
Tracking and Recognizing Actions of Multiple Hockey
Players using the Boosted Particle Filter

by

Wei-Lwun Lu

B.Sc, National Tsing Hua University, 2002

A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF

T H E REQUIREMENTS F O R T H E D E G R E E OF

Master of Science

in

T H E F A C U L T Y OF G R A D U A T E STUDIES

(Computer Science)

The University of British Columbia
April 2007

© Wei-Lwun Lu, 2007

Abstract

This thesis presents a system that can automatically track multiple hockey players
and simultaneously recognize their actions given a single broadcast video sequence,
where detection is complicated by a panning, tilting, and zooming camera. Firstly,
we use the Histograms of Oriented Gradients (HOG) to represent the players, and
introduce a probabilistic framework to model the appearance of the players by a
mixture of local subspaces. We also employ an efficient offline learning algorithm
to learn the templates from training data, and an efficient online filtering algorithm
to update the templates used by the tracker. Secondly, we recognize the players'
actions by incorporating the H O G descriptors with a pure multi-class sparse classifier
with a robust motion similarity measure. Lastly, we augment the Boosted Particle
Filter (BPF) with new observation model and template updater that improves the
robustness of the tracking system. Experiments on long sequences show promising
quantitative and qualitative results, and the system can run smoothly in near real
time.

Contents

Abstract • 1 1

Contents n i

List of Tables vi

List of Figures v n

List of Algorithms 1 X

Acknowledgements x

Dedication • X 1

1 Introduction 1

1.1 Motivation 1

1.2 The Problem • • 3

1.3 Challenges 4

1.4 Outline of Thesis . . ' 5.

2 Related Work 8

2.1 Template Updating, 8

2.2 Visual Action Recognition 12

2.3 Object'Tracking . 1 5

i n

3 Observation Models . • 18

3.1 Color 18

3.2 Shape 19

3.3 Efficient Implementation 21

4 Template Updating • • 23

4.1 Introduction 23

4.2 Probabilistic Graphical Model 26

4.3 Learning 28

4.3.1 Initialization 28

4.3.2 E-step 29

4.3.3 M-step 31

4.4 Updating ' 32

4.4.1 Particle Filtering 32

4.4.2 Rao-Blackwellized Particle Filtering 33

4.5 Prediction . . . 35

4.6 Experiments 35

5 Action Recognition 39

5.1 Introduction 39

5.2 The Sparse Multinomial Logistic Regression Classifier . 40

5.3 Motion Similarity Measure 42

5.4 Experiments 44

5.4.1 Dataset 45

5.4.2 Parameter Settings 46

5.4.3 Results 48

6 Multi-target Tracking 51

6.1 Introduction 51

6.2 Statistical Model 52

iv

6.3 Observation Likelihood 53

6.4 Particle Filtering 53

. 6.5 Boosted Particle Filter 54

6.5.1 Adaboost Detection . . . 54

6.5.2 Proposal Distribution with the Adaboost Detections 56

6.5.3 Further Boosting by a Naive Proposal 57

6.6 Multi-target Tracking 57

6.7 Experiments 59

6.7.1 Parameter Settings 59

6.7.2 Results 61

7 Conclusion and Future Work 65

7.1 Conclusion 65

7.2 Future Work 66

Bibliography . . . 68

v

List of Tables

Action Recognition Results 49

vi

List of Figures

1.1 System Input and Output 2

1.2 Visual action recognizer - an example 4

1.3 System Diagram 7

2.1 A Rao-Blackwellized Particle Filter for EigenTracking 10

2.2 Learning Dynamic Point Distribution Model 11

2.3 Decomposed Optical Flow 12

2.4 Decomposed Image Gradients 13

2.5 The H M M Action Recognizer 14

2.6 The P C A - H O G descriptor 16

2.7 Experimental results of tracking and recognizing a single player . . . 17

3.1 HSV Color histograms 19

3.2 The H O G descriptor 20

4.1 Tracking with a naive template updater 24

4.2 The SPPCA Template Updater 25

4.3 Probabilistic Graphical Model of a SPPCA Model 27

4.4 Training set of images for hockey players 36

4.5 Experimental results of the SPPCA template updater 38

5.1 The Action Recognizer 40

5.2 Similarity Matrix 44

vii

5.3 Training data for the action recognizer 45

5.4 Confusion Matrix for the Action Recognition Results 50

6.1 Hockey player detection results 55

6.2 Mixture of Gaussians for the proposal distribution 56

6.3 Tracking results I 61

6.4 Tracking results II 62

6.5 Tracking and action recognition results 64

viii

List of Algorithms

1 E-step using the Viterbi Inference 30

2 M-step 31

3 Rao-Blackwellised Particle Filter for SPPCA 34

4 Boosted Particle Filter 58

ix

Acknowledgements

Without encouragement from James J. Little, it would be impossible to write this
thesis. It is difficult to express my gratitude for his extensive support, discussion
and endless intelligent ideas.

I am grateful to Kevin Murphy and Kenji Okuma for their contribution of
time and ideas to my work. I would also like to thank Brendan Little for hand
annotating the hockey sequence.

Special thanks for Yu-Hsuan. Your encouragement, company, and support
have made these three years in U B C a memorable and wonderful experience.

I would also like to thank my parents and many other friends in Vancouver,
for helping me and enjoying our happy life together.

W E I - L W U N L U

The University of British Columbia
April 2007

i

To my love, Yu-Hsuan.

xi

C h a p t e r 1

Introduction

1.1 Motivation

Visual tracking and action recognition systems have gained more and more attention

in the past few years because of their potential applications in smart surveillance

systems, advanced human-computer interfaces, and sport video analysis. In the past

decade, there has been intensive research and giant strides in designing algorithms

for tracking humans and recognizing their actions [15, 18].

Our motivation arises in the challenge of inventing a computer system that

tracks multiple persons in a video sequence and simultaneously classifies their ac

tions. Such a computer system can be used in surveillance in order to track and

detect unusual activities, and it is also very useful for sport teams to analyse the

movements and actions of the players in order to improve the team strategies and

the skills of the players. To accomplish these tasks, this system should be able to

automatically detect persons when they appear in the video sequence, track the

locations and estimate the sizes of the persons, and recognize the actions of the

persons. Ultimately, such a computer system should be able to track persons under

occlusion and recognize the identities of the persons throughout the video sequence.

Among these major aspects of the systems, we primarily focus on the problem

of tracking and recognize the actions of the hockey players. Specifically, we address

1

the problems of estimating the locations and sizes of multiple hockey players given a

single video sequence and classifying their moving directions. Figure 1.1 shows the

examples of the input and output of the system. The input is a video sequence from

a single panning, tilting, and zooming camera; the system outputs the locations and

sizes of the hockey players (represented by bounding boxes) as well as their moving

directions (represented by arrows). In this thesis, we do not recognize the identities

of the players and leave the problem for future work.

Frame 814 Frame 814

(a) Input (b) Output

Figure 1.1: System Input and Output: (a) shows the input of the system.
Observe that there are multiple hockey players in the scene, and they are usually very
small. Players also interact with others very frequently. Thus, partial occlusions
often occur, (b) shows the output of the system. The system presented in this
thesis can track and recognize multiple hockey players' actions simultaneously. The
location and size of the players are specified by bounding boxes, while the actions
of the players are visualized as arrows.

2

1.2 The Problem

This thesis focuses on two major problems: tracking multiple hockey players from

a single video sequence and simultaneously recognizing their actions. The video

sequences are 320 x 240 low-resolution hockey games originally broadcast on T V

with one to fifteen targets in each frame. The sizes of the players are usually very

small, ranging from 15 to 70 pixels. Moreover, the camera is not stationary and the

sequence contains fast camera motions and significant zoom in/out. Figure 1.1 (a)

shows some examples of the video sequences.

The task of visual tracking is to automatically estimate the locations and

sizes of the hockey players on the image coordinate system given a video sequence.

Tracking typically starts when the system detects that a hockey player appears in

the video sequence. The system will store the visual information of the players (e.g.,

shapes and colors) as a template. In the next frame, the system will search for a

bounding box in the image that is most similar to the template; the center and size

of the bounding box are thus the location and size of the player in the next frame.

Figure 1.1 (b) shows some examples of tracking multiple hockey players. The track

ing problem can be divided into many sub-problems. For example, how to represent

the visual cues in an informative and economic way? How to update the template

when the shapes of the players change? How to efficiently and reliably estimate the

locations and sizes of multiple hockey players? In the following chapters, we will

tackle these sub-problems one by one.

The problem of recognizing the actions of the players can be solved if the

trajectories of hockey players on the rink coordinate system are available. Since the

camera is not stationary, and we do not have an accurate homography between the

image and rink coordinate system, it is very difficult to obtain accurate trajectories

of hockey players on the rink. As a result, we seek to classify the actions of the

players based on image patches of 30 to 70 pixels heights obtained from the tracking

system. Figure 1.2 gives an example of the action recognizer. The input of the

3

it)
4
f *

f

Skating Down

Skating Left

Skating Right

Skating Up

Figure 1.2: Visual action recognizer - an example: The input of the action
recognizer is a sequence of image patches that have a single person centered in the
image. The action recognizer will classify the person's action based on these image
patches. The output of the action recognizer is the label of the actions. In this
figure, for example, the action labels are "skating down", "skating left", "skating
right", and "skating up".

action recognizer is a sequence of image patches that have a single person centered

in the image. The action recognizer will utilize these image patches to classify the

person's actions, and report the action labels of the person. The action labels can

be long-term actions such as "shooting", "passing", and "skating", or short-term

actions such as "skating left" and "skating right".

1.3 Challenges

This problem of visual tracking is challenging due to several reasons. Firstly, it is

usually difficult to construct a reliable appearance model of the targets because of

different viewpoints and illumination changes. The problem will be even harder if

the targets are deformable objects, such as hockey players. Secondly, the scenes of

the video sequences are usually very complicated. They usually contain shadows,

background clutter, and other objects that may occlude the targets. Finally, the

trajectories of the targets are uncertain and usually nonlinear, and thus make the

prediction of the target's next location difficult. Figure 1.1 (a) illustrates the chal

lenges of the tracking problems. We can notice that the video is low resolution,

the camera is moving, the players are small and interacting, and the shapes of the

4

players are changing.

Visual action recognition shares the same difficulties of visual tracking due

to the variations of the target's appearance and the complicated scenes of the video

sequences (see Figure 1.1 and 1.2 for' examples). Furthermore, the actions of the

targets usually have various styles and speeds, and thus make the problem of visual

action recognition even harder.

1.4 Outline of Thesis

Developing an automatic tracking and action recognition system is a challenging

task. In the following chapters, we show that it is, however, possible to develop

an integrated system that is capable of tracking and recognizing actions of multiple

hockey players in near real-time given a single video sequences.

, In Chapter 2, we will first review some related work that tackles the problems

of tracking and action recognition. We will also introduce a brief background of the

template updating algorithms.

We start to present our integrated tracking and action recognition system

by discussing the problem of how to represent the visual cues in an informative

and economic way. In Chapter 3, we introduce the observation models used in our

system: the Hue-Saturation-Value (HSV) color histogram [44] and the Histogram

of Oriented Gradients (HOG) descriptor [8]. The HSV color histograms and the

H O G descriptors encode the color and shape information of the image patches of

hockey players, respectively. In addition, they can be very efficiently computed

using integral histograms [47].

The next problem we encounter is how to update the templates when the

shapes of the players change. As described in Section 1.2, the tracker searches for

a bounding box in the image that is most similar to the template. Since hockey

players always change their pose during a hockey game, it is impossible to track

a hockey player using a fixed template. In Chapter 4, we describe a Switching

5

Probabilistic Principal Component Analysis (SPPCA) template updater to predict

and update the templates used by the tracker. The SPPCA template updater learns

the template model from training data offline. Before the tracker starts in the current

frame, the SPPCA template updater will predict new templates based on previous

observations. After the tracker estimates the locations and sizes of hockey players

in the current frame, the image patches of hockey players will be extracted and fed

back into the SPPCA template updater to update the template model. Figure 1.3

illustrates the template updating procedures.

The third problem we face is how to classify the actions of hockey players

from the image patches extracted by the tracker. In Chapter 5, we present an action

recognizer that takes the H O G descriptors of hockey players as input features, and

classifies the H O G descriptors into action categories using a Sparse Multinomial

Logistic Regression (SMLR) classifier [27]. The SMLR classifier has several desirable

properties: it has a sparsity-promoted prior that increases the classification speed

and reduces the generalization error, and it has no restriction on the choices of basis

functions. By incorporating the SMLR classifier and the motion similarity measure

introduced by Efros eiaZ. [11], the action recognizer is capable of accurately and

efficiently classifying players' moving direction.

The last problem is how to efficiently and reliably track the locations and

sizes of multiple hockey players. In Chapter 6, we detail the Boosted Particle Filter

(BPF) presented by Okuma etal. [44]. The BPF tracker augments the standard

Particle Filter [2] by incorporating cascaded Adaboost detection [61] in its proposal

distribution, and it improves the robustness of the tracker. We also describe how

to combine the B P F tracker with the SPPCA template updater and the action

recognizer. Figure 1.3 shows the system diagram of our algorithm.

In Chapter 7, we conclude this thesis and provide several possible research

directions for future work.

6

New frame

* 1 V

BPF Tracker

T
New templates

Tracking results

•EQ -—.HI

Extract image patches

Predict new
templates

SPPCA
Template
Updater

H 1

1
Update the SPPCA
Template Updater

Action
Recognizer

T
Output 1: Output 2:
Locations/sizes Action labels
of the players of the players

Figure 1.3: System Diagram: The system contains three important compo
nents: the Boosted Particle Filter (BPF) tracker, the Switching Probabilistic Prin
cipal Components Analysis (SPPCA) template updater, and the action recognizer.
The following chapters will describe these three components in more detail.

