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Abstract This paper studies morphological connected operators. Particu-
larly, it focuses on an adjacency constraint, as well as on the so-
called set levelings. Two important findings are reported in this
work. First, the relationships between the so-called adjacency sta-
ble operators and set levelings are investigated, and an equivalence
is established. This is an important result about how these concepts
have been chronologically introduced, and it permits to apply some
properties to the related operator class. Second, the implications
and limits of a property about expressing certain connected oper-
ators as a sequential composition of an opening and a closing (and
vice-versa) based on markers are discussed. Then, a commutative
property for attribute alternated filters is presented.
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nected operator, adjacency stable operator, leveling.

1. Introduction

This paper investigates some aspects of morphological connected operators,
which preserve well shapes and do not introduce discontinuities.

It happens that usual morphological connected operators (such as those
composed by openings and closings) impose certain adjacency constraints
between the input and the output. This was previously researched, and the
so-called adjacency stable connected operator concept [6, 10, 11] was estab-
lished in the set or binary framework.

In addition, the so-called levelings [20–23] were defined in the non-binary
framework in such a way that constrain the output variations depending on
the input variations. Those levelings within the set or binary framework are
called set or binary levelings [22].

A question that naturally arises is whether there are relationships be-
tween adjacency stable connected operators and set levelings. As will be
shown later, this is one of the results that will be established in this work.
In scientific research, it is key being able to indicate how and when research
concepts have been developed and introduced. Besides, in the case where
such relationships exist, properties that are valid for one type of operators
could perhaps apply to the other related operator class.
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A second aspect researched in this paper is the possibility of expressing
certain connected operators as the sequential composition of an opening
and a closing (and vice-versa). Some clarifications about the implications,
and limits, of a previously presented result are provided. Furthermore, a
commutative property for attribute alternated filters will be presented.

Section 2 provides some general background. The adjacency stability
and leveling concepts are recalled in, respectively, Sections 3 and 4. The
relationships between adjacency stable connected operators and set levelings
are established in Section 5. The expression of certain connected operators
as sequential compositions of an opening and a closing is treated in Section 6.
Finally, a conclusion section ends the paper.

2. Background

2.1 General definitions
Mathematical morphology deals with the application of set theory concepts
to image processing and analysis, and it considers that images are composed
of geometrical shapes with intensity or multi-band profiles [25]. Some gen-
eral references are [1, 13,15,16,19,29–31,35].

A basic set of notions on morphological filtering can be the following.

• Mathematical morphology focuses on increasing mappings defined on
a complete lattice [31]. In a complete lattice there exists an order-
ing relation, and two basic operations called infimum and supremum
(denoted by

∧
and

∨
, respectively).

• A transformation ψ is increasing if and only if it preserves ordering.

• A transformation ψ is idempotent if and only if ψψ = ψ.

• A transformation ψ is a morphological filter if and only if it is increas-
ing and idempotent.

• An opening (denoted by γ) is an anti-extensive morphological filter.
Since γ is anti-extensive, we can say that γ ≤ id, where id symbolizes
the identity operator that leaves the input unchanged.

• A closing (denoted by ϕ) is an extensive morphological filter. Since ϕ
is extensive, we can say that ϕ ≥ id.

In the theoretical expressions in this paper, we will be working on the
lattice P(E), where E is a given set of points (the space) and P(E) denotes
the set of all subsets of E (i.e., P(E) = {A : A ⊆ E}). In other words, inputs
and outputs are supposed to be sets or, equivalently, binary functions. In
this lattice, the sup

∨
and the inf

∧
operations are, respectively, the set

union
⋃

and set intersection
⋂

operations, while the order relation is the
set inclusion relation ⊆. Even though we will work on the lattice P(E),
results are extendable to gray-level functions by means of the so called flat
operators [30,35].

Two morphological operators ψ1 and ψ2 are dual if ψ1 = {ψ2{, where {
symbolizes the complement operator.
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2.2 Some background on connectivity and connected
operators

Some references to the topic of connectivity and connected filtering are:
[2–5,7, 9–12,14,17,18,20–24,26–28,32–38].

