
Available online at www.sciencedirect.com
www.elsevier.com/locate/imavis

Image and Vision Computing 26 (2008) 871–877
A minimal solution for relative pose with unknown focal length

Henrik Stewénius a,*,1, David Nistér b, Fredrik Kahl c, Frederik Schaffalitzky d,1

a Center for Visualization and Virtual Environments University of Kentucky, USA
b Microsoft Live Labs, Microsoft Research, Redmond, USA

c Centre for Mathematical Sciences Lund University, Sweden
d Department of Engineering Science, University of Oxford, UK

Received 3 February 2006; accepted 9 October 2007
Abstract

Assume that we have two perspective images with known intrinsic parameters except for an unknown common focal length. It is a
minimally constrained problem to find the relative orientation between the two images given six corresponding points. To this problem
which to the best of our knowledge was unsolved we present an efficient solver. Through numerical experiments we demonstrate that the
algorithm is correct, numerically stable and useful. The solutions are found through eigen-decomposition of a 15� 15 matrix. The matrix
itself is generated in closed form.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The task of computing a 3D reconstruction from a video
sequence is central in computer vision. Different paradigms
have been proposed for performing this task and the con-
cept of RANSAC has been quite successful [8]. State-of-
the-art real-time structure from motion uses the five-point
method, e.g. [13], as a RANSAC engine. While this has
proved to be efficient and stable, the cameras need to be
pre-calibrated. For uncalibrated cameras, the seven-point
method can be applied, e.g. [22], but it is not as stable
due to projective degeneracies. We offer an attractive com-
promise having similar performance characteristics as the
five-point method and still allowing for unknown focal
lengths. By assuming constant and unknown focal lengths,
but otherwise known intrinsics, a minimal problem arises
for six points. This situation occurs if we assume the prin-
cipal point to be in the middle of the image, that there is no
skew and the aspect ratio is one. A detailed analysis of this
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case is given, showing the number of possible solutions,
efficient ways to compute them and the stability of the solu-
tion with respect to measurement noise (Fig. 1).

Minimal case solvers have been built for a large number
of camera models. The problem for two calibrated cameras
and five points was first solved by Kruppa [11] who claimed
11 solutions (one too many) and the false root was then
eliminated by Faugeras and Maybank [4]. A practical solu-
tion was given in [15] and improved in [13]. For three views
and four points, the problem is not minimal but as it would
be under-constrained with three points, the problem is still
of interest and was solved in [14]. Minimal solutions also
exist for uncalibrated perspective cameras [8], and uncali-
brated affine cameras [9].

Given that the epipolar geometry has been computed in
terms of the fundamental matrix, it is well known that it is
possible to recover the focal length [8,21,10]. However, to
the best of our knowledge the relative pose problem for
minimal data is still unsolved. Here we present a solver
for two cameras and six points. The solver constructs a
15� 15 matrix in closed form. Solving the eigen-problem
for this matrix gives the 15 (possibly complex) solutions
to the relative pose problem.
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Fig. 1. The problem solved here: Relative orientation for two cameras,
with a common but unknown focal length f, that see six unknown points.
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We will first list the minimal cases for cameras with a
common unknown focal length. Then the equations used
will be introduced. The solver was found using Gröbner
basis theory but this theory is not necessary to understand
the solver. We will also give some numerical results.

2. Background

Suppose we are given m cameras, all calibrated except
for a common unknown focal length and n corresponding
image points. There are 6mþ 3nþ 1� 7 degrees of free-
dom (6 for each camera, 3 for each point, 1 for focal length
and 7 for the unknown coordinate system) and 2mn equa-
tions, hence in total, there are 2mnþ 6� 6m� 3n excess
constraints (Table 1).

The minimal case ðm; nÞ ¼ ð2; 6Þ will be solved here. The
other possibility ðm; nÞ ¼ ð3; 4Þ is still an open problem.

2.1. Geometric constraints

The fundamental matrix F encodes the epipolar geome-
try of two views, and corresponding image points x and x0

satisfy the coplanarity constraint

xTFx0 ¼ 0: ð1Þ
Any rank-2 matrix is a possible fundamental matrix, i.e. we
have the well known single cubic constraint, e.g. [8]:

Theorem 1. If a real non-zero 3� 3 matrix F is a
fundamental matrix then

detðF Þ ¼ 0: ð2Þ
Table 1
Number of excess constraints for m views and n points with unknown
focal length f

m n

1 2 3 4 5 6 7

1 �1 �2 �3 �4 �5 �6 �7
2 �5 �4 �3 �2 �1 0 1
3 �9 �6 �3 0 3 6 9
4 �13 �8 �3 2 7 12 17
An essential matrix has the additional property that the
two non-zero singular values are equal. This leads to the
following cubic constraints on the essential matrix, adapted
from Maybank [12]:

Theorem 2. A real non-zero 3� 3 matrix E is an essential

matrix if and only if it satisfies the equation

2EETE � trðEETÞE ¼ 0: ð3Þ
This constraint previously appeared in [19,3].
2.2. Gröbner bases

Here are only given some basic notions about algebraic
geometry, the interested reader should consult [1,2].