7

C h a p t e r 2

Related Work

2.1 Template Updating

The goal of a tracking system is to estimate the locations and sizes of the targets

in a video sequence. In order to accomplish this task, the trackers have to know

the appearance of the targets. A template, or an exemplar, provides the information

about the appearance of the targets, and thus plays an important role in the tracking

system. Unfortunately, due to the fact that the targets may be non-rigid objects

and the viewpoint of the camera may change in the video, the appearance of the

targets may not remain the same during tracking. Therefore, in order to reliably

track the targets throughout the video sequence, a template updating algorithm is

required to adapt the template to the newly observed appearance of the targets.

Many template updating algorithms have been developed recently. The most

naive approach uses the previous observation as the template for the tracker to find

the most probable location of the target in the next frame. Though simple, this

approach has problems because the estimation of the target's location inevitably

has errors so that the bounding box may include the background or other objects.

If we take the previous observation as the template in the next frame, the errors will

accumulate and finally lead to loss of targets in the future [36]. When the target is

rigid, an alternative is to first use the previous observation as the template to obtain

8

a rough estimation of the target's location. Then, we can conduct a local search

utilizing the reliable first template, and start the search from the rough estimated

location in order to correct the rough estimation [36]. However, this technique does

not work when the targets are deformable such as hockey players.

Toyama and Blake introduced the exemplar tracker [57]. They learned the

representation and the transition of exemplars offline. During tracking, the exemplar

tracker infers both the position of the target and the exemplar used by the tracker.

The problem of the exemplar tracker is that the exemplars only encode a fixed num

ber of appearance variations of the targets. In order to introduce more appearance

variations, Elgammal et al. modeled the distribution between the exemplars and the

intermediate observation using a non-parametric distribution [12].

Instead of constraining the appearance of the targets to be similar to some

fixed number of templates, Black etal. [4] constrained the target to lie on a learned

eigen-subspace. Their EigenTracking algorithm simultaneously estimates the loca

tion of the targets and the coordinates of the target's appearance in the subspace to

minimize the distance between the target's appearance and the subspace. However,

since the EigenTracker learns the appearance model off-line, it cannot fully capture

the appearance variations of the targets. Recently, Ross etal. [50] and Ho etal. [17]

proposed algorithms to efficiently update the subspace on-line.

Khan et al. [24] formulated the EigenTracking algorithm in a probabilistic

framework, and applied it to track honey bees (Figure 2.1 (a)). Instead of using

P C A , they used Probabilistic Principal Component Analysis (PPCA) [56], which

is a generative model that generates the observed variable from the hidden vari

ables by factor analysis model with isotropic Gaussian noise. They projected the

appearance of the target to a single latent subspace using Probabilistic Principal

Component Analysis (PPCA) [56]. Figure 2.1 (b) shows the probabilistic graphical

model of their tracking system. Since the hidden variables are continuous and have

high dimensionality, they used a Rao-Blackwellized particle filter [9] to infer the

9

(a) (b)

Figure 2.1: A Rao-Blackwellized Particle Filter for EigenTracking: (a)
Khan etal. [24] presented the Rao-Blackwellized Particle Filter for EigenTracking to
track honey bees, (b) The probabilistic graphical model of the Rao-Blackwellized
Particle Filter for EigenTracking. lt represents the location of the bee at time t, at

represents the appearance of the bee at time t, and Zt is the observation at time t.

These figures are taken from [24].

probability of the hidden variables for greater efficiency.

Instead of using a single eigen-subspace to model the appearance of the tar

get, researchers also tried to model the appearance by using multiple subspaces.

For example, Lee etal. [28] presented a system that models the faces by a set of

eigen-subspaces. In the learning phase, they divided the training data into groups

according to the identities of the faces, and learned a single eigen-subspace for each

group. During the runtime, they first recognized the identity of the face based on

the history of the tracking results, and chose the eigen-subspace belonging to the

recognized person. Then, they utilized the chosen eigen-subspace to generate a tem

plate for the tracker, and tracking could be performed by searching for the location

whose image patch is most similar to the template.

Recently, Lim et al. [29] have introduced an appearance updating technique

that first transforms the observation to a latent space by Locally Linear Embedding

(LLE) [52], and then uses the Caratheodory-Fejer (CF) approach to predict the

next position of the appearance in the latent space, and finally inversely transform

the point from the latent space to the observation space by a set of Radial Basis

10

MUAfiUff

M/UflJUff

)
Figure 2.2: Learning Dynamic Point Distribution Model: A principal com
ponent analysis (PCA) is applied to in each cluster of registered shapes to obtain
compact shape parameterization known as "Point Distribution Model" [7]. The
transition probability between clusters is also learned. This figure is taken from

functions (RBFs). The experimental results show that their approach can accurately

predict the appearance of the target even under occlusions. Urtasun etal. [59] and

Moon et al. [38] also transform the observation to a latent space and then predict

the next appearance. Instead of using L L E and C F , they use Gaussian Process

Dynamic Models (GPDM) [62] to predict and update the template of the tracker.

The work most similar to ours is Giebel etal. [16]. They presented a sys

tem that can track and detect pedestrians using a camera mounted on a moving

car. Their tracker combines texture, shape, and depth information in their ob

servation likelihood. The texture is encoded by the color histogram, the shape is

represented by a Point Distribution Model (PDM) [7], and the depth information

is provided by the stereo system. In order to capture more variations of the shape,

they constructed multiple eigen-subspaces from the training data, and the transition

probability between subspaces were also learned (Figure 2.2). During runtime, they

used a Particle Filter to estimate the probability of the hidden variables of the track

ing. To reduce the number of particles, they also used a smart proposal distribution

based on the detection results. Our tracker shares the same merits. However, in the

template updating part, we infer the probability of the hidden variables using the

Rao-Blackwellized Particle Filter to increase the speed. In multi-target tracking, we

[16].

11

(a) Two consecutive frames (b) Decomposed Optical Flow

Figure 2.3: Decomposed Optical Flow: (a) Two consecutive frames, (b) The
Decomposed Optical Flow constructed by decomposing the optical flow of (a) into
four channels (F£, F^, Fy , Fy), where F£, F%, Fy, and Fy represent the optical
flow along the X+, X~, Y+, and Y~ directions, respectively.

use the Boosted Particle Filter that incorporates the cascaded Adaboost detector

to obtain fast and reliable detections.

2.2 Visual Action Recognition

The goal of visual action recognition is to classify the actions of persons based on

a video sequence. Figure 1.2 shows an example input/output of a visual action

recognition system. In this section, we briefly review the literature related to our

visual action recognition system. For a more complete survey, please refer to the

reviews of Gavrila [15] and Hu etal. [18].

Freeman etal. [14] utilized global orientation histograms to encode the shapes

of the hands, and used a nearest neighbor classifier to determine the gesture of the

hands. In [13], they further divides the images into cells, and compute the orienta

tion histograms of all cells. However, their approach determines the gesture of the

12

(a) Original image (b) Decomposed Image Gradients

Figure 2.4: Decomposed Image Gradients: (a) The original image, (b) The
Decomposed Image Gradient constructed by decomposing the image gradients of
(a) into four channels (G j , G^, G+-, Gy), where G j , G^, Gp, and GY represent
the image gradient along the X+, X~, Y+, and Y~ directions, respectively.

target only by the current posture of the person. No previous posture information

is used.

Efros etal. [11] employed a motion descriptor, the Decomposed Optical Flow

(DOF). The D O F descriptor can be constructed by decomposing the optical flow

of two consecutive frames into four channels (F%, F%, Fy , Fy), where F%, F^,

Fy, and Fy represent the optical flow along the X+, X~, F + , and Y~ directions,

respectively. They also presented a novel motion-to-motion similarity measure that

can handle actions of different speeds. A nearest-neighbor classifier was used to

determine the person's actions. Figure 2.3 shows an example of the D O F descriptor

of two consecutive frames. We can see clear flow information on the legs of the

hockey player.

Wu [64] extended Efros etal. [11] by introducing another motion descriptor,

the Decomposed Image Gradients (DIG). The DIG descriptor can be constructed

13

a = 1 (skate left)

a* = argmax p(a | Y)

1. Given a video 2. Evaluate the likelihood of 3. Pick up the action
sequence the H M M of each action with the maximum

likelihood

Figure 2.5: The H M M Act ion Recognizer: This figure illustrates the proce
dures of classifying actions of a video sequence using the H M M action recognizer.
The H M M action recognizer consists of multiple HHMs, and each of them models
the appearance variations of a single action. The action is determined by finding
the H M M that has the maximum likelihood p(a\Y) where a is the action label and
Y is a video sequence. The hidden state P represents the appearance variation of
the target.

by first computing the image gradients of the image, and then decomposing the

image gradients into four channels (Gj^, G ^ , GY, GY), where G j , G%, GY, and GY

represent the image gradient along the X+, X~, Y+, and Y~ directions, respectively.

He also used the motion-to-motion similarity measure similar to Efros etal. A

nearest-neighbor classifier was also used to determine the person's actions. Wu

compared his action recognizer with Efros et al. in the hockey domain, and showed

that the DIG descriptors outperform the DOF descriptors in classification accuracy.

Figure 2.4 shows an example of the DIG descriptor of a single image.

The problem of action recognition can be also formulated in a generative

probabilistic model. For example, [12, 66] used Hidden Markov Models (HMMs)

to recognize the target's action. In their system, they trained separate HMMs for

each action. The hidden state of the H M M represents the appearance variations of

the target and the observation is either raw images or the target's contour. During

11

recognition, they fed the entire video sequence to all HMMs and the actions of

the target is determine by the H M M having the maximum likelihood (see Figure

2.5 for an example). In our previous work, we also employed HMMs to recognize

the target's actions [32, 33]. Instead of using the entire video sequence, we used a

fixed-length sliding window to determine the target's actions.

2.3 Object Tracking

Automated tracking of multiple objects is still an open problem in many settings,

including car surveillance [26], sports [37, 42] and smart rooms [20] among many

others [19, 22, 35]. In general, the problem of tracking visual features in complex

environments is fraught with uncertainty [20]. It is therefore essential to adopt

principled probabilistic models with the capability of learning and detecting the

objects of interest.

Over the last few years, particle filters, also known as condensation or sequen

tial Monte Carlo, have proved to be powerful tools for image tracking [10, 21, 46, 51].

The strength of these methods lies in their simplicity, flexibility, and systematic

treatment of nonlinearity and non-Gaussianity.

Various researchers have attempted to extend particle filters to multi-target

tracking. Among others, Hue etal. [19] developed a system for multi-target tracking

by expanding the state dimension to include component information, assigned by

a Gibbs sampler. They assumed a fixed number of objects. To manage a varying

number of objects efficiently, it is important to have an automatic detection process.

The Bayesian Multiple-BLob tracker (BraMBLe) [22] is an important step in this

direction. BraMBLe has an automatic objectdetection system that relies on model

ing a fixed background. It uses this model to identify foreground objects (targets).

With the Boosted Particle Filter (BPF) in [44], we can relax this assumption of

a fixed background in order to deal with realistic T V video sequences, where the

background changes.

15

(a) (b) (c) (d)

Figure 2.6: The P C A - H O G descriptor: (a) The image gradient, (b) The HOG
descriptor with a 2 x 2 grid and 8 orientation bins, (c) The P C A - H O G descriptor
with 12 principal components, (d) The reconstructed H O G descriptor.

In our previous work [32, 33], we presented a system that can simultaneously

track and recognize a single target's action. The observation model we used is either

the Histograms of Oriented Gradients (HOG) descriptors [33], or the P C A - H O G

descriptor constructed by applying the Principal Component Analysis to the HOG

descriptors [32]. Figure 2.6 shows an example of the P C A - H O G descriptor. Tracking

was performed by a particle filtering tracker similar to [46]. After estimating the

location of the target, we extracted the image patch at the estimated location and

fed the new observation to a H M M action recognizer described in Section 2.2. After

estimating the target's action, we updated the template of the tracker by using a

H M M template updater similar to the exemplar tracker [57]. Unlike the exemplar

tracker, we divided the templates of the target into groups according to their actions,

and trained a single H M M template updater for each group. Then, we could utilize

the estimated action to select the H M M template updater in the next frame and

thus reduced the number of possible templates in the next frame. Figure 2.7 shows

some experimental results of [32] in tracking and recognizing a single player's action

using both hockey and soccer sequences.

16

%\ \i \ \\ ^ ^ ^ ^ \i, \> \\ \\ : fr rf r ,p „P ^

& * ft" \ \ i *n / • A A A A A- /
(a) Hockey Player

1 T T * ' ~

' ' •'••'.UZi

Q :

m

i Run Left

-> . ' " .

%

mm-

•

Run Left

m m • 0
•

(
Run Right

(b) Soccer Player

\ \ Skate Right

J r

f . j J j S A / / /

•
•
Run In/Out

+

3 ' -

Run Right

Figure 2.7: Experimental results of tracking and recognizing a single
player: The upper parts of the images are the video frames and the lower parts
are the most recent observations used to classify the player's actions, (a) Tracking
hockey players with changing poses and actions, (b) Tracking the soccer player who
is running with a ball.

17

C h a p t e r 3

Observation Models

Observation models encode the visual information of the target's appearance. Since

a single cue does not work in all cases, many researchers have combined multiple

cues for robust tracking [3, 16, 65, 67]. In this thesis, we utilize the Hue-Saturation-

Value (HSV) color histogram to capture the color information of the target, and

the Histogram of Oriented Gradients (HOG) descriptors [8] to encode the shape

information. The following sections describe the color and shape observation models

in more detail.

