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Abstract

3D Shape similarity from video is a challenging problem lying at the heart

of many primary research areas in computer graphics and computer vision

applications. In this paper, we address within a new framework the problem

of 3D shape representation and shape similarity in human video sequences.

Our shape representation is formulated using Extremal Human Curve (EHC)

descriptor extracted from the body surface. It allows taking benefits from

Riemannian geometry in the open curve shape space and therefore computing

statistics on it. It also allows subject pose comparison regardless of geometri-

cal transformations and elastic surface change. Shape similarity is performed

by an efficient method which takes advantage of a compact EHC representa-

tion in open curve shape space and an elastic distance measure. Thanks to

these main assets, several important exploitations of the human action analy-

sis are performed: shape similarity computation, video sequence comparison,

video segmentation, video clustering, summarization and motion retrieval.
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Experiments on both synthetic and real 3D human video sequences show

that our approach provides an accurate static and temporal shape similarity

for pose retrieval in video, compared with the state-of-the-art approaches.

Moreover, local 3D video retrieval is performed using motion segmentation

and dynamic time warping (DTW) algorithm in the feature vector space.

The obtained results are promising and show the potential of this approach.

Keywords: Motion analysis, shape similarity, 3D video retrieval, 3D

human action.

1. Introduction1

While human analysis in 2D image and video has received a great interest2

during the last two decades, 3D human body is still a little explored field.3

Relatively few authors have so far reported works on static analysis of 3D4

human body, but even fewer on 3D human video analysis.5

Parallel to this, 3D video sequences of human motion are more and more6

available. In fact, their acquisition by multiple view reconstruction systems7

or animation and synthesis approaches [1, 2] received a considerable interest8

over the past decade, following the pioneering work of Kanade [3].9

Most of the recent research topics on 3D video focus mainly on perfor-10

mance, quality improvements and compression methods [4, 2, 5]. Conse-11

quently, 3D videos are yet mainly used for display. However, the acquisition12

of long sequences produces massive amounts of data which necessitates ef-13

ficient schemes for navigating, browsing, searching, and viewing video data.14

Hence, we need to develop an efficient and effective descriptor to represent15

body shape and pose for shape retrieval and video clustering. We also need16

2



a motion retrieval system to look for relevant information quickly.17

3D Human body shape similarity is an important area, recently attracted18

more attention in the field of human-computer interface (HCI) and computer19

graphics, with many related research studies. Among these, research started20

with 3D features have been applied for body pose estimation and 3D video21

analysis.22

In this paper, a unified framework providing several processing modules is23

presented. All viewed within a duality pose/motion approach as summarized24

in Figure 1 bellow.25

Figure 1: Overview of 3D human motion framework.

We first focus on the analysis of human pose and we propose a novel 3D26
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human curve-based shape descriptor called Extremal Human Curves (EHC).27

This descriptor, extracted on body surface, is based on extremal features28

and geodesics between them. Every 3D mesh is represented by a collection29

of these open curves. The mesh to mesh comparison is then performed in30

a Riemannian shape space using an elastic metric between each two corre-31

spondent human curves.32

At this level, our ultimate goal is to be able to perform reliable reduced33

representation based on geodesic curves for shape and pose similarity metric.34

Invariant to pose changes, our EHC descriptor allows pose (and motion)35

comparison of subjects regardless of translation, rotation and scaling. Such36

descriptor can be employed not only in pose retrieval for video annotation and37

concatenation but also in motion retrieval, clustering and activity analysis.38

Second, we are interested in the task of video segmentation and compar-39

ison between motion segments for video retrieval. As a 3D video of human40

motion consists of a stream of 3D models, we assume that EHC features41

are extracted from all 3D shape frames of the sequence, which is further42

segmented. For direct comparison of video sequences, the motion segmen-43

tation can play an important role in the dynamic matching by segmenting44

automatically the continuous 3D video data into small units describing basic45

movements, called clips.46

For the segmentation of these units, an analysis of minima on motion47

vector is performed using the metric employed to compare EHC representa-48

tions. Finally, the motion retrieval is achieved thanks to the dynamic time49

warping (DTW) algorithm in the feature vector space.50

The contributions of this paper are:51
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• The proposed surface-based shape descriptor called EHC provides a52