Connectivity is established in [31, (pp. 51–57)] by means of the connected
class concept. A connected class C in P(E) is a subset of P(E) such that (a)
∅ ∈ C and for all x ∈ E, {x} ∈ C; and (b) for each family Ci in C,

∧
i Ci 6= ∅

implies
∨

i Ci ∈ C. The subclass Cx that has all members of C that contain
x (i.e., Cx = {C ∈ C : x ∈ C}) leads to the definition of an opening γx called
point opening [31]. For all x ∈ E, A ∈ P (E),

γx(A) =
∨
{C : C ∈ Cx, C ≤ A}. (1)

The dual operation of γx is the closing ϕx that is equal to {γx{. If a
point x does not belong to a set A, i.e., it belongs to a pore of A, then we
can obtain such a pore with γx{ (or, equivalently, with {ϕx).

In sets (or, equivalently, binary images), the flat zone of a point (or
pixel) x is the grain or the pore (whichever is not empty) which x belongs
to. I.e., the flat zone of x in a set A is equal to: Fx(A) = γx(A)

∨
γx{(A).

(Note that either the grain or the pore of a point x is empty.) In the non-
binary case, the flat zones of a function are its piecewise-constant regions,
i.e., the set of connected sets with the same function value.

An operator ψ is connected [28, 34] if, for all A ∈ P (E), each flat zone
(grain or pore) of A is included in a flat zone (grain or pore) of ψ(A).

2.3 Connectivity requirement

A general requirement for the space connectivity is assumed in this work.
Particularly, the space connectivity is supposed to be a strong connectivity
(see [17,24]). The usual four- and eight-connectivities in connected subsets
of Z2 are cases of strong connectivities.

3. Adjacency stability

This section discusses and summarizes the adjacency stability concept for
connected operators, which appeared first in [11], and was further studied
in [6, 10]. A closely related concept was later discussed in [17].

Let us define the concept of adjacency between flat zones, which formal-
izes the intuitive notion of contiguity.

Definition 1. Two (disjoint) flat zones Fx(A) and Fy(A) in a space E
(endowed with γx, x ∈ E) are said to be adjacent if Fx(A)

∨
Fy(A) is a

connected set, i.e., if Fx(A)
∨

Fy(A) = γx(Fx(A)
∨

Fy(A)).

(Note that Fx(A) = γx(A)
∨
γx{(A).) The relationship of Definition 1 is

symmetric (and not reflexive). Definition 1 can be extended to sets: two
sets A and B are adjacent if some flat zone of A is adjacent to some flat
zone of B.
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(a) Input set (in dark) (b) AU Output (c) AS Output (d) AS Output

Figure 1. Adjacency stability example. Part (a) shows an input set A, and
parts (b), (c) and (d) display three possible outputs of connected operators.
Part (b) would be adjacency unstable: note that a pore of the input set A is
in a grain in (b) but is not surrounded by grains of A. This situation does not
happen in cases (c) and (d). (Note: “AU” refers to adjacency unstable, and “AS”
denotes adjacency stable.) (Note: the space is endowed with a usual four- or
eight-connectivity.)

The adjacent flat zones of a point x in an input set A, symbolized by
Dx(A), are the pores (if x ∈ A) or the grains (if x 6∈ A) that are adjacent
to Fx(A), i.e.,

Dx(A) =
∨

y{Fy(A) : y ∈ E,Fy(A)
∨

Fx(A) = γx(Fy(A)
∨

Fx(A)}.

The important concept of adjacency stability [6, 10, 11] is established
next. This requirement concerns how adjacent grains and pores are treated
by an operation.

Definition 2. Let E be a space endowed with γx, x ∈ E. An operator
ψ : P(E) ⇒ P(E) is adjacency stable if, for all x ∈ E:

γx(id
∨
ψ) = γx

∨
γxψ. (2)

Note that γx commutes under the inf (γx(
∧

i ψi) =
∧

i γxψi) but not in
general under the sup.