3.1 Color

We encode the color information of the targets by a two-part color histogram based

on the Hue-Saturation-Value (HSV) color histogram used in [44, 46]. We use the

HSV color histogram because it decouples the intensity (i.e., value) from color (i.e.,

hue and saturation), and it is therefore more insensitive to illumination effects than

using the RGB color histogram. The exploitation of the spatial layout of the color

is also crucial due to the fact that the jersey and pants of hockey players usually

have different colors [44, 46].

Our color observation model is composed of 2-D histogram based on Hue

and Saturation and 1-D histogram based on value. We assign the same number

18

va
lu

e

A m
ali

ze
d

bi
n

FT * 0.

m *

1 2 3 4 5 6 7 B 9 10

Color histogram of a player (TOP: white uniform B O T T O M : red uniform)

Figure 3.1: H S V Color histograms: This figure shows two different color his
tograms of selected rectangular regions. The first 2D histograms are Hue and Sat
uration histograms. The other ID histograms are Value histograms. Both 2D and
ID histograms have Z axis and Y axis respectively for the normalized bin value.
The player on top has uniform whose color is the combination of dark blue and
white and the player on bottom has a red uniform. Although one can clearly see
concentrations of color bins due to limited number of colors, this figure shows a clear
color distinction between two players.

of bins for each color component, i.e., Nh = Ns = Nv = 10, and it results in a

Nh x Na + Nv = 10 X 10 + 10 = 110 dimension HSV histogram. Figure 3.1 shows

two instances of the HSV color histograms.

3.2 Shape

We apply the Histograms of Oriented Gradient (HOG) descriptor [8] to encode the

shape information of the targets. The HOG descriptor is computed by sampling

a set of the SIFT descriptors [31] with a fixed spacing over the image patches.

19

SIFT descriptor

* /
/

/ • •

/
/

- •

(b)

Figure 3.2: The H O G descriptor: (a) RIGHT: The image gradient of a 32 x 32
image. C E N T E R : A block of size 16 x 16. L E F T : The SIFT descriptor of the block
with n w = n/j = 2, nt, = 8. (b) The HOG descriptor of the image computed by
sampling SIFT descriptors of size 16 x 16 with a 16-pixels spacing.

Incorporating with a Support Vector Machine (SVM) classifier, the H O G descriptor

has been shown to be very successful in the state-of-the-art pedestrian detection

system [8]. In this thesis, we employ the H O G descriptor because it is robust under

viewpoint and lighting changes, possesses good discriminative power, and can be

efficiently computed.

The SIFT descriptor was originally introduced by Lowe [31] to capture the

appearance information centered on the detected SIFT features. To compute the

SIFT descriptor, we first smooth the image patch by a Gaussian low-pass filter and

compute the image gradients using a [—1,0,1] kernel. The original SIFT descriptor

implementation [31] rotated the directions of the gradients to align the dominating

orientation of the SIFT features in order to have a rotation-invariant local descrip

tor. In our case, however, we do not rotate the directions of the gradients because

the dominating orientation provides crucial information for the tracking and action

recognition system. After computing the image gradients, we divide the image patch

into small spatial regions ("cells"), for each cell accumulating a local 1-D histogram

of gradient directions over the pixels of the cell. In this thesis, we use the unsigned

image gradient, and the orientation bins are evenly spaced over 0°-180° to make the

descriptor more invariant to the color of the players' uniforms. For better invariance

20

to lighting changes, we normalize the local response by the total histogram energy

accumulated over all cells across the image patch (the L\ norm).

The H O G descriptor is constructed by uniformly sampling the SIFT descrip

tor of the same size over the image patch with a fixed spacing ("stride"). There

is no constraint on the-.spacing between the SIFT descriptors and therefore these

SIFT descriptors may be overlapped. The aggregation of all these SIFT descriptors

forms the HOG descriptor of the image patch.

In summary, the H O G descriptor is constructed by densely sampling the

SIFT descriptors of the same size r] x r\ over a image patch of size p w x (rj, p w ,

Ph are measured in number of pixels). We divide each SIFT descriptor into riy, x rih

cells, in which an rib histogram of oriented gradients is computed. Figure 3.2 shows

an example of the HOG descriptor.

3.3 Efficient Implementation
J

Since the observations are all histogram-based features, and we do not apply any

spatial weighting function to the tracking region, we can use Integral Histograms

. [47] to compute the observation very efficiently.

Suppose we want to compute an ./V bins histogram, the Integral Histograms

technique constructs N Integral Images [61] for each bin of the histogram of the

entire image. After constructing those integral images, the histogram of a given

rectangle region can be computed in constant time.

The original integral histogram implementation is designed for object detec

tion [47], and it computes integral histograms of the entire image because the object

can be detected in any position. However, in the case of object tracking, the targets

are supposed to appear in a small portion of the image, they usually around the

locations of the targets in the previous frame. Therefore, it is uneconomic to com

pute the integral histogram of the entire image. In this thesis, we propose to use

local integral histograms which constructs integral histograms around a small region

21

around the targets. Experimental results show that the local integral histograms

work 10 times faster than global integral histograms.

22

C h a p t e r 4

Template Updat ing

4.1 Introduction

Tracking is usually performed by searching for the location in the image that is

similar to a given template. If the target is a rigid object, i.e., the shape of the

target remains the same over time, we can use the image patch of the target in the

first frame as the template. Then, either a deterministic or a probabilistic algorithm

can be employed to search for the location in the image that is similar to the image

patch of the target in the first frame.

However, when the targets are non-rigid objects, the problem becomes more

challenging because the shape of the targets changes constantly, and a template

updating mechanism is needed to adapt the template of the tracker over time.

The most naive method to update the template is to use the image patch of

the previous estimated location of the target. Unfortunately, this method usually

causes problems because the location estimates of the targets inevitably contain

some errors. Thus, the image patch of the previous estimated location of the target

may contain only a part of the targets, background pixels, or even other objects. As

a result, when we trust the previous estimated location and use the image patch of

the previous estimates as the template, the current location estimates of the targets

will also inevitably have errors. More severely, these errors will accumulate quickly

23

(a) (b) (c) (d) (e) (f)

Figure 4.1: Tracking with a naive template updater: This figure shows the
results of tracking a single hockey player with a naive template updater, i.e., update
the template using the image patch of the previous location estimates. Since the
location estimates inevitably have errors, the template is gradually polluted by the
background in (c),(d),(e), and the tracker finally loses its targets in (f).

and finally lead to loss of targets. Fig 4.1 gives an example of applying the naive

updating method in tracking. We can observe that the tracker quickly fails to track

the targets.

In this thesis, we introduce the Switching Probabilistic Principal Component

Analysis (SPPCA) model to update the templates of the tracker. In particular, we

utilize the SPPCA model to update the templates of the H O G descriptors because

the H O G descriptors of the hockey players change constantly due to the changes of

poses. Notice that we do not apply the SPPCA model to update the templates of

the color histograms in this thesis because the colors of the hockey players usually

do not change over time. In other applications, however, the SPPCA model could

be used for generating templates for color histograms or even raw images.

The main idea of the SPPCA template updater is to update the template

such that the new template will be similar to the image patch of the previous

estimated location of the target, but it is also restricted to be similar to the training

data. This can be done by EigenTracking [4], which learns a eigen-space of the

image patches of the targets off-line, and then forces the template to lie on the

eigen-space during runtime [4]. Khan etal. have introduced a probabilistic extension

of the EigenTracking [24], where they learn a single linear latent space from the

training data. However, the actual distribution of the data usually lies on a nonlinear

subspace, and cannot be fully captured by a single linear subspace. In this thesis,

24

New frame Tracking results Extracted image patches

5
i

Tracker

!
New templates

t Template
Updater

SPPCA

•* (2) Predict new
templates

(1) Update the SPPCA
Template Updater

Figure 4.2: The S P P C A Template Updater: This figure visualizes the op
erations of the SPPCA template updater. During tracking, the SPPCA template
updater has two operations: updating and prediction. After the locations and sizes
of the targets are estimated, the tracker will extract image patches centered in the
estimated locations. These image patches are used to update the template models
of the SPPCA template updater. Then, the prediction operation generates a set of
new templmates based on the current observations. These templates will be utilized
by the tracker in the next frame to search for the locations and sizes of the targets.

we use a set of linear subspaces to approximate the nonlinear one by introducing

an additional "switch" to select the subspace. The idea can be seen as an extension

of a mixture of P P C A [55] and a variant of the the Switching Linear Dynamical

System (SLDS) [40].

The SPPCA template updater consists of three major operations: learning,

updating, and prediction. Before discussing the details of the three operations, we

will first describe the probabilistic graphical model of the SPPCA in Section 4.2,.

The learning operation learns the template models off-line from a set of training

data. Section 4.3 will present the Expectation-Maximization (EM) algorithm [41]

that learns the parameters of the SPPCA model. During tracking, the SPPCA

template updater performs two operations: updating and prediction. As shown in

Figure 4.2, the tracker extracts image patches centered in the estimated locations

after tracking the locations and sizes of the targets. These image patches are used

to update the template models of the SPPCA template updater. Section 4.4 will

2 5

detail the Rao-Blackwellized Particle Filtering algorithm that is utilized to update

the template models. The prediction operation presented in Section 4.5 generates a

set of new templates based on the current observations, and these templates will be

utilized by the tracker in the next frame to search for the locations and sizes of the

targets. Experimental results are shown in Section 4.6.

4.2 Probabilistic Graphical Model

Let St G {1, • • •, ns} be a discrete random variable representing the subspace we use

at time t, yt G M.ny be a continuous random variable representing the observation at

time t, and zt G R" z be a continuous random variable representing the coordinate

of the observation on the subspace. The probabilistic graphical model of an SPPCA

model is shown in Figure 4.3.

When t > 1, the dynamics between sj and st-i is defined as

p(st\si-i) = &{st,st-i) (4.1)

where $ is a n s x n s transition matrix where $ (i , j) = p(st+i = j\st = i) denoting

the probability transition from sj_i to st. When t = 1, s\ is generated from a initial

distribution

p(si)=vs(Sl) (4.2)

where vs(s\) is the initial distribution.

The dynamics between zt and zt-\ can be divided into two cases. When we

update the template using the same subspace, i.e., St = st_i, we can generate Zt

according to

zt = Aatzt-i + QBt (4.3)

ASt is the system matrix parameterized by st, and QSt is a zero-mean Gaussian noise

such that QSl ~ A/ r(0, VSt) where VH is the system covariance matrix parameterized

by st.

26

Figure 4.3: Probabilistic Graphical Mode l of a S P P C A Mode l The proba
bilistic graphical model of a Switching Probabilistic Principal Component Analysis
(SPPCA) of time t — 1 and t. The continuous random variable y is the observation,
while s is a discrete random variable representing the subspace and z is a continuous
random variable representing the coordinates of y on the subspace.

When we switch from one subspace to another, i.e., st ^ S t - i , we re-initialize

zt by projecting yt_1 into st's subspace

zt = r S (y t _! + A (4.4)

where TSt is the inverse observation matrix parameterized by st, and A is a Gaussian

noise such that A ~ j\f(0,I) where J is an identity matrix. When t = 1, Z\ is

generated from a initial Gaussian distribution

p (z i)=A/ Y z 0 l Eo) (4-5)

where zo and So is the mean and covariance of the initial Gaussian distribution,

respectively.

The current observation yt can be generated from z 4 using the following

equation:

yt = CStzt + /us-t+RSt (4.6)

CSt is the observation matrix parameterized by St, fiSt is the mean value of the

subspace, and RSt is the Gaussian noise such that RSt ~ JV(0, WSt) where WSt is

the observation covariance matrix parameterized by St-

27

4.3 Learning

The expectation-maximization (EM) algorithm [41] can be used to learn the maximum-

likelihood parameters tl — {4>, vs, A, C, t, V, W, fi, ZQ, SO} by maximizing the

likelihood p(y 1 ; T |fi)

fl = argmax p(yi.T\il) (4-7)

where y1:T is the training sequence of length T.

The E M algorithm iteratively performs the following two procedures:

• E-step: The E-step computes the expectation of the the hidden states S\:T and

Z\-.T given the observation yVT and the parameters $T in the i-th iteration,

i.e.,

f{si:T,Zi;T) =p{sv.T,zv.T\yv.T,Sll) (4.8)

• M-step: The M-step maximizes the expected log likelihood with respect to the

parameters fi , i.e.,

f T + 1 = argmax (log p{shT, zv.T, VI.TI^))p(Sl:T,Zl.T) (4-9)
n

(•)p denotes the expectation of a function (•) under a distribution p.

To avoid the problem of sticking into poor local optimum, we perform the E M

algorithm in the same training data for 10 times, and the parameters with the max

imum likelihood will be stored. In the following, we will describe the initialization

procedures, E-step, and M-step in more detail.

4.3.1 Init ial ization

To initialize the parameters for the E M algorithm, we apply k-means clustering [23]

to partition the training data yVT into ns groups. For each group, we employ P P C A

as described in Section 4.3.3 to estimate the initial value of C ; , Ui, Fi, and Ri for

i — 1 to ns. A, V, and So are initialized as identical matrices, and / i , 0 is initialized

28

as a zero vector. The transition matrix 3? and the initial distribution vs(so) are

initialized by a uniform distribution.

4.3.2 E-step

Exact inference in SPPCA is intractable. Therefore, people seek an approximation

algorithm to tackle this problem [9, 40, 45]. In this thesis, we use Viterbi Inference

(VI) [45] because it is simple and fast, and it usually has acceptable quality of

estimation [43].

