2y1 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 xn 2yn 0 1

2

6

6

4

3

7

7

5

:

ð54Þ

Substituting the conic pencil, z = z(l), this can be alterna-
tively expressed as,

e2ðlÞ ¼ zðlÞTŜzðlÞ
zðlÞTŜxyzðlÞ

; ð55Þ

where

Ŝxy ¼ D̂
T
x D̂x þ D̂

T
y D̂y : ð56Þ

and the scatter matrix

Ŝ ¼ Ŝ22 Ŝ21

Ŝ
T
21 Ŝ11

" #

; ð57Þ

applies. The matrix Ŝxy can in fact be composed of elements
of the matrix Ŝ [4], and hence does not require the matrix
multiplication. Defining the constants,

r1 ¼ zTe Ŝze r4 ¼ zTe Ŝxyze

r2 ¼ zTe Ŝzh r5 ¼ zTe Ŝxyzh

r3 ¼ zTh Ŝzh r6 ¼ zTh Ŝxyzh;

ð58Þ

the sum of the squared error is expressed as

e2ðlÞ ¼ ð1� lÞ2r1 þ 2ð1� lÞlr2 þ l2r3

ð1� lÞ2r4 þ 2ð1� lÞlr5 þ l2r6

: ð59Þ

We consequently have a single parameter problem, with
extrema that can be computed directly from a first
derivative,

dðe2Þ
dl

¼ 2ðQ2l
2 þ Q1lþ Q0Þ

ðR2l2 þ R2lþ R0Þ2
¼ 0; ð60Þ

where

Q2 ¼ r2r4 � r2r6 � r3r4 þ r3r5 � r1r5 þ r1r6

Q1 ¼ r3r4 þ 2r1r5 � r1r6 � 2r2r4

Q0 ¼ r2r4 � r1r5: ð61Þ

The roots of Eq. (60) are therefore given by the quadratic
formula,

l1;2 ¼
�Q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
1 � 4Q2Q0

q

2Q2

: ð62Þ

The minimizing solution can be identified by evaluating the
sign of the second derivative of the error squared function
for these values of l. The coefficients in the denominator
are required for the second derivative evaluation and are
given by,

R2 ¼ r4 � 2r5 þ r6

R1 ¼ 2r5 � 2r4

R0 ¼ r4: ð63Þ

The pencil of conics essentially describes a line in the
five-dimensional Grassmannian space. As the pencil of
conics is defined by an ellipse and hyperbola, i.e. two points
on this line, the pencil necessarily contains conics of both
types. There are two parabolas which separate the ellipses
from the hyperbolas in the pencil, which can be identified
by solving an equation quadratic in l, i.e.
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ðje þ jhÞl2 � 2jelþ je ¼ 0; ð64Þ

with ji defined as in Eq. (33). Since je < 0 and jh > 0, the
two roots representing parabolas are always real. If the val-
ue of l which minimizes the approximate mean square er-
ror lies outside the range of l which define ellipses, then we
can simply limit the value of l to a value which still defines
an ellipse. Such a limit could therefore be the limiting
parabola itself. Another possibility is to describe the conic
eccentricity as a function of l and solve with a limiting val-
ue of eccentricity, which would prevent a solution that is
too close to being a parabola. Other limits are possible,
which could for example be application dependent.

Once the optimal value, l = l*, is found, then backsub-
titution entails evaluating the conic pencil at this point, i.e.
z* = z(l*), and then substituting for the remaining coeffi-
cient, i.e.

z0 ¼ � x2 xy y2 0 0
� �

z�: ð65Þ

This conic must finally be transformed back to the original
data by the similarity transformation defined by T.

8.2. Correcting eccentricity for hyperbolae

Similar to the case of ellipse specific fitting, the hyperbo-
la specific fit too has an eccentricity bias. As the solution
tends away from a parabola, the eccentricity tends to be
higher. In some cases a pair of asymptotes may describe
the data well, but the wrong pair of branches result, i.e.
those with higher eccentricity. This case is shown in
Fig. 4(b). The method of bias correction proposed above
functions identically for hyperbolae as for ellipses. This is
shown to improve the solution from a geometrical point
of view, while still maintaining the hyperbola specific solu-
tion. This is an important result, as the hyperbolae tend to
be neglected in the literature, although they still play an
important role in metric vision applications.

8.3. Fitting conics with the conic pencil

The methodology of subspace optimization can also be
used for fitting conics such as parabolas and degenerate
conics [9]. The parabolas, for example, are found by the
roots of Eq. (64). The empirical data presented in Section
10.2 shows adequate evidence that the subspace defined
by the ellipse and hyperbola specific solutions is ideal for
one-dimensional sub-optimization.

9. Summary of algorithm

The algorithm resulting from the above analysis can be
summarized as follows:

1. Generate a scaled, mean-free set of data points,

mxi ¼ mðxi � �xÞ and myi ¼ mðyi � �yÞ: ð66Þ

2. Perform a linear regression on the mean-free mxi and myi.
If the residual is too small, stop the algorithm, since the
data is best described by a line.

3. Generate the quadratic design matrix, and remove the
mean values from the columns. Compute the scatter
matrix with the linear prediction removed from the
mean-free quadratic terms, i.e.

M ¼ Ŝ22 � Ŝ21Ŝ
�1
11 Ŝ

T
21: ð67Þ

4. For ellipses and hyperbolae, determine the eigenvectors
of C

�1
M, where C defines the constraint b2 � 4ac = a.

