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The curse of dimensionality has prompted intensive research in effective methods of mapping high dimen-
sional data. Dimensionality reduction and subspace learning have been studied extensively and widely ap-
plied to feature extraction and pattern representation in image and vision applications. Although PCA has
long been regarded as a simple, efficient linear subspace technique, many nonlinear methods such as kernel
PCA, local linear embedding, and self-organizing networks have been proposed recently for dealing with in-
creasingly complex nonlinear data. The intensive research in nonlinear methods often creates an impression
that they are highly superior and preferred, though often limited experiments were given and the results not
tested on significance. In this paper, we systematically investigate and compare the capabilities of various lin-
ear and nonlinear subspace methods for face representation and recognition. The performances of these
methods are analyzed and discussed along with statistical significance tests on obtained results. The experi-
ments on a range of data sets show that nonlinear methods do not always outperform linear ones, especially
on data sets containing noise and outliers or having discontinuous or multiple submanifolds. Certain non-
linear methods with certain classifiers do yield better performances consistently than others. However, the
differences among them are small and in most cases are not significant. A measure is used to quantify the
nonlinearity of a data set in a subspace. It explains that good performances are achievable in reduced dimen-
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sions of low degree of nonlinearity.
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1. Introduction

With the ever fast increasing quantity and complexity of the data
in many fields, it becomes difficult, challenging or even impossible to
deal with raw data directly. Dimensionality reduction has become a
necessity for pre-processing data so to facilitate data management,
representation and classification. It aims to represent the data in a
low-dimensional, essential subspace that captures the intrinsic na-
ture of the data. Images often contain a large number of pixel values
and are represented as high-dimensional vectors or arrays. Operating
directly on these vectors is inefficient, would lead to high computa-
tional costs and storage demands, and poses the curse of dimension-
ality to many learning tasks. An effective subspace representation has
thus become desirable in many image processing applications.

In face recognition, appearance-based approach has been widely
used. The holistic and component-based methods are two main
ways for representing facial appearances. In holistic representation,
a facial image is considered as a vector of pixels and is represented
as a single point in the high-dimensional space. Subspace methods
are applied in unsupervised manner to reduce the high-dimensional
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data onto a lower dimensional space while retaining intrinsic features
for further classification (e.g. eigenfaces [1] and fisherfaces [2]).
Component-based representation is in favor of representing a face
by multiple local features. It divides a face image into local sub-
blocks (or regions) and then subspace methods are applied on these
blocks to extract compact representations (e.g. modular eigenspaces
[3] and LBP-based local facial representation [4,5]). In both represen-
tations, dimension reduction is applied to a great extent in order to
extract features and to facilitate further processing such as classifica-
tion. Supervised dimension reduction, which jointly optimizes the re-
duction and classification, is beyond the scope of this paper.

PCA is a primary dimensionality reduction technique and is
regarded as the theoretical foundation of many nonlinear subspace
techniques. It seeks a linear projection that best fits a data set in the
least-square sense and has been widely used due to its computational
and analytical simplicity [6]. Eigenface [1] is a well-known application
of PCA for face recognition. However, as much recent literature has
pointed out, the linearity of PCA limits its power for complex data
sets as it is unable to capture nonlinear structure of the data defined
by beyond second order statistics. Various nonlinear techniques
have been proposed. Kernel PCA (KPCA) [7] extends PCA to nonli-
nearity by projecting the data into a higher-dimensional feature
space via the kernel trick. Manifold-based learning techniques, such
as local linear embedding (LLE) [8], ISOMAP [9] and curvilinear com-
ponent analysis (CCA) [10], and their linear variants (e.g., locality pre-
serving projection (LPP) [11] and orthogonal locality preserving
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projection (OLPP) [12]), detect underlying nonlinear data manifold by
preserving local relationships or distances between data points in a
neighborhood via minimizing a defined cost function. Several reviews
of the existing dimensionality reduction and subspace methods have
been given (e.g., [13-18]), and many applications can also been found
in the literature, e.g. [19-24].

Adaptive neural networks provide alternative approaches to non-
linear subspace learning and dimension reduction. Kohonen's self-
organizing map (SOM) [25] is an abstraction of retinotopic mapping
model. Its topology-preserving property is utilized to extract and vi-
sualize relative mutual relationships among the data, and thus has
been widely used for data clustering and visualization. For a more
natural and direct display of data structure, the visualization induced
SOM (ViSOM) [26] was proposed and further improved by a growing
variant, gViSOM [27]. Local distances are preserved on the map along
with the topology. It has been shown that ViSOM represents a metric
scaling of the input space and has comparable capability for highly
nonlinear manifold learning with other nonlinear PCA methods,
such as LLE and ISOMAP [27]. Typical applications of SOM-based
methods for face recognition can be found in [28,29,17].

Recently increasing effort and amount of the literature on nonlinear
subspace methods indeed demonstrate better capability of nonlinear
methods for capturing complex relationships of the data. However, it
inevitably deludes to a “common sense” that nonlinear methods are al-
ways preferable for data representation [7-10,30,16,31,26,27]. Howev-
er, most experiments with these nonlinear projections in the literature
were often conducted on artificial data sets lying on an assumed low-
dimensional, continuous and smooth subspace embedded in high-
dimensional space, and their underlying intrinsic subspaces or mani-
folds are well sampled. No comprehensive evaluation on practical
data such as faces has been conducted. Goldberg et al. [ 16] have already
pointed out that the use of manifold learning on arbitrary or noisy data
can be problematic. Structures of real-world data sets can be far more
complicated than those assumed tidy toy data sets. It is unrealistic to
imagine them to have uniform structured distributions. Murphy-
Chutorian and Trivedi [32] have shown that, for head pose estimation,
head pose data sets of multiple subjects (persons) with different
poses or other factors (e.g. lighting) are hard to lie on a single subspace,
and even variant poses for a single subject sampled from some contin-
uous measurement device may also lead disjoint distributions.

In this paper, we present an extensive evaluation of linear and non-
linear dimensionality reduction and subspace methods on facial images.
We demonstrate that linear and nonlinear subspace methods often
yield similar performances in face recognition and nonlinear methods
lose their superiorities on data sets when there is discontinuity in the
subspace. Extensive experiments on a range of data sets were con-
ducted to elucidate our observations. Though there has been previous
work on applying some of these linear and nonlinear methods for
some representation tasks and the results seem to favor nonlinear
methods [23,21,33,20,28,29], their performance often vary with train-
ing/test schemes, preprocessing methods and choices of classifiers.
Therefore, an objective evaluation on the properties of these linear
and nonlinear methods is essential to best utilizing these advanced
techniques in practical face recognition systems. Here we present a
thorough investigation and a comprehensive comparison, together
with statistical tests of the results. Finally a nonlinear analysis and sub-
sequent discussions on the complexity of real-world face data are pre-
sented to further explain the findings.