In the i-th iteration of the E M algorithm, the Viterbi inference approximates

the joint posterior over the hidden state SI-.T and Z\-T by a peaked posterior over

Z\-T with an obtained pseudo-optimal label sequence s\.T:

P(S1:T, Z 1 : T \ y i : T , = P{Z1:T\SV.T, V\TI P(«l:r | l/ l:T» ^)
(4.10)

W P{Z1:T\S1:T, UhT, ^ I I T)

where <$(•') is the Dirac-delta function. The pseudo-optimal sequence s\.T can be

computed exactly and efficiently using the Viterbi algorithm [45]. Algorithm 1

summarizes the procedures of the E-step.

29

Algorithm 1 E-step using the Viterbi Inference
Input: UI-T, ^
Output: SI-T, Z\-T, E i : r

for i = 1 to ns do
[zi ,S \ ,Li] = KalmanInitialize{yL,ZQ(i),YLQ(i),®i)
J{\,i) = L\ + \ogva{i)

end for

2
3
4
5
6
7
8
9

10
11
12

13
14

.15
16
17
18
19
20
21
22
23

j=l...ns

24
25

for t = 2 to T do
for i = 1 to n s do

for j — 1 to n s do
if i = j then

[«j J', Lj j'] = KcJ.manUpdxite(yuz_l,JSi_1,&j)
else

z i = r j (y t - i - Mj)
[z^, SJ J ' , LJJ'] - Kalmanlnitializeiy^, zj'°, J , 0,-)

end if
. if J(t,j) < J{t - l,i) + + log*(i, j) then

J(t,j) = J(t - 1,0 + + log*(i, j)
B(t,j) = i
set[zj,Si] = [z ; j , s ; j]

end if
end for

end for
end for
ST = argmax J(T,j)

26
27
28

for t = r - 1 to 1 do
S(= argmax J(t + 1, St+i)

end for

[zi;T, — KalmanSmoothing(yhT, SI:T, ZQ, SO, 0)

30

4.3.3 M-step

The M-step maximizes the expected log likelihood with respect to the parameters.

The parameters we want to learn include the transition matrix <&, the system matrix

and covariance {A,V} , the observation matrix, mean, and covariance {C,/x, W},

and the initial distribution VS(SQ), ZQ and So- In this thesis, we assume that the

current template is normally distributed around the previous template with a fixed

covariance matrix, i.e., Ai — I for i = 1 to ns and Vi = I for i — 1 to ns. In other

words, we want the current template to be similar to the image patch of the previous

location estimates of the target, and it should be also similar to the training data

and thus lie on the learned subspace.

Algorithm 2 summarizes the algorithm of the M-step. Briefly, after col

lecting the sufficient statistics in the E-step, {&,v} can be estimated by counting

the frequency; and {zo ,£r j } c a n be estimated by fitting a Gaussian distribution;

{C, r, n, W) can be estimated by P P C A [55].

Algori thm 2 M-step
Input: y1:T, s 1 : T , zv,T, £ i : T

Output: * , u , z 0 , S o , C , r , | x , W
estimate 3? and vs by counting the frequencies of S\-.T [40]
for % = 1 to ns do

estimate ZQ and So using the technique in [40]

n = (i/r) E L i si ^ = (Er=i s\vt)ttZLi *j)

Si = {l/{*iT))YZ=ls\{yt-Hi){yt-ni)'

d = ny, q = nx

{Xi,... ,Xd} — EigenValue(Si), {u\,... ,Ud) — Eigenvector (Si)
Uq = [ui,...,uq], Aq = diag([Xi,..., A 9])
rr2 — -J— V d \ •
ai — d-q L^i=q+\ A3
d = Ug(Aq - <T2Ig)
Wi = afld

M , = C\C + aflg
Ti = M-lC'i

end for

31

4.4 Updating

The updating operation is employed to update the template model after observing

the new appearance of players. In this thesis, we utilize the Rao-Blackwellized

Particle Filter (RBPF) [9, 39] to efficiently update the hidden states of the SPPCA

model. In Section 4.4.1, we will briefly introduce the Particle Filtering algorithm

[2]. Section 4.4.2 will describes Rao-Blackwellized Particle Filtering in more detail.

'4.4.1 Particle Filtering

Particle filtering [2] has been widely applied to systems with nonlinear/non-Gaussian

distributions. Since exact inference in the SPPCA model is intractable, we can apply

particle filtering to estimate the posterior distribution over {st,zt}. In particle

filtering, we represent the posterior distribution over {st,Zt} by a weighted set of

particles {sf, z\l\w^}^. The posterior distribution can be approximated by

JV

p{st,Zt\si;t-l,Zut-l,yi:t) « Y^ 5[s<-i\z^]dSt'Zt}) (4-U)
i = l ' ' '

where w\1^ is the weight associated with the i-th particle, and it can be updated

incrementally by

W.
. Q\St > Z i l S l : t - l > Z l:f-1' y\:t)

ioxi = \...N . (4.12)

The details of the particle filtering algorithm can be found in [2].

However, particle filtering is also known to be inefficient when the dimen

sionality of the hidden states is large due to the requirement to have a sufficient

number of particles to approximate the distribution of a large feature space (the

number of particles required is exponential to the feature space). Furthermore, the

state estimation of a particle filter might have poor quality without a good proposal

distribution g(si t) ,2 t

W |si:Li. z S-i>l/i:*) t2l-

32

4.4.2 Rao-Blackwellized Particle Filtering

In this thesis, instead of using a particle filter similar to Giebel etal. [16], we employ

the Rao-Blackwellized Particle Filter (RBPF) [9, 39] for online filtering. The key

idea of the R B P F is that it factorizes the joint posterior distribution over {st,zt}

into two parts

p{st,zt\si..t-i,zv.t-i,yi.t) = p(zt\zi:t-usv.t,yv.t) p(st\s\-.t-i,V\:t) (4-13)

where the posterior distribution p(st\si:t-i,y\:t) can be approximated by a typi

cal particle filter, and the posterior distribution p(zt\zi-t-i, Si-.t,yi:t) can be solved

analytically by a Kalman filter [63].

Assuming that we can approximate the posterior distribution over s t by a

weighted set of particles {s[l\w^}^L1, i.e.,

N

pM*l:t-l,Wl:t)«X>t (%i>(*) (4-14)

Then, the posterior distribution over zt given st can be approximated by a Gaussian

mixture
N

p(Zt\zi:t-\,SV.UyV.t) « YlWt] P(Z *l Z l :*- l» S l*t ' l / l : t) (4- 1 5)
i=l

Since both p(zt\yt-i, zt-i, st-i, st) and p(yt\zt,st) are Gaussian distributions in

the SPPCA model, p(zt\z\:i-\, s^)t, y 1 : t) can be computed efficiently by using the

Kalman filter [63].

The procedures of the R B P F can be summarized as follows. Firstly, we

sample the current particles {sj^}£Li from the transition prior p(s^\s\l\), i.e.,

sP ~p(sf)|sf21) iori = l...N (4.16)

Secondly, the weights of particles can be updated according to

. u,W = p(yt\s^) for i = 1... N (4.17)

33

where p(yt\s^) can be computed analytically by the Kalman filter [63]. Thirdly, we

normalize the weights to make them sum to one

(i)
wf] = ™« for i = 1... JV (4.18)

where is the weight of the i-th particle after normalization. Then, we re-sample

the particles according to the normalized importance weight to generate a set of

particles of uniform weights. Finally, we use Kalman recursion [63] to approximate

the posterior distribution in Eq. (4.15). Algorithm 3 summarizes the procedures of

the Rao-Blackwellized Particle Filter in the SPPCA model.

Algorithm 3 Rao-Blackwellised Particle Filter for SPPCA ~
Input: yi-T> ^
Output: S l : T , Z\-T, El :T
1
2
3
4
5
6
7
8
9

10:
11:
12
13
14
15
16
17
18
19
20
21
22
23
24

for t = 1 to T do
for all particle i do

if t = 1 then
sample s\ from vs

[Z (, S J , L ' j] = Kalmanlnitialize(yt, zo,^o,&si)
else

' sample s\ from «3>(sJ_j,:)
if s\ = sj_j then

[4^1 Lt\ = KalmanUpdate(yt,z_1,E_l,&sP)
else

zt = T(s\)(yt-^))
[z\, S J , L\] = Kalmanlnitialize(yt, zt, I, 0 s j)

end if
end if
w\ = L\

end for

{w\}f^ = normalise({w\}f=l)
{4>zuwi}iLi = Resample^slz^wl)^)

st = histogram{{s\}*Lx)
z_t = mean{{z\}^=l)
S j = covariance({'El}iLl)

end for

34

4.5 Prediction

The prediction operation provides a new template to the tracker in the next frame.

This can be done by first sampling a new set of particles { s ^ } ^ from the tran

sition prior, i.e., s[+1 ~ p(s|+i|s|^) for i =, 1... TV, and then evaluate the following

probability

P(yt+^lz1:t,y1:Uafl,) iori = l...N (4.19)

Note that Eq. (4.19) can be computed efficiently by Kalman prediction [63]. Let yj+j

be the mean of Eq. (4.19), the new template yt+\ can be computed by averaging

out all yl+i

Vt+i-JfJlvUi (4-20)
i = i

The new template yt+1 will be fed to the tracker for searching for the location

in the image that is most similar to the template at time t + 1.

4.6 Experiments

In this experiment, we evaluate the prediction accuracy of the SPPCA template

updater. We have a collection of 5609 training images as shown in Figure 4.4. All

images are square and contain a single hockey player. We divided the collection into

two sets: the training set and the testing set. The training set contains 4803 images

and the. testing set contains 806 images. We deliberately made both the training and

testing sets have the images of players from several different teams, and players that

perform all kinds of actions. We transform all image patch to the H O G descriptors

constructed by sampling the SIFT descriptors of size 16 x 16 from the image patch

with a 16-pixel spacing, and every SIFT descriptor is computed with nw = = 2,

rib — 8 (yielding the H O G descriptors with ny — 128). Then, we trained the SPPCA

with different nz and ns using the training set. In the testing phase, .we utilize the

prediction operation of the SPPCA template updater. to generate a new template

35

11
i TfTm | ft r

a. *>

S3 EJ
• O

Figure 4.4: Training set of images for hockey players: This figure shows a
part of our hand annotated training data. A total of 5609 different figures of hockey
players are used for the training.

Vt+\, and compare the prediction with the ground truth yt+\ using the relative

sum-of-squares error

(4.21)
TUy u2

Zwi=i Vt+l,i

where j/t+l,» and J/t+l,» is the i-th feature of vector yt+\ and yt+\, respectively. Then,

we feed the new observation yt+1 back to the SPPCA template updater and call the

updating operation to update the joint posterior distribution over {st+i,Zt+i} as

described in Section 4.5. Experimental results are shown in Table 4.5, and the error

is the average prediction error over all testing sequences, i.e., E = (l/T)E^=i et

where T is the length of the testing sequence.

For comparison, we also show the predictive power of a H M M template up

dater in Table 4.5. The H M M template updater we use is similar to the exemplar

tracker [32, 33, 57] which use a fixed number of learned templates. The hidden state

of the H M M has ns possible values, indicating that there are ns possible templates

we can use. We also learn the transition and initial distribution of the hidden state,

and the parameters of the observation distribution (single Gaussian in our case).

36

The prediction of yt+\ is computed by the standard H M M prediction, which will be

a mixture of Gaussians. After observing the new data, we perform one step of the

standard forward algorithm [48] to update the hidden state.

From the experimental results, several observations can be made. Firstly,

the predictive error of the SPPCAs are smaller than the HMMs. This is because we

allow the templates to "move" on the subspace rather than using a fixed number of

templates. Thus, the templates of the SPPCAs have much more variations than the

HMMs. Secondly, we have better results with the increase of number of subspaces

n s . This confirms our hypothesis that the data lies on a nonlinear subspace, and

thus the more local linear subspaces we have, the more we can approximate the

nonlinear space. Thirdly, the predictive power improves with the increase of the

number of principal components n z due to the nature of the PPCA. An interesting

observation is that when n z is large, we do not have much accuracy gain.

We have also tried to learn the system matrix A from the training data

instead of setting A = I. However, the preliminary experimental results show no

improvement to the accuracy of prediction.

37

HMM
SPPCA 3

SPPCA 5
SPPCA 7

SPPCA 9
SPPCA 10

SPPCA 20
SPPCA 30

Figure 4.5: Experimental results of the S P P C A template updater: This
figure shows the prediction error of the SPPCA template updater and the H M M
template updater with different n s and n z . The error is measured by averaging
out the criterion in Eq. (4.21), i.e., E = (1/T) Ylt=i et where T is the length of the
testing sequence. The H M M template updater is abbreviated to H M M , and the
SPPCA template updater with n s = k is abbreviated to S P P C A k (e.g., SPPCA
template updater with n s = 10 is abbreviated to S P P C A 10). Note that in the
H M M template updater, n s denotes the number of templates, while in the SPPCA
template updater, n s denotes the number of subspaces.

38

C h a p t e r 5

Act ion Recognition

5.1 Introduction

The goal of the action recognizer is to classify the actions or activities of the hockey,

players online after tracking the positions of the players on the image coordinate

system. The understanding of human activities is usually solved by analyzing and

classifying the trajectories of people. In the hockey domain, however, the problem

is more challenging because we do not know the trajectories of the players on the

rink coordinate system due to the facts that the camera is not stationary, and we

do not have an accurate homography between-the image and the rink coordinate

system. As a result, the only information we have about the hockey players is small

image patches of 30 to 70 pixels height that contain the entire body of the players.

The action recognizer presented in this section is capable of classifying video

clips into known categories representing the actions/activities of the hockey players.