Select the quadratic portion of the elliptical and hyper-
bolic solutions by means of the eigenvalues, and values
of the constraint evaluated for each eigenvector.

5. For parabolas, solve the standard eigenvector problem.
Determine and solve the fourth order polynomial,

K4l
4 þ K3l

3 þ K2l
2 þ K1lþ K0 ¼ 0 ð68Þ

and backsubstitute the real l with the smallest magni-
tude to obtain the quadratic parabola coefficients.

6. Backsubstitute the quadratic coefficients of the desired
conic into z = Bz2. Find the conic matrix from the
Grassmannian coefficients, and apply the similarity
transformation K* = T

T
KT.

7. If the goal is a better geometric fit, determine and solve
the quadratic equation,

Q2l
2 þ Q1lþ Q0 ¼ 0 ð69Þ

and backsubstitute the minimizing l into the conic pen-
cil. Perform backsubstitution for z0 and apply the sim-
ilarity transformation K* = T

T
KT.

10. Numerical tests

10.1. Specific fitting algorithms

The conic forms which are most commonly encountered
in metric vision were used to test the algorithm. The five
test cases – i.e. elliptical, hyperbolic, parabolic, degenerate
hyperbolic, and elliptical arc data – are shown row-wise in
Fig. 2. All three conic types were fitted; the ellipse, hyper-
bola and parabola solutions are shown column-wise. The
results show that the algorithm always produces the specif-
ic types of conics, regardless of the nature of the data. The
tests were performed with random noise with standard
deviations of 3% of the amplitude of the respective x and
y data.

10.2. Bias correction algorithm

The following tests were used to test the bias correction
algorithm:
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1. A set of data which described an arc of a parabola was
corrupted with progressively more noise to compare the
bias correction algorithm proposed here to the standard
AMS algorithm.

2. An elliptical arc was repeatedly corrupted with the same
amount of noise to test the improvement factor of the
bias correction to the standard ellipse specific algorithm.
A similar test appears in Fitzgibbon et al. [3].

Fig. 3 shows the results of the first test. The random
noise is measured in percent standard deviation (rNoise)
as described above. Fig. 3(a) shows the data at the maxi-
mum noise level of 10%, a level much higher than normally
encountered in image processing. The two fits, i.e. the
method of Taubin and the method proposed here, are qual-
itatively identical. Fig. 3(b) shows the geometric error of
both methods as a function of increasing noise level. What

Fig. 2. An ellipse (a), hyperbola (b), and parabola (c) fit to noisy elliptical data. An ellipse (d), hyperbola (e), and parabola (f) fit to noisy hyperbolic data.

An ellipse (g), hyperbola (h), and parabola (i) fit to noisy parabolic data. An ellipse (j), hyperbola (k), and parabola (l) fit to noisy degenerate data. An

ellipse (m), hyperbola (n), and parabola (o) fit to noisy elliptical arc data.
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can be concluded from this test is that the method present-
ed here will provide virtually identical results at low noise
levels. This indicates that the specific fitting algorithm has
identified an optimal one-dimensional subspace, to which
the best AMS fitting conic belongs. That is, this is an excel-
lent subspace within which to perform sub-optimization
procedures. Also of note from this test is the high level of
linearity in the degradation of geometric error with respect
to the noise level.

The second test compares the three algorithms; the
ellipse specific, the bias correction, and the AMS method
of Taubin. Fig. 4(a) shows a random iteration of the
half-ellipse test, with the noise level at a 3% standard devi-
ation. Table 1 shows the measures of error used; the mean
centre point given in a percentage of the respective semi-ax-
is of the original ellipse; and the relative geometric error
with respect to the AMS algorithm; both measures are
averaged over 100 iterations. The low-eccentricity bias of
the ellipse specific method consistently predicts a low centre
point, i.e. a slightly flattened ellipse. The relative error
shows that the bias correction of the ellipse actually
improves the fit in terms of geometric error. Although
the AMS method performs well in any case, it is not ellipse
specific, and in less controlled cases may return hyperbolae.

The results of a similar test for the bias correction of
hyperbola are shown in Fig. 4(b). The improvement of
the bias correction is much more pronounced than for
the ellipse, in that a different set of hyperbola branches
result. Also of note in the comparison of algorithms is
the fact that the AMS algorithm requires a sixth order
eigen-decomposition, which is a numerical procedure,
whereas the method proposed here requires roots of a cubic
and a quadratic, both of which have closed form solutions.

11. Conclusions

The above proposed algorithm provides a new and effi-
cient method for the linear fitting of conics of specific types.
The column of ones, common to previous methods is now
implicitly in the problem, rather than explicitly. The effi-
ciency arises from this decrease in dimensionality of the
problem. The three solutions delivered by the algorithm
are also guaranteed to be each the best ellipse, hyperbola,
and parabola. An algorithm for correcting the eccentricity
bias of the elliptical and hyperbolic solutions was present-
ed, and was shown to improve the geometric error of the
fitting while maintaining the specific conic type. An addi-
tional bias correction to which the pencil of conics could
be applied is the statistical bias of conic fitting proposed
by Kanatani [10]. The linear and specific fitting has appli-
cations in automatic inspection or prejudicial perception,
where fast and accurate fitting is required for real time
inspection of shape manufacturing.
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