compact representation of the shape. Thereby, reducing both the re-53

quired space for storage and the time for comparison. As our descriptor54

is composed of a collection of local human curves, the EHC can find a55

number of useful applications lying on body part analysis.56

• The use of video segmentation allows a semantic analysis of the human57

motion, within a hierarchical structure of three levels ”video-clip-pose”.58

• The modeling of curves in the shape space manifold allows calculating59

statistics on shape models and motion clips. Thanks to this latter,60

templates for the pose/clip are computed as average of a collection61

of poses/clips. The matching with such templates which represents a62

class, reduces retrieval complexity algorithm from n to log(n).63

• The development of a unified framework, viewed as a duality pose/motion,64

for several processing modules on video retrieval and understanding,65

where all use the same features and similarity metric.66

The outline of this paper is as follows: Section 2 discusses related works67

in the area of static and temporal shape similarity and video retrieval. The68

extremal curve extraction is presented in section 3. Section 4 describes the69

pose modeling in shape space and the elastic metric used for curve compari-70

son. In section 5, our approach used for motion segmentation and retrieval is71

presented. Section 6 describes video clustering and summarization for motion72

understanding. In section 7, evaluation of our framework and experimental73

results for shape similarity, video segmentation and retrieval are performed.74

Finally, we conclude by a discussion of the limitations of the approach in75
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section 8 and a summarizing of our results issues for future works in the76

conclusion section.77

2. Related works78

3D shape representation and similarity have been under investigation for79

a long time in various research fields (computer vision, computer graphics,80

robotics) and for various applications (3D object recognition, classification,81

retrieval). We address below, the most relevant works related to our ap-82

proach, which only utilize the full-reconstructed 3D data for shape similarity83

in 3D human video.84

Most works which address this problem evaluate a similarity metric on85

static shape descriptors based on the surface or on the volume. Others pro-86

pose to extend the static approaches to temporal shape descriptors.87

2.1. Static descriptors88

Some of widely used 3D object representation approaches include: spin89

images, spherical harmonics, shape context and shape distribution. Johnson90

et al. [6] propose spin image descriptor, encoding the density of mesh vertices91

into 2D histogram. Osada et al. [7] use a Shape Distribution, by computing92

the distance between random points on the surface. Ankerst et al. [8] rep-93

resent the shape as a volume sampling spherical histogram by partitioning94

the space containing an object into disjoint cells corresponding to the bins95

of the histogram. This later is extended with color information by Huang96

et al. [9]. A similar representation to the Shape Histogram is presented by97

Kortgen et al. [10] as 3D extended shape context. Kazhdan et al. [11] apply98

spherical harmonics to describe an object by a set of spherical basis functions99
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representing the shape histogram in a rotation-invariant manner. These ap-100

proaches use global features to characterize the overall shape and provide a101

coarse description, that is insufficient to distinguish similarity in 3D video102

sequence of an object having the same global properties in the time. A com-103

parison of these shape descriptors combined with self-similarities is made by104

Huang et al. [12].105

Other works on the 3D shape similarity can be found in the literature,106

where surface-based descriptors are often used with a step of features detec-107

tion. The advantage of these features is that their detection is invariant to108

pose change. The extremities can be considered as the one among the most109

important features for the 3D objects. They can be used for extracting a110

topology description of the object like Reeb-graph descriptor [13] or closed111

surface-based curves [14, 15, 16]. The extraction and the matching of these112

features have been widely investigated using different scalar functions from113

geodesic distances to heat-kernel [17, 18, 19]. Tabia et al. [14] propose to114

extract arbitrarily closed curves amounting from feature points and use a115

geodesic distance between curves for 3D object classification. Elkhoury et al.116

[15] extract the same closed curves but they use heat-kernel distance in the117

3D object retrieval process.118

2.2. Temporal descriptors119

Since significant progress in multiple view reconstruction techniques has120

been made, 3D video sequences of human motion are more and more avail-121

able. However, the need for handling and processing such data led to several122

approaches using temporal shape representation and matching.123

Huang et al. [12] extend the use of static descriptors to temporal ones for124
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frame retrieval, in a 3D human video, using time filtering and shape flows125

obtained via invariant-rotation shape histograms. Such approaches give a126

good shape descriptor but usually do not capture any geometrical informa-127

tion about the 3D human body pose and joint positions/orientations. This128

prevents using them in certain applications that require accurate estimation129

of the pose (and the joints in some cases) of the body parts. The temporal130

similarity in 3D video is addressed also in the case of skeletal motion and is131