The remainder of this paper is structured as follows: Section 2
briefly reviews various linear and nonlinear dimensionality reduc-
tion and subspace learning methods. Experiments on two-
dimensional representation of real-world data sets and results of
face recognition on various benchmark data sets are reported in
Section 3, together with significance tests on these results. A nonli-
nearity analysis and discussion are given in Section 4, followed by
conclusions in Section 5.

2. Dimensionality reduction methods

In this section, various dimension reduction methods are briefly
reviewed. Their role in face representation and recognition will be de-
scribed in Section 3. There are three main categories based on eigen
decomposition, multidimensional scaling and self-organizing map,
respectively. PCA, KPCA, LLE, Hessian LLE (HLLE), LPP, OLPP and spec-
tral clustering belong to the first category, while ISOMAP and CCA the
second, and SOM, ViSOM and gViSOM the third.

2.1. PCA-based methods

PCA is a classical linear projection aiming at finding ordered or-
thogonal directions of a data set. After discarding a (large) number
of minor components, a (small) number of principal components
are retained, which are also known as eigenfaces in face recognition.
The data (or a face image) is effectively represented by these princi-
pal components (or eigen faces). It minimizes the L, norm of residual
(or error) as

N
min’y Ix,—Vy;I* stV'V=I (1)
i=1

where x;<R" and yiERd, are the i-th sample in the data and projected
spaces, respectively. This problem is commonly solved as a linear
least-square problem by eigen-decomposition or singular value de-
composition (SVD), yielding a group of orthogonal basis vectors,
V = {v,}{_ erR™ whose eigenvalues are the largest and in descend-
ing order.

The projection from the original n-dimensional data space to the
reduced d-dimensional subspace is presented as,

vi=V'x, @
and the reconstruction of x; is
X;=W'x,. 3)

In holistic face recognition, raw face images are projected onto a d-
dimensional subspace first, and then classification is conducted in the
subspace.

A variant of PCA in image processing is the block-based PCA
(BPCA) [34], which operates on local blocks (e.g. 5x5=25) rather
than entire images. An image is divided into a number of sub-
blocks, and then a PCA is applied on all of these blocks of each
image to reduce the block size (e.g. to 2).

Two-dimensional PCA (2DPCA) [35] is another variant of PCA
operating on 2D image matrices rather than vectors. The image scat-
ter matrix (G) is calculated directly from the image matrices, X™, as
follows, from which eigenvectors are computed,

1d — —
G:NZ (x{”—x;")[(x{”—xr) (4)
i=1
xTI—1 X" 5
i *Nz]:xi . (5)
=

2.2. Kernel PCA

Kernel-PCA [7] is a nonlinear extension of PCA. A data set is first
projected onto a high-dimensional feature space, F, by using a hypo-
thetic nonlinear function, ®(X). Then the standard PCA is performed
in the F space via a kernel function, k(X,Y) = (®(X) - &(Y)). The co-
variance matrix K is computed via the kernel function, Eq. (6), and
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the projection of an image x onto a subspace of F is given in Eq. (7),
assuming that the data is centered,

K == k(x,-,xj) = (q)(xz')'cD(Xj)) (6)
(Ve b(X) = )z "’

where v, and oy, k=1,2,...,d, are the k-th eigenvector in F space or
the k-th eigenvector of the covariance matrix K, respectively. z is
the projected vector of the image to F, z; := k(x;,X) = (P(X;) P(X)),
i=1,2,...,N, x; is the i-th training image. The radial basis function is
a commonly used kernel function.

2.3.LLE

LLE [8] is another nonlinear manifold method and is able to map
high-dimensional nonlinear data onto a single global coordinate sys-
tem of lower dimensional subspace. A number of Kj,. nearest neigh-
bors are first defined for each data point, then the weight w; of a
data point x; from each of its neighbors x; is computed by minimizing
the cost function, E(®), Eq. (8). Finally the output vector y; is recon-
structed from w; by minimizing the embedding cost function, E(y),
Eq. (9),

E((J)) = ngn Z "X,'_ Z u),-jlelz (8)
i j

E(y) = min 2y, — 3 oy,i” 9)
i j

where 3_;w; = 1, and w;= 0 if data x; is not in the neighborhood of
X;. The reconstruction weights preserve the intrinsic geometric prop-
erties of local neighborhoods and also make the mapping invariant to
rotation, rescaling and translation. The optimal weights can be com-
puted in a closed form by solving a constraint least-square problem
of the cost function, Eq. (8), while the embedding vectors y; in
Eq. (9) are solved as an eigenvalue problem.

Further similar methods include HLLE [36], orthogonal neighbor-
hood preserving projection (ONPP) [37] and spectral clustering [38].
These subspace methods are defined on a local neighborhood and
transform global structure to local linear structures. That is, the man-
ifold is constructed on local (linear) graphs. These methods are close-
ly related and can be described under the regularization theory or
kernel methods. The difference mainly lies in defining the local recon-
struction or graph, either linearly as in LLE and HLLE or by orthogonal
constraint on the projection matrix as in ONPP.

24. LPP

LPP [11] computes a projection that preserves a certain affinity or
similarity graph constructed from input data. It defines the projected
data in the same form as PCA, y; = V'x;, but minimizes a different ob-
ject function which puts a heavy penalty on neighboring points x; and
x; if they are mapped far apart in the projected space,

N
min ) Sivix—vix I’ k=1,2,....d (10)
ij=1

ko

where §j; is the weight of the edge connecting points x; and X; in the
affinity graph. Heat Kernel and cosine model are two common ap-
proaches for computing the value of ¢j; in the input space, and
¢;i=0 if two points are not connected in a same neighborhood. LPP
uses this affinity graph to derive an optimal projection in an effort

to preserve the local structure of the data. The objective function
can be easily converted to

minleLXTv,( s.t. viXDXTv,< =1 (11)
Vk

whereL = D—{ is the graph Laplacian [11,39], and D is a diagonal ma-
trix with Dy = >_;{;;. Then the solution can be computed from the
generalized eigenvalue problem,

XLX'v;, = A XDXv,. (12)

The projection is onto eigenvectors, V = {v;,V,, ..., v4} that corre-
spond to the smallest d eigenvalues. LPP projection is similar with
Laplacian eigenmap described in [39]. Its orthogonal extension, refer-
eed as OLPP [12] adds an orthogonal constrain on the projection
V'V =1 to give a more discriminative mapping.