The ideal generated by polynomials f1; . . . ;fn2C½x1; . . . ;
xn� is the set I of polynomials g2C½x1; . . . ;xn� of the form:

g ¼
Xn

i¼1

fipi; pi 2 C½x1; . . . ; xn�: ð4Þ

We also say that the fi generate the ideal I. A Gröbner ba-

sis of an ideal is a special set of generators, with the prop-
erty that the leading term of every ideal element is
divisible by the leading term of a generator. The notion
of leading term is defined relative to a monomial order.
The Gröbner basis exposes all leading terms of the ideal
and leads to the useful notion of remainder with respect
to (division by) the ideal. Gaussian elimination is a special
case of Buchberger’s algorithm which is a method for cal-
culating a Gröbner basis from any generating set. Gröb-
ner bases, monomial order and Buchberger’s algorithm
are explained in [1]. For ideals having a finite set of solu-
tions (‘‘zero-dimensional’’ ideals) the (vector space)
dimension of the quotient ring A ¼ C½x1; . . . ; xn�=I is also
finite and the dimension equals the number of solutions,
counted with multiplicity. Any polynomial f acts on the
quotient ring A by multiplication ðf : g þ I 7!fg þ IÞ and
this is clearly a linear mapping from A to itself. A natural
way to choose a (vector space) basis for A is to take all
monomials that are not leading terms of any element of
I. The action of a polynomial f is then described by a
square matrix mf called the action matrix. If R=I is finite
and I has n solutions, the action matrix for multiplication
by the polynomial f is computed by concatenating the
n� 1 vectors formed by taking the n elements in the
monomial basis of R=I , reducing modulo gbðIÞ and repre-
senting them as n� 1 vectors in the basis of R=I . The
solutions to a zero-dimensional ideal can be read off di-
rectly from the left eigen-values and left eigen-vectors of
appropriate action matrices [2].

The solver presented here was built by first computing a
Gröbner Trace over Zp, please see [23,25]. The solver we
build in this paper has some similarity with the matrix
based Gröbner base algorithm proposed in [6]. A descrip-
tion of the machinery we used to build this solver is given
in [20]. For the work in the finite field we used [7].



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

           l1
           l2
           l3
           l4
           l5
           l6
           l7
           l8
           l9

  l0 = det(F)
  l11 = p*l10

l12 = p^2*l10

monomials

Fig. 2. Nine equations from Eq. (3) and detðF Þ, p detðF Þ and p2 detðF Þ.
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Fig. 3. The previous system after a Gauss–Jordan step and adding new
equations based on multiples of the previous equations.
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Fig. 4. The previous system after a Gauss–Jordan step and adding new
equations based on multiples of the previous equations.
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3. Solution procedure for ðm; nÞ ¼ ð2; 6Þ

The inner calibration of the camera K is assumed to be
K ¼ diagð ½f f 1� Þ. With observations fxig6

i¼1 in the first
image and fx0ig

6
i¼1 in the second image the epipolar con-

straint (1) gives six linear constraints on the fundamental
matrix F. As a 3� 3 matrix has 9 degrees of freedom this
determines F up to 3 degrees of freedom,
F ¼ l0F 0 þ l1F 1 þ l2F 2 for some scalars l0; l1; l2. The fun-
damental matrix F can be computed only up to scale so
we set l0 ¼ 1.

The fundamental matrix F must fulfill (2), that is,
detðF Þ ¼ detðF 0 þ F 1l1 þ F 2l2Þ ¼ 0, which is a third order
polynomial equation in ðl1; l2Þ. The matrix F can be trans-
formed into an essential matrix by correcting for the intrin-
sic calibration, E ¼ KTFK. Set P ¼ f �1K then Eq. (3) is
equivalent to

2PFPPF TPPFP � trðPFPPF TPÞPFP ¼ 0: ð5Þ
() 2FP 2F TP 2F � trðFP 2F TP 2ÞF ¼ 0: ð6Þ

Notice that f �1 only appears in even powers in the above
set of polynomial equations and hence one can set
p ¼ f �2. This is a set of nine fifth order equations in
ðl1; l2; pÞ.