evaluated from difference in joint angle or position together with velocity and132

acceleration [20]. Huang et al. [21] demonstrate that skeleton-based Reeb-133

Graph descriptor has a good performance in the task of finding similar poses134

of the same person in 3D video. Shape similarity is also used for solving the135

problem of video retrieval by matching frames and comparing correspondent136

ones using a specified metric. In Yamasaki et al., [22] the modified shape dis-137

tribution histogram is employed as feature representation of 3D models. The138

similar motion retrieval is realized by Dynamic Programming matching us-139

ing the feature vectors and Euclidean distance. The Dynamic Time Warping140

algorithm (DTW), based on Dynamic Programming and some restrictions,141

was also widely used to resolve the problem of temporal alignment. Given142

two time series with different size, DTW finds an optimal match measuring143

the similarity between these sequences which may vary in time or speed.144

Thereby, by a frame descriptor and the temporal alignment using DTW,145

many authors succeed to perform action recognition or sequence matching146

for indexing [23, 24, 25].147

Recently, Tung et al. [13] propose a topology dictionary for video un-148

derstanding and summarizing. Using the Multi-resolution Reeb Graph as149

8



a relevant descriptor for the shape in video stream for clustering. In this150

approach, they perform a clustering of the video frames into pose clusters151

and then they represent the whole sequence with a Markov motion graph in152

order to model the topology change states.153

154

From the above review, we can identify certain issues in order to consider in155

our approach. Most of these works have attempted to use global description156

of the model ignoring the local details. The similarity metric is usually cal-157

culated directly on descriptors whereas the notion of motion is incorporated158

by time convolution of the distance metric itself computed from static poses.159

The video sequence is considered as a succession of frames in time and not a160

succession of elementary motions (or gestures).161

On one hand, the extremities feature points used in many state-of-the-art162

algorithms can be considered as an important compact semantic represen-163

tation of human posture. On the other hand, the shape analysis of curves164

extracted from human body mesh allows representing the shape variations.165

Choosing some representative curves of the body surface may provide an166

efficient and a compact representation of human shape.167

Our approach has several benefits: (1) the EHC descriptor can be con-168

sidered as a surface skeletal based representation, which allows to describe169

surface deformations of the human posture. As it is composed by a collec-170

tion of local extremal open 3D curves, a body part representation can be171

performed; (2) the motion analysis is incorporated in two ways, firstly by172

time convolution of the distance metric vectors for pose retrieval in video173

sequence, and secondly by employing motion segmentation and the notion of174
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clips; (3) the video segmentation allows the localization of transition states in175

the video, in order to analyze the local dynamic of the motion, representing176

an atomic action or gesture; and (4) an original idea is proposed to represent177

a clip as a trajectory composed of a collection of successive frames viewed178

as points in shape space. Finally, the video segmentation and clustering are179

exploited in content-based summarization and motion retrieval.180

3. Extremal Curves181

We aim to represent a body shape as a skeleton based shape representa-182

tion. This skeleton will be extracted on the surface of the mesh by connecting183

features located on the extremities of the body. The main idea behind the use184

of this representation is to analyze pose variation with elastic deformation of185

the body, using representative curves on the surface.186

3.1. Feature point detection187

Feature points refer to the points of the surface located at the extremity of188

its prominent components. They are useful in many applications, including189

deformation transfer, mesh retrieval, texture mapping and segmentation. In190

our approach, feature points are used to represent a new pose descriptor191

based on curves connecting each two extremities. Several approaches have192

been proposed in the literature to extract feature points; Mortara et al. [26]193

select as features points the vertices where Gaussian curvature exceeds a given194

threshold. Unfortunately, this method can miss feature points because of the195

threshold parameter and cannot resolve extraction on constant curvature196

areas. Katz et al. [27] develop an algorithm based on multidimensional197

scaling, in quadratic execution complexity. Another approach more robust,198

10



is proposed by Tierny et al. [28] to detect extremal points, based on geodesic199

distance evaluation. This approach is used successfully to detect the body200

extremities, since it is stable and invariant to geometrical transformations201

and model pose. The extraction process can be summarized as the following:202

Let v1 and v2 be the most geodesic distant vertices on a connected tri-203

angulated surface S of a human body. These two vertices are the farthest204

on S, and can be computed using Tree Diameter algorithm (Lazarus et al.205

[29]). Now, let f1 and f2 be two scalar functions defined on each vertex v of206

the surface S as follows:207

f1(v) = g(v, v1) \ f2(v) = g(v, v2) (1)