The adjacency stability equation 2 treats grains and pores symmetrically.
The reason is that what matters is the switch from grain to pore and vice-
versa. We can state as well that the dual of an adjacency stable operator is
adjacency stable.

The grain-pore relationship is illustrated in Figure 1. The consequences
of adjacency stability on the relationships between the grains of an input
set A and the output ψ(A) are the following: the grains of ψ(A) are a union
of (a) grains of A, and (b) pores of A surrounded by grains in (a). For the
particular case in Figure 1(b), Figure 2 shows that the adjacency stability
equation does not hold for the point marked as x (this point is not the only
one). The adjacency stability equation must hold for all A ∈ P(E) and for
all x ∈ E.

Lemma 1 is useful to relate the input and the output.
Lemma 1. Let E be a space endowed with γx, x ∈ E. A connected operator
ψ : P(E) ⇒ P(E) is adjacency stable if and only if, for all A ∈ P(E), ψ(A)
and A \ ψ(A) are not connected to each other (i.e., are not adjacent).
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x x

(a) Input set A (in dark) (b) ψ(A) (ψ is adjacency unstable)

x x

(c) γx(A)
W
γxψ(A) (d) γx(id

W
γxψ)(A)

Figure 2. Adjacency stability equation. Parts (a) and (b) display, respectively,
an input set A and the output ψ(A), where ψ is an adjacency unstable connected
operator. The adjacency stability equation does not hold: for the point x sig-
naled (among others), γx(A)

W
γxψ(A) (part (c)) is not equal to γx(id

W
γxψ)(A)

(part (d)).

Property 1. Extensive and anti-extensive mappings are adjacency stable.

Property 2. The class of adjacency stable connected operators is closed
under the sup, the inf and the sequential composition operations.

If ψ is an adjacency stable connected operator, then, for all A ∈ P(E):
(a) x 6∈ A, x ∈ ψ(A) ⇒ Dx(A) ≤ ψ(A); (b) x ∈ A, x 6∈ ψ(A) ⇒ Dx(A) ≤
{ψ(A).

4. Levelings and set levelings

A leveling [20–23] is defined next.

Definition 3. An image g is a leveling of an input image f if and only if:

∀ (p, q) neighboring pixels : gp > gq ⇒ fp ≥ gp and gq ≥ fq. (3)

The previous definition of leveling is that in [20, Definition 4 (p. 193)] [23,
Definition 2.2 (p. 4)]. A more general and complex definition is introduced
in [22, Definition 10 (p. 62)], but a leveling as established by Expression 3 is
also a leveling as defined in [22, Definition 10 (p. 62)]. Moreover, we focus
on set operators.

Set levelings are those defined in the set or binary framework. Expres-
sion 3 will be particularized for the set or binary case in Section 5.2.
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5. Relationships between adjacency stable connected
operators and set levelings

Both adjacency stable connected operators and levelings impose certain con-
straints on the input and output variations, which will analyzed next. Then,
the relationships between these types of operators will be discussed.

5.1 Adjacency stable connected operators: input/out-
put variations restriction

First, we will formalize the neighborhood relationship between two pixels
using γx. As in Section 4 (Definition 3), we will use the symbols p and q to
refer to a pair of pixels that are neighbors. Two pixels p and q are neighbors
to each other if and only if they satisfy

γp({p, q}) = γq({p, q}) = {p, q}. (4)

The next proposition, which states the restrictions imposed on the values
of neighboring pixels between an input I and the output I ′ of an adjacency
stable connected operator, follows directly from Definition 2.
Property 3. Let A be an input set. Let ψ : P(E) ⇒ P(E) be an adjacency
stable connected operator. If p and q are neighbors to each other (i.e., p and
q satisfy equation 4), or if they belong to adjacent flat zones, the adjacency
stability of ψ implies the following restrictions between the input A and
output ψ(A) sets:

(a) γp(A) = γq(A) ⇒ γpψ(A) = γqψ(A),

(b) p ∈ A, q 6∈ A ⇒

 p ∈ ψ(A), q 6∈ ψ(A)
or

γpψ(A) = γqψ(A).