2.5. ISOMAP

ISOMAP [9] seeks an underlying manifold of a data set by comput-
ing the geodesic, manifold distances between all pairs of data points.
It first constructs a neighborhood graph over all data points by con-
necting each point to all its neighbors in the input space. Then it esti-
mates geodesic distances of all pairs of points by computing the
shortest path distances in the neighborhood graph (using the Floyd's
algorithm). Finally multidimensional scaling is applied to the Gram-
mian matrix to construct the embedding that best preserves the in-
trinsic geometry structure of the data.

2.6. CCA

CCA [10] is another method for nonlinear mapping. It detects the
intrinsic geometric properties of the data by preserving local distance
relationships via minimizing an error function defined as,

E=)% ¥ (1,-0,)°¢(0,.6,) (13)

i j#

where I;; and Oy are the Euclidean distances between points i and j in
n-dimensional data space and d-dimensional output space respec-
tively. (p(OU»,Gy) is a monotonically decreasing neighborhood func-
tion respecting to the distance in the projected space and is used for
preserving local topology and maintaining shorter distances than lon-
ger ones.

2.7. SOM

SOM [25] is an unsupervised learning algorithm that uses a set of
neurons ranged often in a 2-D lattice (e.g., 10x 10) to form a topolog-
ical mapping of the data. Each neuron has a weight vector of the input
dimensions. SOM learns topological structure of the input data by
updating the weights of the winner and its neighborhood when pre-
sented with an input x at time t, the weight of neuron [ is updated as,

Aw () = a(t)n(u, 1, () —wy (1)) (14)

where «(t) is the learning rate, monotonically decreasing with time t.
u denotes the winner neuron and [ the updating neuron. n)(u,1,t) is the
neighborhood function, which often uses a Gaussian form, 1(u,1,t) =
exp(—Illu—112/20(t)?), with o representing the radius of the neigh-
borhood. For dimension reduction and data visualization, high-
dimensional data are projected onto the grid or the nearest neurons
of the trained SOM. Then the data is represented by the 2D coordinate
of the neurons. The SOM can reveal ordinal relationships of the data.
However, it is unable to reproduce quantitative distances between
the data points on the reduced space.
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2.8. ViSOM and gViSOM

To seek a metric representation, the ViSOM [26] was proposed to
preserve local distances on the map along with the topology of the
data. The updating force in the SOM, as shown in Eq. (14), can be
decomposed as, [X(t) —w;(t)] = [X(t) —wy(t)] + [wy (t)—w(t)]. The sec-
ond term is the lateral contraction force as it moves the neighboring
neuron to the winner. In the ViSOM, the lateral contraction force is
regulated so as to maintain uniform inter-neuron distances locally
on the map. The update rule is [26],

Aw(t) = c(t)m(u, [, 6)[x(6) =W, (£)] + BIw, () —w; (1)) (15)

where 3= pu/Ad,;—1 is a simple form of constraint, p,; and d,; are
the distance of neurons u and [ in the input space and the distance
of their indexes on the map respectively, and A is a resolution param-
eter. The neighborhood function 7 is similar to that of SOM, with
neighborhood radius decreasing from an initially large value to a
final small value. The distance of two projected points on the map is
proportional to the distance of the two points in the input space,
making the scaling faithful and quantitatively measurable. The reso-
lution of the map can be enhanced by incorporating the local linear
projection (LLP) method [27],

llw, —w,, 112

x, =W, + mai(l {(X_‘N“).(‘N“_‘NU)’O} (16)

It has been shown that SOM-based algorithms with a pre-fixed
map size have difficulties to converge to highly nonlinear manifolds
[27]. For improving the convergence and capability of ViSOM, an in-
cremental or growing ViSOM (gViSOM) has been proposed. The de-
tails of the gViSOM algorithm can be found in [27].

3. Experiments and comparisons
3.1. Face data sets

The experiments were conducted on several publicly available
real-world face data sets: the single subject face data set used in [9],
the Olivetti Research Laboratory (ORL) data set [40], the Yale [2],
the AR [41] and the CMU PIE [42] data sets. Their details are listed
below:

« Single Person Face Database contains 698 face images of a single sub-
ject model. All images have the same size of 64 x 64, and are ren-
dered with continuous variations of pose and lighting direction.

* ORL Face Database consists of 40 subjects, 10 different face images
for each subject. Images are of the same size of 92x 112 and vary
(slightly) in terms of lighting conditions, facial expressions or facial
details.
Yale Face Database contains 165 face images of 15 subjects with size
of 243 x 320. Each subject has 11 images with variations in both ex-
pression and lighting condition.
AR Face Database consists of over 4000 color images of 126 subjects,
each having 26 facial images taken in two different sessions sepa-
rated by two weeks. Each session has 13 images with multiple var-
iations in expression, illumination and occlusion (sun glasses and/
or scarf). A subset of cropped faces (of size 165x 120) of 50 male
and 50 female subjects [19] was used. Eight faces (including neutral
expression, smile, angry and scream) of each subject were used in
the experiment.

CMU PIE Face Database has 41,368 face images of 68 subjects, each

subject consists of 13 different poses, 43 different illumination

conditions and 4 different expressions. A subset of cropped face im-
ages has been used in the literature [12], where images were man-
ually aligned to the same eye positions, cropped, and re-sized to
32x32. We used the first 34 subjects, each having 170 images
with five near frontal poses (C05, C07, C09, C27, C29) and under dif-
ferent illuminations and expressions, in total 5780 images, in the
experiment.

The magnitudes of pixel values of face images were rearranged to
[0 1] in all the experiments. For computational convenience, the ORL,
Yale and AR face images were re-sized to 56 x 46, 45x 60 and 55 x 40
respectively in the experiments of 2D representation and vector-based
face recognition, but were kept in their original sizes for the experiment
of block-based face recognition. The size of PIE faces remained as 32 x 32
in all the experiments.

3.2. 2D representation of face images

In this set of experiments, we investigated the capabilities of linear
and nonlinear subspace methods for feature representation. Raw face
images of the data sets were represented as vectors in their high-
dimensional input spaces. We compared the performances of various
subspace methods for projecting the high-dimensional face vectors
onto a 2D subspace.

In the single subject case, all images of the subject model were used.
In Fig. 1, the subspaces learned by LLE, ISOMAP and gViSOM in (c), (d)
and (f) seem to capture better intrinsic structure of the variances of
the data than other methods. The pose and lighting are changed
smoothly on these three projections. The projections of PCA, KPCA
and SOM, however, are more sensitive to lighting impact than pose var-
iation, leading to some degree of overlap for those with pose and light-
ing changes. Thus in these experiments most nonlinear methods seem
to outperform linear PCA in extracting low-dimensional representation
of the single subject.