where g(x, y) is the geodesic distance between points x and y on the208

surface. Let E1 and E2 be respectively the sets of extrema vertices (minima209

and maxima) of f1 and f2 on S (calculated in a predefined neighbourhood).210

We define the set of feature points of the surface of human body S as the211

intersection of E1 and E2. Concretely, we perform a crossed analysis in order212

to purge non-isolated extrema, as illustrated in Figure 2 (top). The f1 local213

extrema are displayed in blue color, f2 local extrema are displayed in red214

color and feature points resulting from their intersection are displayed in215

mallow color. Figure 2 (bottom) shows different persons from three different216

datasets where feature extraction is stable despite change in shape, pose and217

clothing for each actor.218

3.2. Body curve extraction219

Let M be a body surface and E = {e1, e2, e3, e4, e5} a set of feature points220

on the body representing the output of the extraction process. Let β denotes221
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Figure 2: Extremity points of the 3D human body. (top) extracting process,

(bottom) different human body subjects in different poses.

the open curve on M which joints two feature points of M {ei, ej}. To ob-222

tain β, we seek for geodesic path Pij, whose length is shortest while passing223

through the surface of the mesh, between ei and ej. We repeat this step to224

extract extremal curves from the body surface ten times so that we do all225

possible paths between elements of E. As illustrated in the top of Figure 3,226

the body posture is approximated by using these extremal curves M ∼
⋃

βij,227

and we can categorize these curves into 5 categories (Figure 3 bottom):228

• Curves connecting hand and foot on the same side: for controlling the229

movement of the left/right half of the body.230

• Curves between hands and between feet: for controlling the movement231

of the upper/lower body.232

• Curves connecting crossed hand and foot: for controlling the movement233
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of the crossed limbs.234

• Curves between head and feet: for controlling the movement of right/left235

foot.236

• Curves between head and hands: for controlling the movement of237

right/left hands.238

Figure 3: Body representation as a collection of extremal curves.

Note that modeling objects with curves is recently carried out for several239

applications; Abdelkader et al. [30] use closed curves extracted from human240

silhouettes to characterize human poses in 2D videos for action recognition.241

Drira et al. [31] use open curves extracted from nose tip and face surface as242

a surface parametrization for 3D face recognition.243

In our approach, we have chosen to represent the body pose by a col-244

lection of curves for two reasons. Firstly, these curves connect limbs and245
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give obviously a good representation of the body shape and pose, using a246

reduced representation of the mesh surface. Secondly, this representation247

allows studying the shape variation using Riemannian geometry by project-248

ing these curves in the shape space of curves and using its elastic metric249

introduced by Joshi et al. [32].250

4. Pose modeling in shape space251

In order to compare the similarity between two human body postures,252

we must quantify the change of shape between correspondent curves. To do253

this, the metric used to compare shape of curves can be computed inside an254

open curve shape space.255

In the last few years, many approaches have been developed to analyze256

shapes of 2-D curves. We can cite approaches based on Fourier descriptors,257

moments or the median axis. More recent works in this area consider a formal258

definition of shape spaces as a Riemannian manifold of infinite dimension259

on which they can use the classic tools for statistical analysis. The recent260

results of Michor et al. [33], Klassen et al. [34] and Yezzi et al. [35] show261

the efficiency of this approach for 2-D curves. Joshi et al. [32] have recently262

proposed a generalization of this work to the case of curves defined in R
n.263

We adopt this work to our problem since our 3-D curves are defined in R
3.264

4.1. Elastic distance265

While human body is an elastic shape, its surface can be simply affected266

by a stretch (raising hand) or a bind (squatting). In order to analyze human267

curves independently to this elasticity, an elastic metric is needed within a268

shape space framework.269
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Let β : I → R
3, for I = [0, 1], represents an extremal curve obtained as de-270

scribed above. To analyze its shape, we shall represent it mathematically us-271

ing a square-root velocity function (SRVF), denoted by q(t)
.
= β̇(t)/

√

‖β̇(t)‖.272

q(t) is a special function introduced by Joshi et al.[32] that captures the shape273

of β and is particularly convenient for shape analysis.274

The set of all unit-length curves in R
3 is given by C = {q : I → R

3|‖q‖ =275

1} ⊂ L
2(I,R3), where using L

2-metric on its tangent spaces, C becomes a276

Riemannian manifold.277

Proposition 4.1. Having two open curves represented by their SRVF, q1278

and q2, the shortest geodesic between them in the shape space of open curves279

is given by: α(τ) = 1
sin(θ)