(5)

There is a case symmetric to (b) above (interchanging p and q in (b))
not shown.

The cases not covered in Expression 5 are: (i) p ∈ A, q 6∈ A and p 6∈
ψ(A), q ∈ ψ(A)); and (ii) p 6∈ A, q ∈ A and p ∈ ψ(A), q 6∈ ψ(A). (Cases (i)
and (ii) are symmetric to each other, interchanging p and q.) Clearly, these
cases do not satisfy Equation 2 of Definition 2. Let us prove that for one
case. We can prove that the case p 6∈ A, q ∈ A and p ∈ ψ(A), q 6∈ ψ(A))
does not satisfy Equation 2 . We have that:

• γp(id
∨
ψ)(A) = γp(A

∨
ψ(A)) = γpψ(A)

∨
γq(A),

• γp(A)
∨
γpψ(A) = γpψ(A),

and γpψ(A)
∨
γq(A) > γpψ(A), since q ∈ A, γq(A) 6= ∅, and γq(A) 6≤

γpψ(A).
We can straightforwardly extend Property 3 to binary functions (which

can be considered as equivalent to sets). Let us assume that the binary
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values are 0 and 1. Let I and I ′ be, respectively, an input image and the
output of an adjacency stable connected operator ψ (i.e., I ′ = ψ(I)).

Binary functions case: If p and q are neighbors to each other (or if
they belong to adjacent flat zones), then:

(a) Ip = Iq ⇒ I ′
p = I ′

q,

(b) Ip = 1, Iq = 0 ⇒


I ′
p = 1, I ′

q = 0
or

I ′
p = I ′

q.

(6)

Note: the case symmetric to (b) (interchanging p and q in (b)) is not
shown.

The cases ruled out are: (i) Ip = 1, Iq = 0, and I ′
p = 0, I ′

q = 1;
and (ii) Ip = 0, Iq = 1, and I ′

p = 1, I ′
q = 0. (Cases (i) and (ii) are

symmetric to each other, interchanging p and q.)

5.2 Set levelings: input/output variation restriction

Definition 3 can of course be applied to binary images (or, equivalently,
sets). If we particularize for binary images then we have the following,
concerning Expression 3. Similarly as in Section 5.1, I and I ′ denote the
input and output images (i.e., I and I ′ have been substituted for f and g,
respectively, in Expression 3). An inequality such as I ′

p > I ′
q can only occur

when there is a discontinuity where I ′
p and I ′

q are 1 and 0, respectively.
Then, Expression 3 can only be:

1 > 0 ⇒ 1 ≥ 1 and 0 ≥ 0, (7)

i.e., Ip has to be 1, and Iq must be 0.
Therefore, if I ′

p = 1 and I ′
q = 0, the case where Ip = 0 and Iq = 1 is

excluded.

5.3 Discussion
We can now precisely state the relationships between stable connected op-
erators and set levelings: (a) Both adjacent stable connected operators and
set levelings impose restrictions on the input/output variations. (b) The
imposed restrictions are identical in both cases: if I ′

p = 1 and I ′
q = 0, then

Ip and Iq must be 1 and 0, respectively.
Thus, the set leveling concept and the adjacency stable con-

nected operator concept are equivalent. The adjacency stable con-
nected operator notion [6, 10, 11] is prior in time to levelings [20, 21, 23]
[22].

A final question can arise: can the adjacency stable connected operator
concept be applied to a gray-level framework? The answer is affirmative,
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we can directly extend such input and output variation restrictions to flat
gray-level connected operators that commute with thresholding, where the
operator is level-by-level connected and where Equation 2 must hold for
all sections of the input and output gray-level functions. Let I and I ′ be,
respectively, an input image and the output of a flat gray-level adjacency
stable connected operator ψ (i.e., I ′ = ψ(I)).