The action recognizer first transforms image patches to the H O G descriptors [8] de

scribed in Section 3.2. We use the HOG descriptors as the input feature because it

summarizes the shape of the players in a discriminative and economic way, and thus

it improves both the accuracy and speed. After constructing the H O G descriptors

of the image patches, the action recognizer computes the frame-to-frame similarity

matrix between the testing and training data. In order to aggregate temporal in-

39

Testing data

] [

Compute the
frame-to-frame

similarity

*
* A

f
Training data

Action labels

Frame similarity Motion similarity

FX Convolve the frame
similarity with the
weighting matrix

Weighting
matrix

1*^
1

S M L R classifier

Figure 5.1: The Act ion Recognizer: This figure illustrates the procedures of
the action recognizer. The action recognizer first computes the frame-to-frame sim
ilarity between the training and testing data. Then, the frame-to-frame similarity
matrix is convolved with a weighting matrix to produce the motion-to-motion sim
ilarity matrix. Finally, the SMLR classifier takes the frame similarity matrix as
input feature to determine the player's actions.

formation, the frame-to-frame similarity matrix is then convolved with a weighting

function similar to [11] to produce the motion-to-motion similarity matrix. Finally,

a Sparse Multinomial Logistic Regression (SMLR) classifier [27] is exploited and it

takes the motion similarity matrix as input to determine the player's actions. Figure

5.1 illustrates the procedures of the action recognizer.

This chapter is organized as follows: Section 5.2 introduces the Sparse Multi

nomial Logistic Regression (SMLR) classifier. Section 5.3 describes the robust

motion-to-motion similarity measure. Experimental results are presented in Sec

tion 5.4.

5.2 The Sparse Multinomial Logistic Regression Clas

sifier

In this thesis, we use a recently developed sparse classifier, Sparse Multinomial

Logistic Regression (SMLR) [27], to classify the hockey players' actions. The SMLR

40

classifier learns weighted sums of basis functions with sparsity-promoting priors

encouraging the weight estimates to be significantly large or exactly zero. The SMLR

classifier has been shown to have comparable or better classification accuracy than

the Support Vector Machine (SVM) and Relevance Vector Machine (RVM) [27], and

has been used in the field of bio-informatics [5, 53].

We choose to use the SMLR classifier for the following reasons: (1) The

SMLR classifier utilizes a Laplacian prior to promote sparsity and leads to a smaller

number of basis functions. The outcome includes an increase of the classification

speed and a better generalization error because it avoids over-fitting the training

data. (2) Unlike SVM, SMLR has no restriction on the choices of basis functions

[27]. Any kernel function can be used to transform the original feature space to a

higher dimensional feature space. (3) We can always find the global optimal weights

for the basis functions. This is because the Laplacian prior is a log-concave function,

and when combined with a concave log-likelihood, it leads to a concave log-posterior

with a unique maximum.

Let y = [y\ ... yd]T G K d be the d observed features, and a = [a\ ... am]T

represent the class labels using a "1-of-m" encoding vector such that ai, = 1 if y

corresponds to an example belonging to class i and a* = 0 otherwise. Under a

multinomial logistic regression model, the probability that y belongs to class i is

written as
exp(wfg(y))

£ ™ i exp

for i € {1,..., m], where Wi is the weight vector corresponding to class i. Note that

g(y) can be either the original input feature, any linear/nonlinear transformation

that maps the original data to a higher dimensional space, or a kernel centered at

the training samples.

There are many ways to estimate the optimal w given the training examples.

In the SMLR framework, we adopt maximum a posteriori (MAP) estimation because

we want to encourage the weight estimates to be significantly large or exactly zero.

41

Specifically, we optimize the following objective function given n labeled training

points { y ^ O j } ? ^

n n

w = argmax log p(w\yi, a,j) = argmax ^ logp(a,j\yj, w)p(w) (5.2)
.7=1 J=l

The prior p(iu) is defined as a sparsity-promoted Laplacian prior,

p(w) oc exp (—A||tu'||i) (5.3)

where ||to||i denotes the L\ norm, and A is a user-specified parameter that controls

the sparsity of the classifier. Observe that the objective function Eq. (5.2) is still

a concave function and therefore all local optimal estimates ii; are also a global

optimum.

There are many algorithms that optimizes the objective function Eq. (5.2),

e.g., [5, 27, 53]. We adopt the component-wise updating procedure introduced by

Krishnapuram etal. [27] because it converges faster than others in'practice.

5.3 Motion Similarity Measure

A useful property of the SMLR classifier is that- there is no restriction on the choice

of basis function g(y) [27]. Since human actions have various styles and speeds,

we choose to use a kernel function centered at the training samples as the basis

functions.

The kernel function we use is similar to the motion similarity measure pre

sented by Efros etal. [11]. The difference is that our motion similarity measure is

a weighted sum of past frame-to-frame similarities, while Efros etal. [11] summed

up both past and future frame-to-frame similarities. Let yt be the input feature at

time t, and y1:t represent the input feature from time 1 to time t, a naive way to

measure the motion-to-motion similarity between the testing video clip y1:i and the

training sample y\., is to measure the frame-to-frame similarity between the last

42

frames ŷ and i.e.,

dnziVe(yi:i,yi.j) = HVuVj) (5-4)

where k(-, •) is a distance measure. Note that the similarity measure between two mo

tions can be represented by a similarity matrix M, where Mij = dnaiVe (l/i:i>l/iy)-

Figure 5.2 (a) shows the frame-to-frame similarity matrix between two motions using

the naive approach.

However, it is not realistic to measure the similarity between two motions

only by the similarity between the last frames. A more robust approach is to convolve

the frame-to-frame similarity matrix with a T x T weighting matrix KT

T T

d{yVA^yi^ = YYlKT^s^k^yi-T+s^y)-T+t) (5-5)

s = l t = l

A simple choice is to use a T x T identical matrix IT as the weighting matrix, i.e.,

KT = IT- I n other words, we sum up the frame-to-frame similarities of the previous

T frames to obtain the motion-to-motion similarity.

The problem of using an identical matrix as the weighting matrix is that it

cannot handle actions of different speeds. Thus, we replace the identical matrix IT

in Eq. (5.5) by a T x T weighting kernel KT defined as follows:

K r (i , j) = 5 3 w (r) « (i - r , r (j - T)) (5.6)
r€R

for i — 1... T, j — 1... T , R G [l/rmax, rmax] where rmax is a user-specified constant

representing the maximum speed. The function K(I — T,r(j — T)) is defined as

1 if 2 — T = round(r(j — T))
K(i-T,r(J-T)) = { (5.7)

0 otherwise

The weight uj(r) is defined as a function of r,

r2 if r < 1
u(r) = { (5.8)

1/r 2 otherwise

43

(a) (b) (c)

Figure 5.2: Similarity Matrix: (a) The frame-to-frame similarity matrix, (b) A
weighting matrix with T = 9 and rmax — 1.5. (c) The motion-to-motion similarity
matrix computed by convolving (a) with (b).

The weighting matrix KT is visualized in Figure 5.2 (b). Observe that it gives bigger

weight to the diagonal entries, and the entries that are farther from the lower-right

corner are more diffused.

Figure 5.2 (c) shows the motion-to-motion similarity matrix computed from

convolving the frame-to-frame similarities (Eq. (5.4)) by the new weighting matrix.

Observe that the original frame-to-frame similarities in Figure 5.2 (a) are more noisy,

while the motion-to-motion similarities in Figure 5.2 (c) are much smoother.

The motion similarity measure d(y1.i, y\.j) can be easily incorporated into

the SMLR classifier. Since the SMLR classifier has no restriction on the choice of

basis functions, we can use the motion similarity measure as a kernel centered on

the training samples and replace the basis functions g(yt) by

S(Vt) = [d(Vt-T+l:U Vi*), d(Vt-T+l:t> Vt.T+l), • • • . d(Vt-T+l:U Vn-T+hjf (5-9)

where y* are the training samples, T is the width of the weighting matrix, and n is

the length of the training video sequence.

5.4 Experiments

This experiment compares the performance between the proposed action recog

nizer that uses the SMLR classifier with the HOG descriptors (SMLR+HOG), and

p p P p fi • 0 $ S i
i \ \ *.

i f * * >* • 4 IT
f > f f

Til r /» A ,1*

Figure 5.3: Training data for the action recognizer: This figure shows a
part of our hand annotated training data. A total of 4295 different figures of hockey
players are used as training images for the action recognizer. FIRST ROW: players
skating down. SECOND ROW: players skating left. THIRD ROW: players skating
right. F O U R T H ROW: players skating up.

the action recognizers presented by Efros etal. [11] (5-NN+DOF) and Wu [64] (5-

NN+DIG). We also present the results of combining the SMLR classifier with the

DIG descriptor (SMLR+DIG) and the DOF descriptor (SMLR+DOF).

5.4.1 Da tase t

We first manually collected a dataset consisting of 5609 32 x 32 gray images in

which the hockey players are aligned and centered. Among these 5609 images, 4295

of them are training images and the remaining 1314 are testing images. Figure

5.3 shows some examples of the training dataset. In order to increase the diversity

of the dataset, we put players with different uniforms and images with different

lighting conditions into the dataset. Finally, we manually divided all images into

four categories according to the direction of the hockey players' movement: skating

down, up, left, and right. Note that it is also possible to partition the training

images into more abstract categories, e.g., skating and shooting. Unfortunately, due

to a lack of training data, we focus on classifying the moving directions of the players

in this thesis.

45

5.4.2 P a r a m e t e r Set t ings

In our experiments, we combine three image descriptors (HOG, DOF, and DIG)

with two classifiers (SMLR and nearest neighbor). The following sections details

the parameter settings of the three image descriptors and the two classifiers.

The H O G descriptor

The H O G descriptor is constructed by sampling the SIFT descriptors of size 16 x 16

from the image patch with a 16-pixel spacing, and every SIFT descriptor is computed

with nw = rih = 2, rib — 8. These parameters result in a H O G descriptor of

dimensionality 128.

In the original SIFT descriptor implementation [31], Lowe smoothed the im

age patch with a Gaussian low-pass filter before computing the image gradients.

However, Dalai etal. [8] suggested that the classification accuracy is better when no

smoothing is used. From preliminary experiments, we also confirmed that smooth

ing the images before computing the image gradients decreases the classification

accuracy. As a result, we decided not to apply any smoothing before computing

image gradients in this thesis.

Dalai et al. [8] also suggested that using overlapping SIFT descriptors will

improve the classification accuracy. However, in our preliminary experiments we

found out that using the overlapping SIFT descriptors not only slightly decreases the

classification accuracy but also increases the dimensionality of the HOG descriptor.

Therefore, we decided not to overlap the SIFT descriptor in this thesis for better

classification accuracy and speed.

We use the x 2 distance to compute the frame-to-frame similarities between

a pair of H O G descriptors. The x2 distance is defined as

(5.10)

where yik represents the fc-th feature of the vector yi, and D is the size of y

46

(D = 128 in our case). In order to aggregate information across multiple frames,

we use a 5 x 5 temporal kernel with rmax = 1.5 to compute the motion-to^motion

similarity measure described in Section 5.3. Finally, the motion-to-motion similarity

vector is used as a feature and fed into a 5-nearest-neighbor classifier (5-NN+HOG)

and a SMLR classifier with A = 0.1 to determine the player's action (SMLR+HOG).

Notice that the 5-NN-f H O G classifier is similar to the one introduced by Freeman

etaf. [13].

The D O F descriptor

The Decomposed Optical Flow (DOF) descriptor [11] is constructed by using the

flow images computed by the Lucas-Kanade algorithm [34] and smoothed by a 3 x 3

Gaussian low-pass filter. Then, the flow images are decomposed into four channels

(Fx, Fx,Fy~ ,Fy), where F^, F^, Fy, and Fy represent the optical flow along the

X+, X~, Y+, and Y~ directions, respectively (See Figure 2.3 for an example of

the D O F descriptor). Since we use 32 x 32 gray images, the D O F descriptors have

dimensionality 32 x 32 x 4 = 4096.

We use the scalar product to compute the frame-to-frame similarities between

a pair of D O F descriptors. Specifically, the frame-to-frame similarity measure is

defined as k(yi,yj) = yfyj- In order to aggregate information across multiple

frames, we use a 5 x 5 temporal kernel with rmax = 1.5 to compute the motion-to-

motion similarities described in Section 5.3. Finally, the motion-to-motion similarity

vector is used as a feature and fed into a 5-nearest-neighbors classifier (5-NN+DOF)

or a SMLR classifier with A = 0.1 (SMLR + DOF) to determine the player's action.

The DIG descriptor

The Decomposed Image Gradients (DIG) descriptor [64] is constructed by using

the image gradients computed by using a [—1,0,1] kernel and smoothed by a 3 x 3

Gaussian low-pass filter. Similar to DOF, the image gradients are decomposed into

47

four channels (G £ , G%, Gy, GY), where G £ , G%, GY, and GY represent the image

gradients along the X+, X~, Y+, and Y~ directions, respectively (See Figure 2.4

for an example of the DIG descriptor). Since we use 32 x 32 gray images, the DIG

descriptors have dimensionality 32 x 32 x 4 = 4096.

We use the scalar product to compute the frame-to-frame similarities between

a pair of DIG descriptors. Specifically, the frame-to-frame similarity measure is

defined as k(yi,yj) = yfyj- In order to aggregate information across multiple

frames, we use a 5 x 5 temporal kernel with rmax = 1.5 to compute the motion-to-

motion similarities described in Section 5.3. Finally, the motion-to-motion similarity

vector is used as a feature and fed into a 5-nearest-neighbors classifier (5-NN+DIG)

or a SMLR classifier with A = 0.1 (SMLR+DIG) to determine the player's action.