In the multiple subject case, randomly selected ten subjects from
the ORL set, five from the Yale set and three from the PIE set were
used. The 2D representations of these face databases by PCA, KPCA,
LLE, ISOMAP, SOM and gViSOM methods are shown in Figs. 2-4. The
results presented are the typical projections of these methods. The
parameters of each method were chosen to its typical performance.
In the cases of the ORL and Yale sets, the projections of PCA bear sim-
ilar or comparable performances to nonlinear projections in the terms
of between-subject separation and within-subject compactness (ex-
clusive of SOM projection, in which faces of same subject do not clus-
ter metrically on the map). The nonlinear methods do not seem to be
particularly advantageous. In the case of the PIE set, where only three
subjects were used and each has a large number of images, the per-
formances of linear and nonlinear methods are analogous to those
in the case of the single subject. That is, each subject's variations in
lighting, pose and expression were captured relatively better by the
nonlinear methods. However, when a large number of subjects are
presented, the mapping becomes overlapped among subjects and
their variations.

In summary, in the single subject case, as the sampling rate is high,
the direction and pose vary gradually and smoothly. Nonlinear methods
seem able to capture better the variations and thus present better low-
dimensional manifolds of the data. While in the case of multiple sub-
jects, it is unlikely that all different subjects lie on a same low-
dimensional subspace when lighting and pose variations are present.
Furthermore, when different images of the same subjects were cap-
tured in different conditions, there may not be a continuous distribution
even for all the images from the same subject. Thus real face data sets
are unlikely to exist on a single manifold. In other words, their all possi-
ble variations cannot be smoothly represented by a single manifold ei-
ther linear or nonlinear.
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(a) PCA projection

(b) KPCA projection

(C) LLE projection

Fig. 1. 2D representations of face images of single subject with variable pose and lighting. The optimal parameters were: Ugq,s =4 for KPCA, Kjje =4, Kisonap=4 and Agyison=1.1.

3.3. Face recognition

In these experiments, the capabilities of various subspace methods as
feature representation for face recognition was investigated. In all imple-
mentations, the dimensions of raw face images were first reduced by one
of the subspace methods. Then classification was performed by one of the
commonly used classifiers described in the next few paragraphs. This is

(b) KPCA projection

the typical two-stage approach: data/feature reduction, followed by clas-
sification. The two processes are often independent for a variety of advan-
tages such as simple implementation and independent of data sets. Jointly
optimizing the data reduction and classification is also possible and may
lead to better performance. However, such optimization processes can
be complex and the resulting models and parameters are optimal to the
data set they are trained and may not be generalized to other data sets.

(a) PCA projection
Wy

(€) LLE projection

Fig. 2. 2D representations of ten subjects from the ORL set. The optimal parameters were: Ogqys =4 for KPCA, Kje = 10, Kisomap= 10 and Agvison = 0.06.
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(a) PCA projection

(b) KPCA projection

(€) LLE projection
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(d) ISOMAP projection

(e) som projection

(f) gViSOM projection
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L

Fig. 3. 2D representations of five subjects from the Yale set. The optimal parameters were: Ugqus =

Four commonly used classifiers were employed: the nearest-
neighbor (NN), soft k-NN [29], linear discriminant analysis (LDA) [2]
and support vector machine (SVM) [43]. The NN simply classifies a
test sample by finding the most similar example in the training set
and returning the class of that example. In the soft k-NN classifier,
each principal component outputs a confidence value, which gives
the degree of support for the component in every data representation,
and then the final decision is given by considering all of these confi-
dence values. The LDA, a widely used linear classifier, tries to find a
linear projection of the data set that minimizes within-class scatter
and maximizes between-class separation. The SVM is a nonlinear
method which separates data sets by constructing hyperplanes that

(a) PCA projection

(b) KPCA projection

4 for KPCA, Kye =12, Kisomap= 12 and Agyisom = 0.05.

maximize the margins between data classes. The SVM toolbox, avail-
able from [44], was used in the experiment.

For the ORL data set, the number of training images was varied
from three to six per subject and the remaining seven to four were
used for test. In total ten independent implementations with different
randomly chosen training/test images were carried out. The same
choices of training/test images were used by all the methods to en-
sure unbiased comparisons.

For the Yale data set, the methods were trained on ten faces and
tested on the remaining one of a subject each time. In each test, test
faces had the same facial expression or lighting condition. Eleven
implementations were conducted throughout the whole data set

(C) LLE projection

(e) SOM projection

..Eﬁﬁi

Hl

Fig. 4. 2D representations of three subjects from the PIE set. The optimal parameters were: Ogqus = 0.15 for KPCA, Kje = 16, Kisonap =16 and Agyisop = 0.05.
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corresponding to eleven different facial expressions and lighting
conditions.

On the AR data set, 600 faces of three expressions were used for
training and the remaining one expression (200 faces) for testing in
each implementation. Thus there were totally four implementations.

On the PIE data set, 100 faces from each subject were randomly se-
lected for training and the remaining 70 faces were used for testing in
each implementation. Like in the ORL cases, ten independent imple-
mentations were carried out for evaluating the performance.

The performances of all these subspace methods were investigat-
ed on the same classifier in each experiment and on the same number
of reduced dimension. In many cases, good performance of nonlinear
subspace methods heavily relies on the choice of their parameters.
The parameters of each method in the experiments were experimen-
tally chosen to yield the optimal result for that method. PCA, KPCA,
LLE, LPP, ISOMAP and CCA were implemented as vector-based sub-
space method, in which images are represented by single vectors;
while 2DPCA, BPCA and SOM-based methods were implemented in
the so-called sub-block based method [28,29,17], where an image is
represented by a number of sub-blocks.

The results (classification rates) are the mean results of these inde-
pendent implementations. The standard deviations are also calculated,
together with the significance t-test results (p-values) between the
best performer and the others.

Table 1

361

3.3.1. Vector-based subspace learning

Each face image was vectorized (2576, 2700, 2200 and 1024 di-
mensions for ORL, Yale, AR and PIE, respectively). Six methods, PCA,
KPCA, LPP, LLE, ISOMAP and CCA, were implemented to reduce the di-
mensions of the images. The classification was conducted by using the
NN, soft k-NN, LDA or SVM classifier. The Gaussian function was used
for the kernel reconstruction in the KPCA. Cosine weight model was
used in LPP for constructing affinity graph. For optimal parameter se-
lection, we varied the radius of the Gaussian function (Ogqus) for
KPCA, the size of neighborhood (Kj.) for LLE, the radius of neighbor-
hood (e;5,) for ISOMAP and the number of epochs (e.) for CCA in a
fixed number of reduced dimensions set empirically. The optimal
parameters used are: Ogqus=15, 30, 10, 20, Ky.=24, 36, 36, 84,
€iso=17, 30, 20, 25 and e., =30, 70, 10, 20, for ORL, Yale, AR and
PIE databases, respectively. The representative number of reduced di-
mensions (RDim) used for four databases are 50, 50, 140 and 100. The
resulting best classification rates of these methods are compiled in
Table 1. Note that the same number of reduced dimension was used
by all the methods in each data set and these numbers were selected
by trading off between information (high classification rate) and
compactness (few dimensions) for representation.