The 10 equations, (2) and (6), can be written

MX ¼ 0; ð7Þ
where M is a 10� 33 matrix of scalars and X is a vector of
monomials

X ¼ ½l3
1p2; l3

1p1; l3
1; l

2
1l1

2p2; l1
1l2

2p2; l3
2p2; l2

1l1
2p1; l1

1l2
2p1; l3

2p1;

� l2
1l1

2; l
1
1l1

2p2; l2
1p2; l2

2p2; l1
1p3; l1

1l2
2; l

3
2; l

2
1p1; l1

2p3; l1
1l1

2p1;

� l2
2p1; l1

1p2; l1
2p2; p3; l2

1; l
1
1l1

2; l
2
2; l

1
1p1; l1

2p1; p2; l1
1; l

1
2; p

1; 1�T:

This ordering of the monomials is not a monomial order
but it is quite close to the GrevLex [1] monomial order.
The reason for not ordering the monomials in GrevLex is
that the computations are easier to implement this way.
The computed Gröbner basis is the same as we would get
using GrevLex. The elimination order is still the one
belonging to the GrevLex order.

From this point on all polynomials will be represented
by rows in n� 33 matrices. Addition of polynomials is
now addition of rows. Multiplying a polynomial with a sca-
lar a corresponds to multiplying the corresponding row
with a. Multiplying a polynomial with the monomial p is
implemented by shifting elements. If any non-zero number
is in a position that is not shifted it means that multiplica-
tion with p was impossible for this vector within this repre-
sentation. By writing pMi we mean the polynomial
represented by row i in M multiplied by the monomial p.
Row indexing starts at 1. The operations that we do are
similar to generating new S-polynomials as described in
[1], our reason for working on matrices instead of individ-
ual polynomials is that our approach permits row-pivoting
in the elimination step.
The rows representing p detðF Þ and p2 detðF Þ are added
to the matrix M, or in matrix formulation pM10 and p2M10.
This system of 12 rows is seen in Fig. 2. This system is
reduced using Gauss–Jordan elimination (row operations)
and the rows pM ð7;8;9;10Þ are added. This new system is seen
in Fig. 3. Again, the system is reduced and the rows pM ð8;9Þ
are added. This new system is seen in Fig. 4, for future ref-
erence we call this system M3. The system is reduced one
last time, and the system now represents a Gröbner basis.
This system is seen in Fig. 5.

Given the Gröbner basis from the previous step it is now
possible to compute the action matrix ml2

, see [2], for mul-
tiplication by l2 by taking the last 15 columns from rows 8,
9, 11, 13, 18, 10, 15 and 16 and changing the sign of all
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Fig. 5. Gauss–Jordan eliminated version of the previous system. This set
of equations is a Gröbner basis.
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coefficients and then putting ones in selected places, as
described in Fig. 6.

Dividing each of the 15 eigen-vectors of the transposed
action matrix by its last element and then selecting ele-
ments 12, 13 and 14 gives the solutions for ðl1; l2; pÞ. As
there are 15 eigen-vectors there are 15 solutions. The fun-
damental matrices are then given by
F ¼ F 0 þ F 1l1 þ F 2l2, as f �2 ¼ p is known, the essential
matrix can be computed and from the essential matrix
the motion ðR; tÞ can be computed.
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Fig. 7. log10 of error in determining f and F for perfect data.
4. Possible optimizations

4.1. Compute a monovariate polynomial

Solving the eigenvalue-problem is the most time-con-
suming part of the solver. Solving a monovariate polyno-
mial equation using Sturm-sequences is faster.

By reordering the monomials the system can be written
½A B �X where A is a 18� 12 matrix (of scalars), B a
matrix of polynomials in p with rows containing
½2� ½2� ½2� ½3� ½3� ½3�½ � where ½n� is a polynomial in
p of degree n, and X is the monomial vector

X ¼ ½l3
1p2; l3

1p1; l3
1; l

2
1l1

2p2; l1
1l2

2p2; l3
2p2; l2

1l1
2p1; . . . l1

1l2
2p1; l3

2p1;

� l2
1l1

2; l
1
1l2

2; l
3
2; l

2
1; l

1
1l1

2; l
2
2; l

1
1; l

0
1l1

2; 1�
T

Performing a Gauss–Jordan elimination on this system and
extracting the last six rows gives a system

p2 0 ½2� ½3� ½3� ½3�
p 0 ½2� ½3� ½3� ½3�
1 0 ½2� ½3� ½3� ½3�
0 p2 ½2� ½3� ½3� ½3�
0 p ½2� ½3� ½3� ½3�
0 1 ½2� ½3� ½3� ½3�

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

l2
1

l1l2

l2
2

l1

l2

1

2
666666664

3
777777775
: ð8Þ

Existence of solutions for this system implies that
detðCÞ ¼ 0. This is a polynomial of degree 15 in p. The
solutions to this equation are solutions for p and can be
used in Eq. (7) to get a 10� 10 system of linear equations.
4.2. Efficient computation of M