5.4.3 Resu l t s

Table 5.1 shows the accuracy and speed of the five action recognizers: 5-NN+DOF,

5-NN+DIG, SMLR+DOF, SMLR+DIG, and SMLR+HOG. The accuracy is mea

sured by the percentage of actions that are correctly classified. The speed is mea

sured by the average time of computing the descriptor for a single image patch (the

T I time), and the average time of classifying a single image patch given the descrip

tor (the T2 time). The average total time of classifying an image patch (the T I + T2

time) is also shown in the table.

Among all action recognizers, the SMLR+HOG classifier has the best clas

sification accuracy, followed by SMLR+DOF and 5-NN+DIG. The classification

accuracy of 5-NN+DOF, 5-NN+HOG, and SMLR+DIG is considerably worse, than

SMLR+HOG. An interesting observation is that the SMLR classifier has better ac

curacy than the 5-NN classifier when we use the D O F and H O G descriptors. In

the case of the DIG descriptor, however, the accuracy of the SMLR classifier is

significantly poorer than the 5-NN classifier.

Another advantage of SMLR+HOG is its speed. From the T1+T2 column in

48

Method Accuracy T l T2 T l + T2
5-NN + DOF 62.90% 0.830s 3.199s 4.029s
5-NN + DIG . 70.97% 0.017s 3.246s v 3.263s
5-NN + H O G 52.42% 0.023s 0.823s 0.846s
SMLR + D O F 73.21% 0.830s 2.758s 3.588s
SMLR + DIG 59.65% 0.017s 2.731s 2.748s
SMLR + H O G 76.37% 0.023s 0.183s 0.206s

Table 5.1: Act ion Recognition Results: Accuracy measures the percentage of
the actions that are correctly classified. T l measures the average time of computing
the descriptor for a image patch of size 32 x 32 pixels. T2 measures the average
time of classifying a single image patch given the descriptor. T l + T2 measures the
average total time of classifying a image patch.

Table 5.1, we can observe that SMLR+HOG is at least 10 times faster than others.

The T l column in Table 5.1 shows the average time of computing the descriptor for

a image patch of size 32 x 32 pixels. The H O G descriptors can be very efficiently con

structed and the computational time for the H O G descriptor is just slightly longer

than the DIG descriptor, but 40 times faster than the D O F descriptor. The T2

column in Table 5.1 measures the average time of classifying a single image patch

given the descriptor. Since the dimensionality of the H O G descriptors (128D) is

much smaller than those of the DIG and D O F descriptors (4096D), SMLR+HOG

spends much less time than others computing the motion-to-motion similarities be

tween the testing and training data. This results in a significant shorter classification

time.

Figure 5.4 shows the confusion matrix of the three action recognizers. The

diagonal of the confusion matrix represents the fraction of the actions that are

correctly classified. The SMLR+HOG classifies most of the actions correctly ex

cept that it usually confuses skating up and down. The main diagonal of the

SMLR+HOG classifier is [0.94,0.54,0.73,0.79]. In contrast, the 5-NN+DIG clas

sifier makes more mistakes in classifying skating left and right; however, it performs

better in classifying skating up. The main diagonal of the 5-NN+DIG classifier is

[0.92,0.64,0.58,0.51]. The 5-NN+DOF classifier has the worst overall classification

49

5 -NN + DOF 5 -NN + DIG SMLR + HOG

U

D

R

L

D U L R
(a)

D U L R
(b)

D U L R
(c)

Figure 5.4: Confusion Matrix for the Action Recognition Results: (a) 5-
NN+DOF: Action recognition results of using the 5-nearest-neighbor classifier with
the D O F descriptors. The main diagonal is: [0.91,0.73,0.33,0.19]. (b) 5-NN+DIG:
Action recognition results of using the 5-nearest-neighbor classifier with the DIG
descriptors. The main diagonal is [0.92,0.64,0.58,0.51]. (c) SMLR+HOG: Action
recognition results of using the SMLR classifier on the H O G descriptor. The main
diagonal is [0.94,0.54,0.73,0.79].

accuracy. It is very uncertain about skating left and down, and often mis-classifies

these two actions into skating up and down. The main diagonal of the 5-NN+DOF

classifier is [0.91,0.73,0.33,0.19].

50

C h a p t e r 6

Multi-target Tracking

6.1 Introduction

We incorporate the template updater described in Chapter 4 and the action recog

nizer described in Chapter 5 with a multi-target tracking system. In this thesis, we

choose the Boosted Particle Filter (BPF) introduced by Okuma et al. [44] because it

is fully automatic and very efficient.

We augment the B P F with several extensions. Firstly, the original implemen

tation of the B P F [44] only utilized the HSV color histogram described in Section

3.1 as its observation model. In this thesis, we use both the HSV color histogram

and the H O G descriptor described in Section 3.2. The combination the color and

shape cues improves the robustness of the tracker. Secondly, we employ the diffu

sion distance [30] instead of the Bhattacharyya coefficient to compare the difference

between histograms. It has been shown by Ling etal. [30] that the diffusion distance

is more robust to deformation and quantization effects than the Bhattacharyya co

efficient that is used in [44]. Thirdly, we apply a mode-seeking algorithm similar to

the mean shift [6] to generate a naive proposal when there is no detection. This fur

ther improves the performance of the B P F regardless of occasional sparse Adaboost

detections. Fourthly, we use the SPPCA template updater described in Chapter 4

to update the shape templates of the tracker, while [44] did not update their ob-

51

servational model and use only the initial observation as their templates. Lastly,

we recognize the target's action by the action recognizer described in Chapter 5.

The entire system can simultaneously track and recognize multiple targets' actions

smoothly in near real-time. Figure 1.3 shows the system diagram of the tracking

and action recognition system.

In non-Gaussian state-space models, the state sequence {xt,t G N},cci 6 R™x, is

assumed to be an unobserved (hidden) Markov- process with initial distribution

P(XQ) and transition distribution p(xt\xt-\), where nx is the dimension of the state

vector. In our case, x = {lx,ly,ls} where {lx,ly} represents the location of the

player, and l„ represents the size of the player in the image coordinate system. The

observations {yt;t € N},y t € RNY, are conditionally independent given the process

•{xt\t £ N} with marginal distribution p{yt\xt), where ny is the dimension of the

observation vector.

Letting y1:t = {y± ... yt} be the observation vectors up to time t, our goal is

to estimate p(xt|y1; t), the probability of the current state Xt given which can

be solved by the following Bayesian recursion [10]:

In our tracking system, this transition distribution p(xt\xt-\) is a combi

nation of a first-order dynamic model and a second-order autoregressive dynamic

model (i.e., a constant acceleration) with additive Gaussian noise. The observation

likelihood p(yt\xt) is defined in the following section.

6.2 Statistical Model

p(xt\yi:t) =
p{yt\xt)p(xt\yi:t-i)

P(Vt\Vl:t-l)

P(yt\xt) J p(xt\xt-i)p{xt-i\yX:t-\)dxt-\
Jp(yt\xt)p(xt\yi:t-i)dxt

(6.1)

52

6.3 Observation Likelihood

As already described in Chapter 3, our observation model consists of color and shape

information which is encoded by the HSV color histogram and the H O G descriptor,

respectively. We compute the observation likelihood by

p(yt\xt) oc Phsv{yt\xt) Pho9(yt\xt) (6-2)

For the HSV color model, we use a combination of a 2D color histogram based

on Hue and Saturation and a ID color histogram based on Value. The distribution

of the color likelihood is given as follows:

PhMxt)oce-x^K''K^ ' (6.3)

where K(xt) is the HSV color histogram computed at xt, K* is the template for

the HSV color histogram, and £(•, •) is the diffusion distance [30]. We fix the scaling

constant A c = 10 throughout our experiments.

We use a 3D histogram based on the magnitude of gradients in both x and

y direction and their orientations for the H O G descriptor. Then the following like

lihood distribution is given:

phog(yt\xt)cxe-x^H*-H^ (6.4)

where H(xt) is the H O G descriptor computed at xt, H* is the template for the

H O G descriptor, and £(•, •) is the diffusion distance [30]. We fix the scaling constant

A c = 10 throughout our experiments.

6.4 Particle Filtering

Since the observation likelihood Eq. (6.3) is nonlinear and non-Gaussian, there is

no analytical solution for the Bayesian recursion Eq. (6.1). Instead, we seek an

approximation solution, using particle filtering [10].

53

In standard particle filtering, we approximate the posterior p(xt\yi:t) with a

Dirac measure using a finite set of iV particles {scf, t^t^'}i=r To accomplish this,

we sample candidate particles from an appropriate proposal distribution

x^ ^g(x^\xfl_vyi,t) for i = l . . . J V (6.5)

In the simplest scenario, it is set as q(x^\x^}t_l,yl:t) = p(x[^\x[1}_1), yielding the

bootstrap filter [10]. However, a smarter proposal distribution can be employed.

The following section will discuss this issue.

The weights associated with these particles according to the following im

portance ratio:

(i) (i) P(yt\xt]) P&tl)\xt-i) l R ^

We resample the particles using their importance weights to generate an unweighted

approximation of p(ajt|y1:t). The particles are used to obtain the following approx

imation of the posterior distribution:

N

P{Xt\Vl:t) » Y^ 5

Xf^ (6'?)

6.5 Boosted Particle Filter

It is widely accepted that proposal distributions that incorporate the recent obser

vations (in our case, through the Adaboost detections) outperform naive transition

prior proposals considerably [51, 60]. In this thesis, we use the Boosted Particle

Filter [44] that incorporates the current detections of hockey players to produce a

better proposal distribution q(x^\x^_],y\-t)-

6.5.1 Adaboost Detection

In order to detect hockey player in the current frame, we adopt the cascaded Ad

aboost algorithm of Viola and Jones [61], which was originally developed for de

tecting faces. In our experiments, a 23 layer cascaded classifier is trained to detect

54

(a) (b) (c)

Figure 6.1: Hockey player detection results: This figure shows results of the
Adaboost hockey detector, (a), (b), and (c) show mostly accurate detections. Please
note that there are players who are not detected and some of the boxes do not cover
the entire figure of the player (i.e., a box is too small to cover a lower part of the
body)

hockey players. In order to train the detector, a total of 5609 figures of hockey

players are used. These figures are scaled to have a resolution of 24 x 24 pixels. We

hand annotate figures of hockey players to use for the training as shown in Figure

4.4. Unlike the detector used in [44], our trained Adaboost classifier produces few

false positives (i.e., a few false positives in several thousand frames) even alongside

the edge of the rink where most false positives appeared in [44]. More human in

tervention with a larger and better training set leads to better Adaboost detection

results, although localization failures would still be expected in regions of clutter

and overlap. The non-hockey-player sub-windows used to train the detector are

generated from over 300 images manually chosen to contain nothing but the hockey

rink and audience. Since our tracker is implemented for tracking hockey scenes,

there is no need to include training images from outside the hockey domain. Suffice

it to say, exploiting such domain knowledge greatly reduces the false positive rate

of our detector.

The results of using the cascaded Adaboost detector in our hockey dataset

are shown in Figure 6.1. The cascaded Adaboost detector performs well at detecting

the players but often gets confused in a cluttered region with multiple players and

ignores some of players.

55

q(x)

> x

Figure 6.2: Mixture of Gaussians for the Proposal Distribution.

6.5.2 P r o p o s a l D i s t r i b u t i o n w i t h the A d a b o o s t De tec t ions

It is clear from the Adaboost detection results that they could be improved if we

considered the motion models of the players. In particular, by considering plausi

ble motions, the number of false positives could be reduced. For this reason, the

Boosted Particle Filter (BPF) incorporates the Adaboost detection in the proposal

mechanism of the particle filters. The expression for the proposal distribution is

given by the following mixture.

q*BPF(xt)\xii-i>Vi:t) = aadaqada(x[l)\yt) + (1 - aada)p(x[l) IxJi) (6.8)

where qada is a Gaussian distribution centered in the Adaboost detection with a

fixed variance (See Figure 6.2). The parameter a a d a can be set dynamically without
u

affecting the convergence of the particle filter (it is only a parameter of the proposal

distribution and therefore its influence is corrected in the calculation of the impor

tance weights). When a a d a = 0, our algorithm reduces to the bootstrap particle

filter. By increasing a a d a we place more importance on the Adaboost detections.

We can adapt the value of a a d a depending on tracking situations, including cross

56

overs, collisions and occlusions.

6 .5 .3 F u r t h e r B o o s t i n g by a N a i v e P r o p o s a l

Since there is no guarantee that the Adaboost detector detects all targets in the

scene,- the detection results can be sparse over time. The performance of B P F is,

however, much better when there are many detections densely over time. One way to

further improve the performance of B P F is to use an additional proposal mechanism

other than the Adaboost detector. Thus, we use a mode-seeking algorithm similar to

mean shift [6] to find a local maximum of the HSV and H O G observation likelihoods

and employ a Gaussian distribution centered in the local maximum as a new proposal

distribution. This proposal is not as reliable as the Adaboost detections; however,

it is often better than the transition distribution which cannot accurately model the

dynamics of the targets due to the moving camera.

6.6 Multi-target Tracking

Multi-target tracking is performed by running multiple independent Boosted Parti

cle Filters for every target in the scene. Algorithm 4 summarizes our fully automatic

multi-target tracking algorithm.