Gray-level (non-binary) functions case: If p and q are neighbors to
each other (or if they belong to adjacent flat zones), then:

(a) Ip = Iq ⇒ I ′
p = I ′

q,

(b) Ip > Iq ⇒


I ′
p > I ′

q

or
I ′
p = I ′

q.

(8)

Note: the case symmetric to (b) is not shown.
The case ruled out is: Ip < Iq, and I ′

p > I ′
q (as well as the symmetric

one: Ip > Iq, and I ′
p < I ′

q). This case is also excluded by Expression 3
of levelings. Moreover, disregarding trivial cases (such as those where,
processing level by level, ψ(∅) = E or ψ(E) = ∅), in flat morphological
(increasing) connected operators the variation range of the output is
equal or smaller than that of the input. Otherwise, the flat zone
inclusion relationship of connected operators would not necessarily
hold between sections at same level of the input and output images.
For example, in the case where Ip > Iq and I ′

p > I ′
q, the next gradation

would exist : Ip ≥ I ′
p > I ′

q ≥ Iq.

Now that the equivalence of adjacency stable connected operators and set
levelings has been established, researchers know that the adjacency stable
connected operator properties also hold for (flat) levelings. Let us point
out that the properties included in Section 3 (Lemma 1 and Properties 1
and 2), altogether with the adjacency stability equation 2, are useful for
manipulating expressions composed of connected operators, especially when
they are also connected-component local (i.e., they treat grains or pores
independently from the rest) [6, 10, 11]. In fact, they will be employed in a
proof in the following section.

6. On commutative properties of open-close and
close-open filters for connected operators

In this section we will first comment on an interesting commutative property
that has been presented elsewhere, and on some of its implications and
limits. Afterwards, we will also present another commutative property that
is satisfied by certain alternated connected filters, particularly by attribute
alternated filters.
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6.1 Marker-based operators

Let us define the “‖” relationship presented in [33, Definition 7.3]:

Definition 4. Let A and B be, respectively, a grain (a connected set) and
a set. We say that A ‖ B if A and B have a non-empty intersection or are
adjacent.

Now, we are going to define two operators, γ and ϕ, based on makers
that are presented in [33, p. 176]. Besides one normal input set, those
operators use a second one, which is a marker set.

Definition 5. Let A and M be two sets. The connected operator γ of a
set A based on marker M , symbolized by γ(A,M), is defined as:

γ(A,M) =
⋃
{γx(A) : γx(A) ‖ M}. (9)

Note that Definition 5 does not define γ(A) but γ(A,M).

Definition 6. Let A and M be two sets. The connected operator ϕ of a
set A based on marker N , symbolized by ϕ(A,N), is defined as:

{[ϕ(A, {N)] =
⋃
{γx({A), x ∈ E : γx({A) ‖ N.} (10)

In [33], it is established that, under some connectivity considerations,
there exists a commutative property for γ and ϕ [33, Theorem 7.3]:

γ(ϕ(A, {N),M) = ϕ(γ(A,M), {N). (11)

It is indicated in [33] that γ(ϕ(A, {N),M) (or ϕ(γ(A,M), {N)) is a
leveling and that is a strong filter. Moreover, in [22,23], it is mentioned that
levelings are strong filters (see [23, Section 3.4 (p. 9)] and [22, Section 4.4.1
(p. 67)]), and the discussion refers to a commutative expression similar to
the aforementioned one. This should be clarified, because it seems there
could be some confusion about levelings (Definition 3), particularly about
whether all levelings can be formulated as sequential compositions of an
opening and a closing, and vice-versa.