When computing the system matrix M from the funda-
mental cubic Constraint (3) and the rank Constraint (2) an
efficient way is to build a multiplication kernel for polyno-
mials in known monomials, that is given vectors represent-
ing two polynomials the vector representing their product
is computed. For monovariate polynomials this corre-
sponds to convolution, for multivariate polynomials spe-
cial code has to be written.
5. Numerical experiments

The error in the fundamental matrix is computed as
minikF � eF ik where F is the true fundamental matrix
and feF ig are the estimated fundamental matrices, all being
normalized with Frobenius norm. The norm is the Frobe-
nius norm.
5.1. Numerical precision of the solver

Fig. 7 shows the behavior for randomly chosen configu-
rations of cameras and 3D scene points. There are two crit-
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Fig. 8. log10 of error in determining f and F for perfect data when the
axis intersect.
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Fig. 9. log10 of error in determining f and F . The main axes of the
cameras intersect and they have the same distance from principal point to
intersection point (some noise added for stability).

H. Stewénius et al. / Image and Vision Computing 26 (2008) 871–877 875
ical configurations [21] for determining f from the funda-
mental matrix F:

• The main axes of the cameras intersect and both cam-
eras have the same distance to the intersection point.
Fig. 8 shows experimentally that if the distances from
the cameras to the intersection point are not equal then
f can be reliably estimated using our method. Fig. 9
shows that even when the distances are equal (and it is
impossible to estimate f) out method still allows to esti-
mate F.
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Fig. 10. log10 of error in determining f and F . The main axes of the
cameras are parallel (some noise added for stability).
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Fig. 11. log10 of error in determining E and F . All points on a plane.
• The main axes of the cameras are parallel. Similar to
the other degenerate case, Fig. 10 shows that even
though f can not be recovered it is again possible to
compute F.

It also important to note that planar scenes are degener-
ate. This is demonstrated in Fig. 11. Here, neither f ; E or F

can be recovered by our method (the figure does not show a
histogram for f because the range of errors is enormous
whereas the range for E is not).

5.2. Stability of the solution compared to other methods

Our solver is compared with the five-point method of
Nistér [13]. and the seven-point method. The comparison
is slightly unfair since the five-point method is given the
focal length.

In the numerical experiments we will use cameras with
focal length f ¼ 1:0 or 1.1. The world points are at
depth 3.0 from camera one and are distributed with a
normal distribution around this point. The standard devi-
ation of the point cloud is 1.0, except when simulating a
planar scene where we take one of the standard devia-
tions to be much smaller, 0.01. Gaussian noise is added
to image projections, assuming an image with a field of
view of 53� and a resolution of 500 pixels. We do not test
whether the 3D points are inside the field of view of the
camera or not. The five-point method is implemented
assuming that f ¼ 1:0. All rotations indicate how much
the second camera has been rotated relative to the first
camera.

Figs. 12 and 13 show performance when the focal length
is f ¼ 1:0 (so the five-point method is given correct calibra-
tion). Out six-point method is narrowly beaten by the five-
point method for sideways motion but performs much bet-
ter for forward motion. This shows that, if the camera
model is justified, it is always better to use the six-point sol-
ver than the seven-point method and generally no worse
than the five-point solver.

For near-planar scenes (Fig. 14), the type of motion is
important. For sideways motion our method is narrowly
beaten by the five-point method but even the seven-point
method is reasonable. For forward motion, only the five-
point method is usable.

When the focal length is f ¼ 1:1 (so the five-point solver
has the wrong calibration) performance is similar to the
case f ¼ 1:0 for sideways motion (Fig. 15) but for forward
motion the six-point solver comes out on top again
(Fig. 16).

5.3. On the number of solutions

There are generally 15 solutions to the problem but
some of these solutions can be complex or lead to negative
values of p ¼ f �2. Fig. 17 shows the number of real solu-
tions with positive values for f 2; these are the only solu-
tions of practical interest.
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Fig. 12. Sideways motion, f ¼ 1:0. Left: no rotation. Right: rotation 0.1 rad.
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Fig. 13. Forward motion, f ¼ 1:0. Left: no rotation. Right: rotation 0.1 rad.
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Fig. 14. Near-planar scene, no rotation. Left: sideways motion. Right: forward motion.
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Fig. 15. Sideways motion, f ¼ 1:1. Left: no rotation. Right: rotation 0:1 rad.
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6. Conclusions

We have presented a solution to the minimal problem of
six points in two views with unknown focal length. Using
Gröbner basis techniques we show how the problem can
be solved in an efficient manner, making it an attractive
solution for semi-calibrated structure and motion
computations.

Apart from computing the solutions to the eigen-problem,
all the steps are in closed form and can be heavily optimized.
For a fully optimized version the eigen-problem is likely to be
the bottleneck, the current version takes about 2 ms.

We have also shown that the method gives very good
stability under noise, competitive even with the five-point
method and more stable than the seven-point method.
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