Briefly, the targets are detected and initialized by using the cascaded Ad

aboost detector described in Section 6.5.1. During the tracking at time t +1, we use

the SPPCA template updater described in Chapter 4 to predict the new template

y t + l of the H O G descriptor for each target. The color template is not updated

because there is usually no noticeable change in the colors of hockey players. Then,

B P F is applied to estimate the posterior distribution over Xt+i- To update the

posterior distribution over {st+i, zt+i}, we compute the mean xt+i of the poste

rior distribution p(xt+i\yt+1), and extract the image patch located in Xt+i-

The image patch y t + 1 is then fed into the SPPCA template updater to update the

posterior over {st+i, zt+\}. Similarly, we give the image patch y t + l to the action

57

Algorithm 4 Boosted Particle Filter
Input: {It}T=1

Output: {xmti;T}m=i,...M

1: M = 0
2: for t = 1 to T do
3: Detect targets by the cascaded Adaboost detector
4: if there are Mnew new targets then
5: for m = 1 to M n e u) do
6: Generate N particles { 1 ^ } ^ by sampling from a Gaussian distribution

centered on the Adaboost detection
7: Extract the image patch y t from the Adaboost desction
8: Initialize the SPPCA template updater Um using ymt

9: end for
10: • M = M + Mnew

11: end if
12:

13: for m = 1 to M do
14: Generate a new template ymt by Eq. (4.19) from the SPPCA template

updater Um

15:

16: Propose new particles {x^t}iLi by Eq. (6.8)
17: Compute the observation likelihood for {x^}^ by Eq. (6.2)

18: Update the importance weights t}£Li by Eq. (6.6)

19: Generate unweighted samples { i ^ J y by resampling {x^^iLi according

to the importance weights (w ^ J ^ j
20: '

21: xm,t = meandx^A^)
22: Extract image patch y m t centered in xm<t

23:

24: Update {zm<t, sm,t} of the SPPCA template updater Um by yml using-
R B P F described in Section 4.4.2

25: Recognize the action of the player am<t by y m t using the SMLR+HOG
action recognizer described in Chapter 5

26: end for
27:

28: Remove M\ targets whose AdaBoost confidence is below a threshold
29: Merge M2 pairs of targets who overlap with each others
30: M = M - M i - M2

31: end for

58

recognizer described in Chapter 5. The action recognizer will classify the action of

the targets at time t + l and return the probability p(at+\\yt+i,w).

There are also mechanisms to remove and merge the targets. The targets

will be removed either when their Adaboost confidence is lower than a threshold, or

when the bounding boxes are out of the image. The merge operation is performed

when there is significant overlap between two bounding boxes. The mean of the two

bounding boxes will be computed and the target with the lower Adaboost confidence

will be removed.

6.7 Experiments

We evaluate the tracking performance of our system using a hockey game sequence

with more than 2000 frames. This sequence is very challenging due to the following

reasons. Firstly, the resolution of the video sequence is only 320 x 240. The low

resolution sequence makes tracking and action recognition challenging because the

appearance of the targets cannot be clearly observed. Secondly, the camera is not

stationary. The moving camera increases the complexity of the system because no

background subtraction technique can be used. Thirdly, hockey players interact

with others very often. Occlusions between two, three, or even four players occur

frequently over the entire sequence. Lastly, significant lighting condition changes

occasionally occur due to the flash of other cameras.

6.7.1 Parameter Settings

In all experiments, the H O G descriptor is constructed by sampling the SIFT de

scriptors of size 16 x 16 from the image patch with a 16-pixel spacing, and ev

ery SIFT descriptor is computed with nw — = 2, = 8 (yielding a H O G

descriptor of dimensionality 128). The color histograms are computed by setting

Nh = Ns — Nh = 10, yielding a HSV color histogram of dimensionality 110. The

SPPCA template updater is constructed by utilizing 30 subspaces (ns = 30) and 30

59

principal components (n z = 30). During the updating operation, 30 particles are

used in the Rao-Blackwellized Particle Filter in the SPPCA template updater. The

configurations of various tracking systems are described as follows.

The HSV tracker

This simplest setting uses only HSV color histograms as the observation model.

Since there is usually no noticeable change in the colors of hockey players, we use

the observation of the first frame as the color template, and we do not update the

color template over time. We use 30 particles for each target and set aac{a = 0 in

Eq. (6.8) (thus the tracking system becomes a bootstrap particle filter).

The H O G + S P P C A tracker

This setting uses only the H G G descriptors as the observation model, and applies

the SPPCA template updater described in Chapter 4 to update the H O G templates

over time. We use 30 particles for each target and set aada — 0 in Eq. (6.8) (thus

the tracking system becomes a bootstrap particle filter).

The HSV-t-HOG+SPPCA tracker

This tracker is a combination of the HSV tracker and the HOG+SPPCA tracker.

We use both the HSV color histograms and the H O G descriptor as the observation

model, and the H O G templates are updated by the SPPCA template updater. We

use 30 particles for each target and set aada = 0 in Eq. (6.8) (thus the tracking

system becomes a bootstrap particle filter).

The H S V + H O G + S P P C A + B P F tracker

This is the complete version of our tracking system. All parameter settings are the

same as the HSV+HOG+SPPCA tracker, except that we employ multiple inde

pendent Boosted Particle Filters (BPFs) to track the locations of the targets (thus

60

fi LB FT
LU

L i .

(a) HSV (b) HOG+SPPCA (c) HSV+HOG+SPPCA

Figure 6.3: Tracking results I: This figure shows the comparison between HSV,
HOG+SPPCA, and HSV+HOG+SPPCA. In (a), there are a few boxes that have
wrong scales. In (b), there is a box that is already shifted away from the object.
However, all the targets are correctly tracked in (c).

&ada 0). Similar to other settings, 30 particles are used for each target.

6.7.2 Results

Firstly, we show that using two observation models (i.e., the HOG descriptors and

the HSV color histograms) is better than using only either one of them alone. When

we only use the HSV color histograms as the observation model as shown in Figure

6.3 (a), we can observe that the localization of the targets is correct. However,

some of the estimated boxes have incorrect scale, i.e., the bounding boxes only

contain a part of the body of the hockey players. When we only utilize the HOG

descriptors with the SPPCA template updater as shown in Figure 6.3 (b), the scale

of the estimated boxes is better than Figure 6.3 (b) because they usually contain the

entire body of the hockey players. However, the localization of the estimated boxes

is worse because the H O G descriptors are more sensitive to the background clutter.

When combining the HSV color histograms and the H O G descriptors together as

shown in Figure 6.3 (c), we achieve a better scale and localization estimation of the

targets.

Secondly, we show the benefit of using the Boosted Particle Filter. In Figure

6.4, we compare the performance of the HSV+HOG+SPPCA tracker (the nonBPF

61

m

Frame 577

0 0

Frame 700

E h &

Frame 800

(a) The nonBPF tracker

J E 1

Frame 577
M i

OP

Frame 700

Frame 800

(b) The BPF tracker

Figure 6.4: Tracking results II: This figure shows the comparison between
HSV+HOG+SPPCA with and without BPF. The left column shows two images
that are generated by not using BPF. The right column has two other images that
are generated by BPF.

62

tracker) and the HSV+HOG+SPPCA+BPF tracker (the B P F tracker) in the same

sequence. The difference between the two trackers is that one employs the Adaboost

detection in its proposal distribution (the B P F tracker) while another is a standard

bootstrap particle filter (the nonBPF tracker). In frame 577, the nonBPF tracker

keeps track of fewer targets, and one of the targets at the right border of the image

has already had an incorrectly sized box. In the meanwhile, B P F has no evident

problems. In frame 700, the nonBPF tracker has more inaccurate sized boxes, and

the most obvious one occurs in the center of the image while one player partially

occludes the other. In the same time, the B P F tracker still has nearly perfect

estimation of both the scales and the locations of the players. In frame 800, the

nonBPF tracker assigns an incorrectly sized box to some of the hockey players and

the goalie whereas the B P F tracker still has accurate estimation of the scales and

the locations of the players.

Finally, we show the experimental results of the entire system in Figure 6.5.

In this experiment, we employ the Boosted Particle Filter with a joint likelihood

computed from both the HSV color histograms and the H O G descriptors, and the

H O G templates are updated by the SPPCA template updater (the HSV+HOG+

SPPCA+BPF tracker). The action recognizer described in Chapter 5 is also em

ployed to classify the players' actions online after we estimate the locations and sizes

of the players. We can observe that the entire system can simultaneously track and.

recognize multiple hockey players' actions.

We acknowledge that it is extremely difficult to evaluate a multi-target track

ing system due to complex multi-target interactions and many algorithmic elements

that influence the overall performance of the tracking system. Therefore, we addi

tionally provide a set of video sequences that contain visual tracking results with

each configuration of our system. The URL to the data is given in [1].

63

9

If-
(a) Frame 97 (b) Frame 116

9

(c) Frame 682 (d) Frame 710

(e) Frame 773 (f) Frame 814

Figure 6.5: Tracking and action recognition results: This figure shows the
final result of our system. All figures have the size of 320 x 240. The square
box represents the tracking region and arrows indicate the recognized action of the
player.

64

C h a p t e r 7

Conclusion and Future Work

7.1 Conclusion

This thesis presents a system that can automatically track multiple hockey players

and simultaneously recognize their actions given a single broadcast video sequence.

There are three contributions. Firstly, we employ the Histograms of Oriented Gradi

ents (HOG) and the HSV color histogram as the observation likelihood, and present

Switching Probabilistic Principal Component Analysis (SPPCA) to model the ap

pearance of the players by a mixture of local subspaces. SPPCA can be used to

update the template of the HOG descriptor of the tracked targets, and we show

that SPPCA has a better predictive accuracy than the H M M template updater

previous presented in our early work [33], Secondly, we recognize the players' ac

tions by incorporating the H O G descriptors with the Sparse Multinomial Logistic

Regression (SMLR) classifier. A robust motion-to-motion similarity measure is also

utilized to take consideration of actions of different speed. Experimental results

show that the proposed action recognizer outperforms [11, 64] in both accuracy and

speed. Finally, we augment the Boosted Particle Filter (BPF) with new observa

tion model and the SPPCA template updater and improves the robustness of the

tracking system. Experimental results show that the entire system can track and

recognize multiple hockey players' action robustly in near real-time.

65

7.2 Future Work

Although our system can detect, track, and recognize multiple hockey players' ac

tions automatically, several extensions could be made in the future. For example,

in the Switching Probabilistic Principal Component Analysis (SPPCA) framework,

the observation is generated from the hidden states by a Gaussian distribution. A

more sophisticated generative model such as Gaussian Processes [49] and the Binary

Latent Variable model [54] can be utilized to better model the observation. The dy

namics of the hidden states z can be modeled more accurately. In our system, we

assume that the hidden state Zt remains the same when the switch st does not

change. However, the dynamics could be modeled in a more complicated way. For

example, Gaussian Process Regression can be used to predict the next templates

of the targets [38, 59]. In these cases, the Rao-Blackwellized Particle Filter would

no longer be applied because the posterior distribution over zt can not be solved

analytically by the Kalman Filter [63]. Nevertheless, particle filtering still can be

used in these models.

The action recognizer and the tracker could be coupled more tightly in the

future. In this thesis, the action recognizer utilizes the information provided by

the tracker. However, no information is fed back to the tracker. In the future, it

is possible to utilize the action information to guide the template updater as in

[32, 33]. This idea shares the same merits with [28] which exploited the identities of

the targets to help generate a more accurate template. In the tracking framework,

we could also use the action information incorporated with the transition prior of the

particle filter to obtain a more accurate estimation of the locations of the targets.

The Boosted Particle Filter (BPF) could be further improved. In this the

sis, we employ multiple independent BPFs to track multiple targets. Simple target

intialization, removal, and merge operations are also implemented. However, user-

specified thresholds are needed to determine when these operations are triggered.

In the future, it is possible to use a more sophisticated Markov Chain Monte Carlo

66

technique to perform these tasks automatically [25]. Furthermore, the particle fil

tering framework requires a good transition prior in order to obtain a more accurate

state estimation. In this thesis, however, we do not have an accurate transition prior

due to the moving camera. If we have an accurate homography between the image

and the rink coordinate system, then the locations and speed of the players in the

rink coordinate system can be estimated. This information can help us to establish

a better transition prior because the movement of the players in the rink coordinate

system is approximated linear.

The cascaded Adaboost detector can be improved. The cascaded Adaboost

detector requires user-specified thresholds for each layer. These threshold might

be learned automatically. Moreover, the number of labelled training data can be

considerably reduced if we could employ the active learning technique such as [58]

to greedily determine which training images should be labelled.

67

Bibliography

[1] http://www.es.ubc.ca/~vailen/imavis. 63

[2] ARULAMPALAM, M . S., MASKELL, S., GORDON, N. , AND CLAPP, T . A Tuto

rial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking.