The results in Table 1 show that similar performances were obtained
by these subspace methods with various classifiers (with the best clas-
sification rates marked in bold in each case) on the ORL except LPP,

Correct classification rates of vector-based subspace methods on ORL, Yale, AR and PIE databases. Mean rates of independent runs, standard deviations and t-test p-values (in

brackets) between the best performer and the others.

Classification rate (in %) 4 standard deviation (p-value)

PCA KPCA LPP LLE ISOMAP CCA
Training faces (#) ORL database
NN classifier
3 87.074+2.50 (0.12) 86.7142.27 (0.063) 86.2542.57 (0.035) 88.36+2.33 (- -) 88.32+£2.99 (0.49) 87.464+2.69 (0.22)
4 92.21+1.88 (0.44) 91.63+1.79 (0.19) 90.33 £ 2.05 (0.015) 92.29 +1.33 (0.48) 92.29+1.83 (0.48) 92.33+1.72 (- -)
5 94.45+1.27 (- -) 94.354+1.28 (0.43) 91.65+2.25 (14e—3) 94.154+1.15 (0.29) 94.20 + 1.46 (0.34) 94.404+1.54 (0.47)
6 96.44 +0.64 (0.37) 96.44+0.64 (0.37) 92.81+0.94 (9.7e—9)  95.8141.06 (0.051) 96.06 +0.85 (0.11) 96.56 +0.88 (- -)
Soft kNN classifier
3 85.714+1.79 (5.9e—3) 85.93+2.31(0.015) 85.114+2.61 (42e—3) 88.46+2.49 (- -) 87.11+£2.75 (0.13) 86.7142.50 (0.067)
4 91.17 £1.67 (0.024) 90.794+1.88 (0.012) 89424222 (4.7¢e—4) 92.58+1.27 (- -) 91.25+1.50 (0.023) 91.4642.04 (0.081)
5 93.60 +2.18 (0.25) 93.75+1.60 (0.27) 90.80+2.54 (6.9e—4) 94.15+1.25 (- -) 93.90 + 1.50 (0.35) 93.30+1.38 (0.083)
6 95.19 +£1.06 (0.022) 95.944+0.94 (0.26) 91.81+£1.05 (1.2e—8) 96.25+1.13 (- -) 96.19+£0.94 (0.45) 95.2540.68 (0.014)
LDA classifier
3 87.25+3.01 (0.01) 88.144+3.27 (0.052) 86.504+2.50 (1.1e—3)  90.32+2.32 (- -) 87.25+2.73 (7.3e—3) 85.04+2.57 (1.7e—5)
4 93.63+1.23 (- -) 92.88+1.29 (0.10) 90.46 +2.05 (2.5e—4)  93.63 4 1.46 (0.50) 93.04 +1.98 (0.22) 92.2941.68 (0.029)
5 96.15+1.15 (- -) 95.55+1.35 (0.15) 91.60+1.78 (8.7e—7)  95.1540.95 (0.024) 94.60 +1.80 (0.018) 94.154+2.15 (0.011)
6 97.56+1.19 (- -) 97.44+0.69 (0.39) 93.00+1.03 (1.1e—8)  96.9440.95 (0.11) 96.31+1.69 (0.037) 96.8141.23 (0.091)
SVM classifier
3 89.96 +2.89 (0.17) 89.96+2.89 (0.17) 85.92+3.11 (4.8e—4)  90.07 £2.57 (0.18) 91.25+3.00 (- -) 88.934+3.21 (0.058)
4 94.96 + 1.47 (0.24) 94.88 +1.40 (0.20) 90.17 £2.23 (2.5e—6)  94.4641.68 (0.093) 95.42+142 (- -) 94.2541.43 (0.042)
5 96.70 +1.42 (0.43) 96.75+1.10 (0.46) 91.65+2.39 (3.6e—6)  96.154+1.05 (0.10) 96.80+1.18 (- -) 95.45+1.25 (0.012)
6 97.81+0.56 (- -) 97.69+£0.78 (0.35) 92.63+0.75 (1.8e—13) 97.1940.88 (0.040) 97.69+0.94 (0.37) 97.004+0.63 (3.6e—3)
Classifier Yale database
NN 82.42+17.08 (0.15) 82.42+17.08 (0.15) 89.70 +14.44 (- -) 85.45+15.32 (0.26) 83.64+15.32 (0.18) 83.03+18.07 (0.17)
soft kNN 84.85+15.98 (0.22) 84.24+13.22 (0.17) 89.70 +13.22 (- -) 84.85+15.10 (0.22) 84.85+14.77 (0.21) 83.644+15.32 (0.17)
LDA 87.27 £17.19 (0.40) 86.67+18.18 (0.37) 89.09 +1543 (- -) 86.06 +17.96 (0.34) 84.85+19.94 (0.29) 85.45420.17 (0.32)
SVM 84.24+18.51 (0.26) 87.27 +£15.98 (0.39) 89.09+15.43 (- -) 86.67 +18.18 (0.37) 87.88+13.99 (0.42) 86.67 £16.97 (0.36)
Classifier AR database
NN 90.75+7.38 (0.28) 90.63+7.31 (0.27) 90.00 +12.50 (0.31) 93.75+6.63 (- -) 90.63 +7.81 (0.28) 89.38+8.44 (0.22)
soft kNN 89.00+£9.75 (0.24) 89.37 +£9.69 (0.25) 88.75+13.88 (0.28) 93.50+6.75 (- -) 90.25+9.13 (0.29) 87.63+11.31 (0.20)
LDA 93.13 +£8.06 (0.38) 93.00+8.50 (0.37) 90.00 +12.75 (0.26) 94.75+5.88 (- -) 91.63 +£10.56 (0.31) 84.254+17.38 (0.15)
SVM 93.63 +£7.31 (0.39) 93.88+7.19 (0.41) 90.25+12.38 (0.25) 95.00 +5.75 (- -) 94.50 +6.75 (0.46) 92.75+8.63 (0.34)
Classifier PIE Database
NN 90.13+£0.51 (0.0) 89.5040.58 (0.0) 95.76 +:0.27 (- -) 94.28 +£0.44 (1.2e—8)  90.2240.55 (0.0) 92.114+0.45 (2.8e-15)
soft kNN 95.70+0.27 (- -) 95.004+0.46 (2.8e—4) 95.48 +0.27 (0.42) 94.24+0.42 (9.1e—9)  95.60+0.33 (0.23) 91.8440.49 (3.2e—15)
LDA 97.40 +0.21 (0.041) 97.554+0.15 (- -) 96.03+0.31 (9.7e—12) 94.774+0.43 (3.0e—14) 97.37+0.15 (74e—3) 96.96+0.11 (2.5e—9)
SVM 97.31+£0.17 (1.0e—7) 97.50+£0.20 (8.5e—5) 96.05+0.28 (8.1e—14) 95.18+0.36 (2.9e—15) 97.86+:0.14 (- -) 97.73+0.18 (0.044)
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which has poor performance. PCA yields similar or comparable perfor-
mance to most of the nonlinear methods. While the performances
vary across the subspace methods and classifiers used, the differences
among them in most case on these two data sets are small and most
are statistically insignificant — as indicated by the p-values (in brackets).
Only in one case on the ORL data set with three training images and the
soft k-NN classifier, significant improvement (p<0.01, marked in bold)
can be claimed, where PCA is the significantly worst (p=5.9e —3),
while other nonlinear methods are indifferent from the best performing
LLE. But with the LDA classifier, PCA is not overwhelmingly inferior
(p=0.01), while ISOMAP and CCA are (p=7.3e—3,p=1.7e —5).