There is an important remark, which concerns the main cause of pos-
sible misconceptions, to be made about Equation 11: the computation of
the markers is not considered. Thus, saying that an operation can be
expressed as in Equation 11 does not necessarily imply that such
an operation can be expressed as a sequential composition of an
opening and a closing, and vice-versa, when the marker computa-
tion is considered. For example, in γ(ϕ(A, {N),M), the marker M of γ is
not affected by the result of the previously applied ϕ; that is, the M marker
can be considered as an input. This is not how we usually think about
openings and closings. In fact, when the marker computation is adequately
considered, not all levelings (Definition 3) can be expressed as a sequential
composition of an opening and a closing, and vice-versa; and it would not be
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the case that all levelings are strong filters. (See [9] [8] for further discussion
about the strong property of connected alternated filters.)

Next section will present a commutative property for certain connected
filters that does not raise that objection but where the underlying marker
is, as usual, not considered fixed.

6.2 A commutative property

We present a commutative property for a certain type of connected alter-
nated filters, particularly for alternated attribute filters, which are strong
filters composed of an attribute opening [31, 34] [38] [35] and an attribute
closing. Area openings and closings are examples of attribute openings and
closings, respectively.

Let γ̃ and ϕ̃ denote, respectively an attribute opening and closing. In
the following, unlike in Equation 11, when we write ϕ̃γ̃ it is clear that the
criterion (and associated marker) of ϕ̃ is applied to the output computed
by the previous γ̃. We have the following property:

Property 4. An attribute alternated filter ϕ̃γ̃ can be expressed as a com-
mutative sequential composition of an opening and a closing as follows:

ϕ̃γ̃ = γ̃ (id
∨
ϕ̃γ̃) = (id

∨
ϕ̃γ̃) γ̃. (12)

Proof. There are two equalities to consider.

(a) Let A be a set. Since γ̃ is connected-component local we have γ̃ =∨
x γxγ̃ =

∨
x γ̃γx. Thus, γ̃(id

∨
ϕ̃γ̃)(A) =

∨
x γxγ̃(id

∨
ϕ̃γ̃)(A) =∨

x γ̃γx(id
∨
ϕ̃γ̃)(A). From Property 1 and Property 2, ϕ̃γ̃ is adjacency

stable, and, from Lemma 1, ϕ̃γ̃(A) and A \ ϕ̃γ̃(A) are not adjacent
[6, 10]. Then,

γ̃γx(id
∨
ϕ̃γ̃)(A) =

{
γ̃γx(A) = ∅, x ∈ A \ ϕ̃γ̃(A),
γ̃γxϕ̃γ̃(A), x ∈ ϕ̃γ̃(A). (13)

Thus,
∨

x γ̃γxϕ̃γ̃ =
∨

x γxγ̃ϕ̃γ̃ = γ̃ϕ̃γ̃. Finally, γ̃ϕ̃γ̃ = ϕ̃γ̃ (since ϕ̃γ̃ ≤
γ̃ϕ̃ and γ̃ϕ̃γ̃ = ϕ̃γ̃ [28,34]).

(b) (id
∨
ϕ̃γ̃) γ̃ = γ̃

∨
ϕ̃γ̃γ̃ = γ̃

∨
ϕ̃γ̃ = ϕ̃γ̃.

Notes: (a) (id
∨
ϕ̃γ̃) is a closing (and different from ϕ̃). (b) Property 4

is different from [17, Proposition 10.2]. (c) This proof also provides an
example of using adjacent stable connected operators properties to manipu-
late expressions. (d) Concerning filter expressions and decompositions, see
also [7].

7. Conclusion

This paper has focused on connected morphological operators. First, the
relationship between adjacency stable connected operators and set levelings
has been investigated, and a close relationship, an equivalence, has been
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identified. This is important to establish how and when this concept has
been introduced, and to clarify its origin. In addition, properties satisfied
by one class of operators can be applied to the other equivalent one.

Second, this work has analyzed a commutative property previously pre-
sented, as well as some of its implications and limits. The paper has pre-
sented also a commutative property for attribute alternated filters, in which,
as is usually the case and unlike in the other commutative property ana-
lyzed, the underlying marker computation is taken into account.
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