(sin((1− τ)θ)q1 + sin(θτ)q∗2) ,280

and the geodesic distance is given by: ds(q1, q2)
.
= cos−1(〈q1, q

∗
2〉) .281

where q∗2 is the optimal element associated with the optimal rotation O∗
282

and re-parametrization γ∗ of the second curve.283

This defined distance allows comparing shape curves regardless of iso-284

metric and elastic deformation. In Figure 4, a geodesic path between each285

corresponding two extremal curves, taken from two human bodies doing dif-286

ferent poses, is computed in shape space.287

For the left model, the person’s arm is down and for the right model it288

is raised. The geodesic path between each two curves is shown in the shape289

space. This evolution looks very natural under the elastic matching.290

4.2. Static shape similarity291

The elastic metric applied on extremal curve-based descriptors can be292

used to define a similarity measure. Given two 3D meshes x, y and their293
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Figure 4: Geodesic path between two extremal human curves of neutral pose

with raised hands.

descriptors x′ = {qx1 , q
x
2 , q

x
3 , ..., q

x
N} and y′ = {qy1 , q

y
2 , q

y
3 , ..., q

y
N}, the mesh-to-294

mesh similarity can be represented by the curve pairwise distances and can295

be defined as follows:296

s(x, y) = d(x′, y′) , (2)
297

d(x′, y′) =

∑N

i=1 d(β
x
i , β

y
i )

N
=

∑N

i=1 ds(q
x
i , q

y
i )

N
. (3)

where N is the number of curves used to describe the mesh. The mean of298

curve distances between two descriptors captures the similarity between their299

mesh poses. In case of shape change in even one curve, the global distance300

is affected and it increases indicating that the poses are different. In order301

to have a global distance, an arithmetic distance can be computed in order302

to compare human poses.303
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4.3. Average poses304

The use of EHC descriptor to represent the human pose by a collection305

of 3D open curves allows analyzing the human shape using the geometrical306

framework. It also allows computing some related statistics like ”average”307

of several extremal human curves. Such an average, called Karcher Mean, is308

introduced by Srivastava et al. [36]. It can be computed between different309

poses to represent the intermediate pose, or between similar poses done by310

several actors to represent a template for similar poses.311

We are interested in defining a notion of ”mean” for a given set of human312

postures in the same cluster of poses for the goal of fast pose retrieval.313

To compute the average of EHC representation, we need only to know314

how to compute an average for one extremal human curve. The Riemannian315

structure defined on the shape space S enables us to perform such statistical316

analysis for computing average and variance for each 3D open curve on body317

surface. The intrinsic average or the Karcher Mean utilizes the intrinsic318

geometry of the manifold to define and compute a mean on that manifold.319

In order to calculate the Karcher Mean of extremal human curves {qα1 , ..., q
α
n}320

in S, we define the variance function as:321

V : S → R,V(µ) =
n

∑

i=1

dS(q
α
i , q

α
j )

2 (4)

The Karcher Mean is then defined by:322

qα = argmin
µ∈S

V(µ) (5)

The gradient of V is used in the tangent space Tµ(S) to iteratively update323

the current mean µ. qα is an element of S that has the smallest geodesic324
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path length from all given extremal human curves for the index α.325

An example of using the Karcher Mean to compute average curve for 6326

extremal human curves connecting hand and foot from the same side is shown327

in the top of Figure 5, and several examples of using the Karcher mean to328

compute average EHC representation are shown in the bottom of this figure.329

Figure 5: Example of Karcher Mean computation. (top) Mean curve for six

extremal human curves: curve connecting hand and foot from the same side.