LPP and LLE consistently have the highest classification rates on
the Yale and AR data set respectively. However, the margins between
the best classification rates and others are small and statistically in-
significant to make a general claim of its superiority. PCA again has
similar performance with most of other nonlinear methods.

On the PIE database, though the performance of these methods in
many cases are statistically significant compared with corresponding
best rates, the results obtained are varied considerably between clas-
sifiers. PCA has the highest rate by using the softk-NN while LPP,
KPCA and ISOMAP performed best in NN, LDA and SVM classifiers, re-
spectively. The rates of PCA in NN and SVM are statistically worse
than the methods of top performance, but they are still comparable
or better than some other nonlinear methods. Again, it is difficult to
identify a single method which in general has best performance in
this database.

From Table 1, it can be easily observed that the performance of
nonlinear methods fluctuate largely among different databases. For
example, LPP has the best performance in the Yale database, but its
classification rates are the lowest in the ORL data set. While PCA pre-
sents much more stable performance than the nonlinear methods.

On computational complexity, linear PCA for extracting a d-
dimensional subspace from a data set of N points in a n-dimensional
input space is only O(dnN) by computing the first d eigenvectors
via SVD decomposition of data matrix, DER™N, d < n. However,
the computational cost of nonlinear methods, for instance LLE, is
0(nN? + nKz.N + dN?), where 0(nN?) for finding K. nearest neighbors
for every point, O(nk.N) for computing the weight matrix via solving
a constrained least square problem and O(dN?) for computing the d-
dimensional output vectors by solving a eigenvector problem. In
ISOMAP, the total computation is O(nN? + N>+ dN?), for constructing
neighborhood graph, computing shortest paths by Floyd's algorithm
and constructing d-dimensional embedding, respectively. As to be ana-
lyzed in Section 4, in most subspace learning, the dimensions (d) of the
learned subspace are often far less than the numbers of data points,
N (e.g. d=50 and N=400 in ORL). Hence, the computation of PCA is
even far lighter than the first step of LLE or ISOMAP algorithm for con-
structing their neighborhood graphs, 0(dnN) << 0(nN?), while the com-
putation of the last two steps of LLE and ISOMAP further increase
dramatically with the number of training data points. In addition, the
performance of these nonlinear methods varies with the choices of

(b) som

(a) BPCA

their parameters and in some case the variations are great. A good per-
formance can only be achieved after certain parameter optimization
processes, which are always time-consuming along with the high com-
putational cost of the algorithms themselves.

3.3.2. Block-based subspace learning

2DPCA, BPCA and SOM-based methods were implemented as block-
based subspaces for dimensionality reduction. The ORL faces are used
here as examples for describing the processing of the block-based sub-
space learning. Each image was first locally sampled by moving a win-
dow of size 5x 5 (block size, Spy) over the entire image by shifting 4
pixels (block distance) each time, giving 23 x 28 =644 blocks in total.
That is, each face image was represented by a matrix having 644 25-
dimensional vectors. These 25-dimensional vectors were used as the
input for SOM-based methods. The details of the training algorithms
are described in Section 2. After training, all 25-dimensional vectors in
each image were passed through the trained map, and represented by
the 2-dimensional index values of the corresponding winners on the
map. Thereby, from the trained map, each face image generates two
feature faces, each being reconstructed from one of the two indices, as
shown in Fig. 5. These feature faces were used for the classification.
For example, each feature face of an ORL face is of 23x28 in size,
which resembles a reduced face image. In BPCA, each image block, 25-
dimensional vector, of a face was projected onto 2-dimensional sub-
space, providing similarly two feature faces. 2DPCA was implemented
directly on raw face image matrix, and each face was represented by
a matrix with reduced number of columns (e.g. RD24pcq =5 in the ORL
data set with reduced dimensions of 92 x5=410). Finally, classifica-
tion, conducted on these face representations, was performed by the
NN, soft k-NN and SVM classifiers.

The parameter selection for block-based methods was also con-
ducted experimentally similar to the previous case. The 2DPCA used
the numbers of reduced columns (RD2gpcq) from 3 to 40, and the opti-
mal parameters were set as: RDygpca =5, 7, 13, 15 for the ORL, Yale,
AR and PIE databases, respectively. SOM-based methods varied the
map size (Msom) from 5x5 to 50x 50; ViSOM and gViSOM also varied
the value of resolution parameter (A, defined in Section 2.8). The opti-
mal parameters were set to Mso, =30%30, 13x 13, 18x 18, 15x 15,
Avisom=0.35, 0.90, 0.50, 0.18 and Agyisom =0.48, 0.65, 0.56, 0.40, for
the ORL, Yale, AR and PIE databases, respectively. In these block-based
methods (excluding 2DPCA), the number of retained dimensions
(RDpy) is proportional to the total numbers of sub-blocks in an image
which is in inverse ratio to the size of sub-block (Spy x Spi), and it is
computed as

RDyy = ceil(sN"’W ) X ceil( N“”1> x 2 (17)

bk — 1 Sblk -

where ceil(x) returns a minimum integer that is equal or larger than x.
Nyow and N, denote the height and width of an image. In the ORL

(c) visom (d) gvisom

Fig. 5. Examples of feature faces (top) and projections of trained maps (bottom). Left and right feature faces correspond to the x- and y-axes of the projection.
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Table 2

Correct classification rates of block-based subspace methods on ORL, Yale, AR and PIE databases. Mean rates of independent runs, standard deviations and t-test p-values (in

brackets) between the best performer and the others.