IEEE Transactions on Signal Processing 50, 2 (February 2002), 174-188. 6, 32

[3] AVIDAN, S. Ensemble Tracking. IEEE Transactions on Pattern Analysis and

Machine Intelligence 29, 2 (February 2007), 261-271. 18

[4] BLACK, M . , AND JEPSON, A. EigenTracking: Robust Matching and Track

ing of Articulated Objects Using a View-Based Representation. International

Journal of Computer Vision 26, 1 (1998), 63-84. 9, 24

[5] CAWLEY, G . , TALBOT, N!, AND GIROLAMI, M . Sparse Multinomial Logistic

Regression via Bayesian LI Regularisation. In Advances in Neural Information

Processing Systems 19 (2007). 41, 42

[6] COMANICIU, D . , AND MEER, P. Mean Shift: A Robust Approach Toward

Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine

Intelligence 24, 5 (2002), 603-619. 51, 57

[7] COOTES, T . , TAYLOR, C . , COOPER, D . , AND GRAHAM, J . Active shape mod

els - their training and application. Computer Vision and Image Understanding

61, 1 (1995), 38-59. 11

68

http://www.es

[8] D A L A L , N . , A N D T R I G G S , B. Histograms of Oriented Gradients for Human

Detection. In IEEE Conference on Computer Vision and Pattern Recognition

(2005), vol. 1, pp. 886-893. 5, 18, 19, 20, 39, 46

[9] D O U C E T , A . , D E F R E I T A S , N . , M U R P H Y , K . , A N D R U S S E L L , S. Rao-

Blackwellised Filtering for Dynamic Bayesian Networks. In Uncertainty in

Artificial Intelligence (2000), pp. 176-183. 9, 29, 32, 33

[10] D O U C E T , A . , F R E I T A S , N . D . , A N D G O R D O N , N . , Eds. Sequential Monte

Carlo Methods in Practice. Springer, 2005. 15, 52, 53, 54

[11] E F R O S , A . , B R E G , C . , M O R I , G . , A N D M A L I K , J . Recognizing Action at a

Distance. In International Conference on Computer Vision (2003), pp. 726^

733. 6, 13, 40, 42, 45, 47, 65

[12] E L G A M M A L , A . , D U R A I S W A M I , R., A N D D A V I S , L . S. Probabilistic Tracking

in Joint Feature-Spatial Spaces. In IEEE Conference on Computer Vision and

Pattern Recognition (2003), vol. 1, pp. 781-788. 9, 14

[13] F R E E M A N , W . , T A N A K A , K . , O H T A , J'., A N D K Y U M A , K . Computer vision for

computer games. In International Conference on Automatic Face and Gesture

Recognition (1996), pp. 100-105. 12, 47

[14] F R E E M A N , W . T . , A N D R O T H , M . Orientation Histograms for Hand Ges

ture Recognition. In International Workshop on Automatic Face and Gesture

Recognition (1995). 12

[15] G A V R I L A , D. The Visual Analysis of Human Movement: A Survey. Computer

Vision and Image Understanding 73, 1 (January 1999), 82-98. 1, 12

[16] G I E B E L , J . , G A V R I L A , D . , A N D S C H N O R R , C . A Bayesian Framework for

Multi-cue 3D Object Tracking. In European Conference on Computer Vision

(2004), pp. 241-252. 11, 18, 33

69

[17] Ho , J . , LEE, K . , YANG, M . , AND KRIEGMAN, D. Visual Tracking Using

Learned Linear Subspaces. In IEEE Conference on Computer Vision and Pat

tern Recognition (2004), vol. 1, pp. 782-789. 9

[18] Hu , W . , TAN, T . , WANG, L . , AND MAYBANK, S. A survey on visual surveil

lance of object motion and behaviors. IEEE Transactions on Systems, Man

and Cybernetics, Part C: Applications and Reviews 34, 3 (2004), 334-352. 1,

12

[19] HUE, C , CADRE, J. L . , AND PEREZ, P. Tracking Multiple Objects with

Particle Filtering. IEEE Transactions on Aerospace and Electronic Systems

38, 3 (2002), 791-812. 15

[20] INTILLE, S., DAVID, J . , AND BOBICK, A. Real-Time Closed-World Track

ing. In IEEE Conference on Computer Vision and Pattern Recognition (1997),

pp. 697-703. 15

[21] ISARD, M . , AND BLAKE, A . CONDENSATION-Conditional Density Prop

agation for Visual Tracking. International Journal of Computer Vision 29, 1

(1998), 5-28. 15

[22] ISARD, M . , AND MACCORMICK, J . BraMBLe: A Bayesian Multiple-Blob

Tracker. In International Conference on Computer Vision (2001), vol. 2, pp. 34-

41. 15

[23] JAIN, A . , AND DUBES, R. Algorithms for Clustering Data. Prentice Hall, 1988.

28 . '

[24] KHAN, Z. , BALCH, T . , AND DELLAERT, F . A Rao-Blackwellized Particle

Filter for EigenTracking. In IEEE Conference on Computer Vision and Pattern

Recognition (2004), vol. 2, pp. 980-986. 9, 10, 24

70

[25] KHAN, Z. , BALCH, T . , AND DELLAERT, F . MCMC-Based Particle Filtering

for Tracking a Variable Number of Interacting Targets. IEEE Transactions on

Pattern Analysis and Machine Intelligence 27, 11 (2005), 1805-1819. 67

[26] ROLLER, D. , WEBER, J . , AND MALIK, J . Robust Multiple Car Tracking with

Occlusion Reasoning. In European Conference on Computer Vision (1994),

pp. 186-196. 15

[27] KRISHNAPURAM, B. , CARIN, L . , FIGUEIREDO, M . A . , AND HARTEMINK,

A. J . Sparse Multinomial Logistic Regression: Fast Algorithms and Generaliza

tion Bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence

27, 6 (June 2005), 957-968. 6, 40, 41, 42

[28] LEE, K . , H O , J . , YANG, M . , AND KRIEGMAN, D. Visual tracking and recog

nition using probabilistic appearance manifolds. Computer Vision and Image

Understanding 99 (2005), 303-331. 10, 66

[29] LIM, H . , MORARIU, V . I., CAMPS, O. I., AND SZNAIER, M . Dynamic Ap

pearance Modeling for Human Tracking. In IEEE Conference on Computer

Vision and Pattern Recognition (2006), vol. 1, pp. 751-757. 10

[30] LING, H . , AND OKADA, K . Diffusion Distance for Histogram Comparison. In

IEEE Conference on Computer Vision and Pattern Recognition (2006), vol. 1,

pp. 246-253. 51, 53

[31] LOWE, D. G . Distinctive Image Features from Scale-Invariant Keypoints. In

ternational Journal of Computer Vision 60, 2 (2004), 91-110. 19, 20, 46

[32] L u , W . - L . , AND LITTLE, J . J . Simultaneous Tracking and Action Recogni

tion using the P C A - H O G Descriptor. In The Third Canadian Conference on

Computer and Robot Vision (2006). 15, 16, 36, 66

71

[33] L u , W . - L . , A N D L I T T L E , J . J . Tracking and Recognizing Actions at a Dis

tance. In ECCV Workshop on Computer Vision Based Analysis in Sport En

vironments (2006), pp : 49-60. 15, 16, 36, 65, 66

[34] L U C A S , B . , A N D K A N A D E , T . An iterative image registration technique with an

application to stereo vision. In Proceedings of Imaging understanding workshop

(1981), pp. 121-130. 47

[35] M A C C O R M I C K , J . , A N D B L A K E , A . A probabilistic exclusion principle for

tracking multiple objects. In International Conference on Computer Vision

(1999), vol. 1, pp. 572-578. 15

[36] M A T T H E W S , L . , I S H I K A W A , T . , - A N D B A K E R , S. The Template Update Prob

lem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 6.

(2004), 810-815. 8, 9

[37] Misu, T . , N A E M U R A , M . , Z H E N G , W . , I Z U M I , Y . , A N D F U K U I , K . Robust

Tracking of Soccer Players Based on Data Fusion. In International Conference

on Pattern Recognition (2002), pp. 556-561. 15

[38] M O O N , K . , A N D P A V L O V I C , V . Impact of Dynamics on Subspace Embedding

and Tracking of Sequences. In IEEE Conference on Computer Vision and

Pattern Recognition (2006), vol. 1, pp. 198-205. 11, 66

[39] M U R P H Y , K . , A N D R U S S E L , S. Rao-Blackwellised Particle Filtering for Dy

namic Bayesian Networks. In Sequential Monte Carlo Methods in Practice,

A. Doucet, N. de Freitas, and N. Gordon, Eds. Springer-Verlag, 2001. 32, 33 .

[40] M U R P H Y , K . P. Learning Switching Kalman Filter Models. Tech. Rep. Tech

Report 98-10, Compaq Cambridge Research Lab, 1998. 25, 29, 31

[41] N E A L , R. M . , A N D H I N T O N , G . A new view of the E M algorithm that justifies

incremental, sparse, and other variants. In Learning in Graphical Models, M . I.

Jordan, Ed. Kluwer Academic Publishers, 1998, pp. 355-368. 25, 28

72

[42] NEEDHAM, C , AND BOYLE, R. Tracking multiple sports players through

occlusion, congestion and scale. In British Machine Vision Conference (2001),

pp. 93-102. 15

[43] O H , S. M . , REHG, J . M . , BALCH, T . , AND DELLAERT, F. Learning and

Inference in Parametric Switching Linear Dynamic Systems. In International

Conference on Computer Vision (2005), vol. 2, pp. 1161-1168. 29

[44] OKUMA, K . , TALEGHANI, A . , DE FREITAS, N . , LITTLE, J . J . , AND LOWE,

D. G . A Boosted Particle Filter: Multitarget Detection and Tracking. In

European Conference on Computer Vision (2004), pp. 28-39. 5, 6, 15, 18, 51,

54, 55

[45] PAVLOVIC, V . , REHG, J . , CHAM, T . , AND MURPHY, K . A Dynamic Bayesian

Network Approach to Figure Tracking Using Learned Dynamic Models. In

International Conference on Computer Vision (1999), vol. 1, pp. 94-101. 29

[46] PEREZ, P., HUE, C , VERMAAK, J . , AND GANGNET, M . Color-Based Proba

bilistic Tracking. In European Conference on Computer Vision (2002), pp. 661-

675. 15, 16, 18

[47] PORIKLI, F. Integral Histogram: A Fast Way to Extract Histograms in Carte

sian Spaces. In IEEE Conference on Computer Vision and Pattern Recognition

(2005), vol. 1, pp. 829-836. 5, 21

[48] RABINER, L . A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. Proceedings of the IEEE 77, 2 (1989), 257-286. 37

[49] RASMUSSEN, C . E . , AND WILLIAMS, C. K . I. Gaussian Processes for Machine

Learning. The MIT Press, 2006. 66

[50] Ross, D. , LIM, J . , AND YANG, M . Adaptive Probabilistic Visual Tracking

with Incremental Subspace Update. In European Conference on Computer

Vision (2004), pp. 470-482. 9

[51] Rui, Y . , AND CHEN, Y . Better Proposal Distributions: Object Tracking

Using Unscented Particle Filter. In IEEE Conference on Computer Vision and

Pattern Recognition (2001), vol. 2, pp. 786-793. 15, 54

[52] SAUL, L . K . , AND ROWEIS, S. T . Think Globally, Fit Locally: Unsuper

vised Learning for Low Dimensional Manifolds. Journal of Machine Learning

Research 4 (2003), 119-155. 10

[53] SHEVADE, S., AND KEERTHI, S. A simple and efficient algorithm for gene

selection using sparse logistic regression. Bioinformatics 19, 17 (2003), 2246-

2253. 41, 42

[54] TAYLOR, G . , HINTON, G . , AND ROWEIS, S. Modeling Human Motion Using

Binary Latent Variables. In Advances in Neural Information Processing Systems

19 (Cambridge, M A , 2007), B. Scholkopf, J. Piatt, and T. Hoffman, Eds., MIT

Press. 66

[55] TIPPING, M . , AND BISHOP, C. Mixtures of Probabilistic Principal Component

Analyzers. Neural Computation 11 (1999), 443-482. 25, 31

[56] TIPPING, M . , AND BISHOP, C. Probabilistic principal component analysis.

Journal of Royal Statistical Society B 61, 3 (1999), 611-622. 9

[57] TOYAMA, K . , AND BLAKE, A . Probabilistic Tracking with Exemplars in a

Metric Space. International Journal of Computer Vision 48, 1 (2002), 9-19. 9,

16, 36

[58] TUR, G . , HAKKANI-TUR, D. , AND SCHAPIRE, R. E . Combining active and

semi-supervised learning for spoken language understanding. Speech Commu

nication 45 (2005), 171-186. 67

[59] URTASUN, R., FLEET, D. , AND FUA, P. 3D People Tracking with Gaussian

Process Dynamical Models. In IEEE Conference on Computer Vision and

Pattern Recognition (2006), vol. 1, pp. 238-245. 11, 66

74

[60] VAN DER MERWE, R., DOUCET, A . , DE FREITAS, N . , AND WAN, E . The Un-

scented Particle Filter. In Advances in Neural Information Processing Systems

13 (2001). 54

[61] VIOLA, P., AND JONES, M . Rapid Object Detection using a Boosted Cascade

of Simple Features. In IEEE Conference on Computer Vision and Pattern

Recognition (2001), vol. 1, pp. 511-518. 6, 21, 54

[62] WANG, J . , FLEET, D. , AND HERTZMANN, A . Gaussian Process Dynamical

Models. In Advances in Neural Information Processing Systems 18 (2006). 11

[63] WELCH, G . , AND BISHOP, G . An Introduction to the Kalman Filter. Tech.

Rep. T R 95-041, Deparment of Computer Science, University of North Carolina

at Chapel Hill, 1995. 33, 34, 35, 66

[64] W u , X . Templated-based Action Recognition: Classifying Hockey Players'

Movement. Master's thesis, The University of British Columbia, 2005. 13, 45,

47, 65

[65] W u , Y . , AND HUANG, T . Robust Visual Tracking by Integrating Multiple Cues

Based on Co-Inference Learning. International Journal of Computer Vision 58,

1 (2004), 55-71. 18

[66] YAMATO, J . , OHYA, J . , AND ISHII, K. Recognizing Human Action in Time-

Sequential Images using Hidden Markov Model. In IEEE Conference on Com

puter Vision and Pattern Recognition (1992), pp. 379-385. 14

[67] YANG, C , DURAISWAMI, R., AND DAVIS, L . Fast Multiple Object Tracking

via a Hierarchical Particle Filter. In International Conference on Computer

Vision (2005), vol. 1, pp. 212-219. 18

75