(bottom) Example of average poses computed using Karcher mean.
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5. Motion segmentation and matching330

Based on our EHC representation of the shape model, it is possible to331

compare two video sequences by matching all pairwise correspondent ex-332

tremal curves inside their frames, using the geodesic distance in the shape333

space. However, a sequence of human action can be composed of several334

distinct actions, and each one can be repeated several times. Therefore, the335

motion segmentation can play an important role in the dynamic matching336

by dividing the whole 3D video data into small, meaningful and manageable337

elementary actions called clips. EHC descriptor will be employed to segment338

continuous sequences into clips.339

5.1. Motion segmentation340

Video segmentation has been studied for various applications, such as341

gesture recognition, motion synthesis and indexing, browsing and retrieval.342

A vast amount of works in video segmentation has been performed for 2D343

video [37], where usually the object segmentation is firstly performed before344

the movement analysis. In Rui et al. [38], an optical flow of moving objects345

is used and motion discontinuities in trajectories of basis coefficient over time346

are detected. However, in Wang et al. [39], break points were considered as347

local minima in motion and local maxima in direction change.348

Motion segmentation is strongly applied in several algorithms using 3D349

motion capture feature points trackable within the whole sequence, to seg-350

ment the video. Detected local minima in motion (Shiratori et al. [40]) or351

extrema (Kahol et al. [41]) are used in motion segmentation for kinematic352

parameters.353
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Most of works on the 3D video segmentation use the motion capture354

data, and very few of them were applied to dynamic 3D mesh. One of them355

is presented by Xu et al. [42], where a histogram of distance among vertexes356

on 3D mesh is generated to perform the segmentation through thresholding357

step defined empirically. In Yamasaki et al. [43], the motion segmentation is358

automatically conducted by analyzing the degree of motion using modified359

shape distribution for mainly japanese dances. These sequences of motion360

are paused for a moment and then they are consider as segmentation points.361

Huang et al. [44] propose an automatic key-frame extraction method for362

3D video summarization. To do so, they compute the self similarity matrix363

using volume-sampling spherical Shape Histogram descriptor. Then, they364

construct a graph based on this self similarity matrix and define a set of key365

frames as the shortest path of this graph.366

In our work, we propose an approach fully automatic to segment a 3D367

video efficiently without making neither thresholding step nor assumption on368

the motion’s nature. In motion segmentation, the purpose is to split automat-369

ically the continuous sequence into segments which exhibit basic movements,370

called clips. As we need to extract meaningful clips, the segmentation is371

overly fine and can be considered as finding the alphabet of motion. For a372

meaningful segmentation, motion speed is an important factor. In fact, when373

human changes motion type or direction, the motion speed becomes small374

and this results in dips in velocity. We exploit this latter by finding the local375

minima for the change in type of motion and local maxima for the change376

in direction. The extrema detected on velocity curve should be selected as377

segment points (see Figure 6). We show frames detected as maxima (the ac-378
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tor changes the foot’s direction) on the top of the plot, and frames detected379

as minima (the actor raise the other foot) on the bottom. In this work, we380

consider only the change in type of motion as a meaningful clip. Thus, clips381

with slight variations and a small number of frames are avoided.382

Figure 6: Segmentation of a 3D sequence into motion clips. Feature vector

and detected frames as local extrema are presented at the top of the figure

and detected frames as minima are at the bottom.

Note that optimum local minimum, that detect precise break points where383

the motion changes, is selected in a predefined neighbourhood. For this384

raison, we fix a size of window to test the efficiency of the local minimum in385
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this condition. To calculate the speed variation, distance between each two386

successive EHC in the sequence is computed. The variations of the sequence387

are represented in vector of speed and a further smoothing filter is applied388

to obtain the final degree of motion vector.389

5.2. Clip matching390

To seek for similar clips, we need to encode gestures in a specific repre-391

sentation that we can compare regardless to certain variations. In fact, two392

motions are considered similar even if there are changes in the shape of the393

actor and the speed of the action execution. This problem is similar to time-394

series retrieval where a distance metric is used to look for, in a database, the395

sequences whose distance to the query is below a threshold value. Each clip396

is represented as a temporal sequence of human poses, characterized by EHC397

representation associated to shape model. Then, extremal curves are tracked398

in each sequence to characterize a trajectory of each curve in the shape space399

as illustrated in Figure 7 (top). Finally, the trajectories of each curve are400

matched and a similarity score is obtained. However, due to the variations401

in execution rates of the same clip, two trajectories do not necessarily have402

the same length. Therefore, a temporal alignment of these trajectories is403

crucial before computing the global similarity measure, as shown in Figure 7404

(bottom).405

In order to solve the temporal variation problem, we use DTW algorithm406

(Giorgino et al. [45]). This algorithm is used to find optimal non-linear407

warping function to match a given time-series with another one, while ad-408

hering to certain restrictions such as the monotonicity of the warping in the409

time domain. The optimization process is usually performed using dynamic410
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Figure 7: Graphical illustration of a sequence of shapes obtained during a

walking action (top). Alignment process between trajectories of same curve

index using DTW (bottom).