Classification rate (in %) 4 standard deviation (p-value)

2DPCA BPCA SOM ViSOM gViSOM
Training faces (#) ORL database
NN classifier
3 89.17+2.99 (- -) 86.04 +2.46 (0.010) 86.89 +2.89 (0.050) 88.8642.43 (0.40) 88.64 +2.64 (0.34)
4 93.67+1.50 (- -) 90.71+£1.63 (2.6e—4) 91.45+1.75 (3.5e—3) 93.294+1.54 (0.29) 92.96 +1.72 (0.17)
5 95.65+1.35 (- -) 92.75+1.10 (3.0e—5) 93.35+1.28 (5.2e—4) 95.40 4 1.20 (0.33) 95.10+1.22 (0.18)
6 97.12+0.81 (0.49) 93.83+£0.60 (1.3e—10) 95.00+£0.75 (9.1e—7) 97.134+0.58 (- -) 96.75 £ 0.65 (0.092)
Soft kNN classifier
3 90.93 +2.86 (0.051) 89.18 £2.99 (3.7e—3) 92.36 +2.49 (0.26) 93.04+2.93 (0.47) 93.144+2.87 (- -)
4 94.63+1.13 (1.4e—3) 93.71+£1.46 (1.3e—4) 95.754+1.33 (0.10) 96.50 +1.17 (0.47) 96.54+1.32 (- -)
5 96.35+1.15 (24e—3) 94.95+0.67 (1.8e—7) 97.00 +1.10 (0.038) 97.404+0.84 (0.13) 97.854+091 (- -)
6 97.81+0.69 (1.7e—4) 96.38 +£1.13 (4.1e—6) 98.31+0.73 (7.4e—3) 98.94+0.48 (0.21) 99.16+0.68 (- -)
SVM classifier
3 90.14 +3.40 (0.29) 88.75+3.61 (0.082) 89.61+2.96 (0.17) 90.57 4 3.46 (0.40) 90.96+3.18 (- -)
4 94.54+1.62 (0.20) 93.83+1.83 (0.053) 94.08 +2.07 (0.10) 95.04 +2.20 (0.43) 95.21+1.79 (- -)
5 96.15+1.45 (0.14) 95.85+1.28 (0.051) 96.00 +1.60 (0.11) 96.60 4 1.48 (0.35) 96.85+1.31 (- -)
6 97.38 +0.88 (0.086) 97.25 +.88 (0.044) 97.38 £ 0.90 (0.089) 97.65+0.75 (0.24) 97.874+0.63 (- -)
Classifier Yale database
NN 85.45+16.52 (0.43) 83.03 +18.62 (0.32) 84.24 +18.51 (0.38) 83.64 +16.86 (0.34) 86.67+15.76 (- -)
soft kNN 84.85+18.40 (0.39) 85.45+15.10 (0.35) 86.06 +15.43 (0.39) 87.88+12.56 (- -) 87.27 £12.56 (0.46)
SVM 86.67 +18.18 (0.38) 84.85+21.16 (0.31) 88.48+-19.17 (0.47) 89.09 +15.21 (- -) 87.27+17.19 (0.40)
Classifier AR database
NN 91.38 +7.44 (0.086) 91.13+7.81 (0.081) 95.37+4.69 (- -) 92.13+7.06 (0.12) 92.00+7.00 (0.11)
soft kNN 95.63 +3.81 (0.013) 97.88 +1.44 (0.043) 98.75+1.13 (0.39) 98.75+0.88 (0.38) 98.884+0.94 (- -)
N2 94.00 +7.00 (0.37) 94.50 £ 6.25 (0.43) 95.00 + 6.25 (0.50) 95.00+5.75 (- -) 95.00 + 6.00 (0.50)
Classifier PIE database
NN 91.26+0.48 (- -) 79.98 +0.85 (0.0) 87.50+£0.72 (1.3e—11) 87.75+0.70 (3.0e—11) 86.00 £ 0.55 (1.4e—15)
soft kNN 93.58+0.48 (- -) 79.38 £ 0.85 (0.0) 87.64+0.42 (0.0) 85.12+0.58 (0.0) 85.14+0.42 (0.0)
SVM 97.99+0.14 (- -) 94.04 +0.42 (0.0) 93.8240.52 (4.4e—16) 97.23+0.29 (2.3e—7) 96.63 +0.41 (3.0e—9)

case, the reduced dimensions by these methods are still large,
23x28x2=1288.

The size of sub-blocks varied from 4 to 21, and Sy, =5 was found
optimal for these databases. The corresponding classification results
are shown in Table 2. Again, these results are the mean rates, stan-
dard deviations and significance t-test p-values.

It can be seen that SOM-based methods perform better than
PCA-based methods in most cases. Table 2 shows that 2DPCA is
only better with the NN classifier with five training images or less
on the ORL set, while ViSOM or gViSOM have the best performance
on the remaining ORL cases and all cases of the Yale set. On the ORL,
gViSOM based on soft k-NN classifier considerably outperformed
2DPCA, BPCA and SOM methods in term of classification rates,
reaching as high as 99.16% in the case of six training faces per sub-
ject. The p-values indicate that in these cases, the ViSOM or gViSOM
are significantly better. But the improvements of ViSOM/gViSOM on
the Yale set are not significant over the other methods. For the AR
database, SOM has comparable performance with ViSOM/gViSOM,
though the differences among various methods are not significant
enough. 2DPCA performs significantly better than other methods
on the PIE database, while the rates of BPCA are significantly
lower than SOM-based methods.

In summary, in most cases, ViSOM-based methods have shown
their superiority for feature extraction. This can also be observed
from their feature faces presented in Fig. 5, where the feature images
projected by the ViSOM/gViSOM resemble better the original image
than SOM or PCA-based methods due to its metric preserving proper-
ty. However, the performance differences are small or marginal in
many cases.

3.3.3. Discussions

For performance comparison between vector-based and block-
based subspace methods, one can see that the block-based methods
seem to perform marginally better than the vector-based methods
in the term of classification rates, where considerable improvements
were achieved with the soft k-NN classifier on the ORL and AR data
sets, though they are not distinctive in the NN and SVM classifier
cases. However, the vector-based methods require much smaller
numbers of reduced dimensions (e.g. only 50, 50, 140 and 100
retained dimensions for ORL, Yale, AR and PIE faces respectively).
While the block-based methods seem to capture better face features
by using local sampling, but they requires larger numbers of retained
dimensions (e.g. 1288, 9760, 2520 and 128 dimensions for the ORL,
Yale, AR and PIE data respectively, computed by Eq. (17)). In addition,
large numbers of retained dimensions of the block-based methods
can cause singularity problem when applying LDA [45-48], as the
number of reduced dimensions may be greater than the numbers of
face images. From the extensive experiments and nonlinear analysis
in Section 4, one observation can be reached is that the numbers of
reduced dimensions used by vector-based methods are mainly deter-
mined by the total numbers of training data, while these numbers in
block-based methods largely depend on the sizes of face images.

For computation, SOM-based methods have the complexity of
O(Ms,mnN) for both training and mapping input vectors onto the
trained map. Mo, is the total number of notes in SOM-based maps.
This computational cost is similar or a slightly higher than that of linear
PCA. ViSOM and gVISOM have a few times higher computational cost
than the SOM. An important virtue of SOM-based methods is that
they work in adaptive fashion for updating the weights to an
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approximated solution, which can be easily applied for online learning
model where data is presented sequentially. The PCA-based methods
can only operate in a batch mode.

4. Nonlinearity analysis

The nonlinear analysis in this section only discusses on the holistic
representation of face data, as implemented by the vector-based sub-
space methods. Block-based subspace learning using component-
based features, represents a single face as multiple input points
(each facial component or block corresponds to a point), which lie
in different locations with large distances between them. Thus non-
linear analysis of the structure of these component-based data cannot
reveal the true underlying structure of face data and is completely dif-
ferent with holistic representation.

It is obvious that a data set containing N data points is linear in an
N —1 or higher dimensional space or subspace. In the ORL, Yale and
AR face databases, the dimension of face data is much greater than
the number of images. Thus face data are completely linear in their
input spaces. For example, ORL data set containing 400 face images
is linear in 399 or higher dimensional subspaces. However, are they
still linear in a further reduced subspace, such as in a 50-
dimensional subspace used in previous experiments? If not, how non-
linear are they? A PCA-based method is used to measure the degree of
nonlinearity of data. The nonlinearity rate (NLR) can be computed as
[14],

d n
NIR =1=> "N/ > N\ (18)
k=1 i=1

where A, is the largest kth eigenvaluse of the scatter matrix
S=Y N, (x—%X)(x—X"), x; is a data point in the n-dimensional
input space and X is the mean vector of total data points (the number
of data points is N). NLR is the nonlinearity rate computed in a d-
dimensional subspace.

This nonlinearity measure has been tested on several artificial data
sets and it is found that a data set has high degree of nonlinearity
when the value of NRL is higher than 0.3. The nonlinearities of the
ORL (400 faces), Yale (165 faces), AR (800 faces) and PIE (5780
faces) in reduced subspaces with dimensions varied from 5 to 200
are plotted in Fig. 6. The NLR values show that the ORL face data has
higher degree of nonlinearity than the Yale, AR and PIE faces in the
subspaces with same numbers of dimensions. Note, though the PIE
set has a much larger number of images than other databases, its
NLR values are lower due to smaller variations in the images and
much smaller size. The NLR values of the ORL, AR, Yale and PIE data
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sets in 50-dimensional subspaces are about 0.18, 0.14, 0.05 and 0.05
respectively. The NLR of all data sets becomes 0.1 or lower in higher
than 100-dimensional subspace, indicating that these data sets have
low degrees of nonlinearity in the reduced subspaces (i.e. are fairly
linearly distributed). It also explains why nonlinear methods have
similar performance to PCA in these subspaces.

From our extensive experiments on vector-based face recognition
with various reduced dimensions in the ORL, Yale and AR databases
shown in Fig. 7, three observations can be drawn. First, the perfor-
mance of all methods increases in general with the retained dimen-
sions, as lower nonlinearities lead to better performance. Second,
PCA yields reasonable performances at reduced dimensions of as
low as 40 on the ORL and Yale (with NLRs of 0.21 and 0.06, respective-
ly), and of 80 on the AR (with NLR of 0.10). With the increase in re-
duced dimensions (decrease in nonlinearity), all methods have
stable performance with the NN classifier, while PCA yields similar
or comparable performance to those nonlinear methods in most
cases. Third, the performances of all methods deteriorate in highly re-
duced subspaces or very low dimensions (thus highly nonlinear). For
example, on the ORL data set, all methods have low classification
rates in the subspaces of less than 20 dimensions, of which the NLR
values are higher than 0.3. In the viewpoint of feature extraction, a
compact yet informative representation of facial images is desirable,
while the representation should also lie in subspaces having low de-
gree of nonlinearity where dimensionality reduction methods, linear
or nonlinear, can perform effectively.

5. Summary and conclusions

In this paper, we investigated the unsupervised linear and nonlinear
subspace or dimensionality reduction methods for facial image repre-
sentation and recognition. Their performances have been systemically
evaluated and compared on synthetical data and a range of real-world
facial image data sets independent on subsequent classification. The
main findings are summarized below.

Linear vs nonlinear: nonlinear methods have their flexibility in
learning the structure of a continuous and smooth data set with a
large number of samples, which lies in a single subspace embedding
into a high-dimensional input space. But they fail to consistently out-
perform linear methods on real-world data sets having more compli-
cated distributions, such as multi-subspace, discrete distributions and
sampling effects. In a subspace of low nonlinearity, similar or compa-
rable performance can be expected from either linear or nonlinear
methods.

Vector-based vs block-based: block-based subspace methods have
their advantages for feature representation as they capture more fea-
tures than vector-based methods by using local block sampling, and

NLRs on ORL, Yale, AR and PIE databases
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Fig. 6. NLR values of ORL, Yale and AR face databases.
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metric preserving mapping (e.g. ViSOM) further improves such
performance. However, block-based methods often require more
retained dimensions than vector-based methods; and this increases
computational costs and storages.

PCA-based vs adaptive neural networks: PCA/eigen-decomposition

based methods can be formulated as a closed-form optimization prob-
lem where a global solution is guaranteed. While adaptive neural net-
works often achieve an approximated solution by updating their free
parameters or weights iteratively via minimizing a locally set cost func-
tion, and usually no unique solution can be guaranteed. However,
eigen-based methods are not adaptive and thus unsuitable for cases
where online learning is required.

The main aim of the work was to comprehensively investigate the

performance of linear and nonlinear dimensionality reduction methods
for face representation and recognition. Nonlinear subspace methods
can easily demonstrate their virtue on artificial nonlinear data. On
real-world facial image data, the difficulty stems from the existence of
multiple subjects, limited number of training samples and great vari-
ability in individual appearance, further coupled with variations in
lighting, expression and background. Thus single nonlinear subspace
or manifold struggles to provide a more effective, convincing alternative
to the simple, efficient linear PCA for representing and classifying these
complex data, even with much added computational expenses.
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