programming approaches given a measure of similarity between the features411

of the two sequences at different time instants. The global accumulated costs412

along the path define a global distance between the query clip and the motion413

segments found in the database. Since DTW can operate with any measure414

of similarity between different temporal features, we adapt it to features415

that reside on Riemannian manifolds. Hence, we use the geodesic distance416

between different shape points ds(qi, qj) as a distance function between the417

shape features at different time instants.418
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In practice, the first step is to follow independently curve variation in419

time resulting on N trajectories in the shape space. In fact, each frame420

in the 3D video sequence can be represented by a predetermined number421

(N) of extremal curves, splitting the sequence into N parts, where each one422

represents the trajectory of an open curve in the shape space. Then, DTW423

will be applied in the feature space for each tracked curve index. The distance424

between two clips is then the average distance given by each comparison425

between corresponding trajectories.426

5.3. Average clip427

Based on the two algorithms, Karcher Mean and DTW, we can extend428

the notion of “mean” of a set of human poses to the “mean” of trajectories429

of poses in order to compute an ”average” of several clips.430

Let N be the number of clips represented by N trajectories T1, T2 · · ·TN .431

For a specific human curve index, we look for the mean trajectory that has432

the minimum distance to the all N trajectories.As shown in Algorithm 1,433

the mean trajectory is given by computing the non-linear warping functions434

and setting iteratively the template as the Karcher Mean of the N warped435

trajectories represented in the Riemannian shape space.436

6. Video summarization and retrieval437

In order to represent compactly a video sequence, we need to know how438

to exploit the redundancy of information over time. However, when this in-439

formation should be extracted from motion and not from frames separately,440

the challenge is then about complex matching processes required to find ge-441

ometric relations between consecutive data stream elements. We therefore442
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Algorithm 1 Computing trajectory template

Require: N trajectories from N clips T1, T2 · · ·TN

Initialization: chose randomly one of the N input trajectories as an initial guess of the

mean trajectory Tmean

repeat

for i=1 : N do

find optimal path p∗ using DTW to warp Ti to Tmean

end for

Update Tmean as the Karcher Mean of all N warped trajectories

until Convergence

propose to use EHC to represent a pose and a trajectory as key descriptors443

characterizing geometric data stream. Based on EHC representation, we de-444

velop several processing modules as clustering, summarization and retrieval.445

6.1. Data clustering446

Let V denotes a video stream of human sequence containing elements447

{ei}i=1...k, where e can be a frame or a clip. To cluster V , the data set is448

recursively split into subsets Ct and Rt as described in the following recursive449

algorithm:450

Algorithm 2 Data clustering

Require: V {ei}i=1...k;

Ensure: C0 = ∅ ; R0 = {e1, . . . , ek};

if (Rt 6= ∅)&&(t <= k) then

Ct = {f ∈ Rt−1 : dist(et, f) < Th};

Rt = Rt−1 \ Ct;

end if

The result of clustering is contained in Ct=1..k where Ct is a subset of V451

25



representing a cluster containing similar elements to et. For each iteration of452

clustering steps, from t = 1 · · ·K, the closest matches to et are retrieved and453

indexed with the same cluster reference as et. Any visited element et already454

assigned to a cluster in C during iteration step is considered as already clas-455

sified and is not processed subsequently. We regroup not empty sub sets Ct456

in l clusters {c1, ..., cl} (with l 6 k). Similarities between elements of V are457

evaluated using a similarity distance dist allowing to compare the elements458

of V . The threshold Th is defined experimentally .459

If we consider the video V as a long stream of 3D meshes, the clusters that460

should be obtained must gather models with similar poses. In this case, the461

EHC feature vector is used as an abstraction for every mesh and the similarity462

distance is the elastic metric computed between each pair of human poses.463

Motion can be incorporated in this similarity by applying a simple time464

filter on static similarity measure with a window size chosen experimentally465

[46]. The use of temporal filter integrates consecutive frames in a fixed time466

window, thus allowing the detection of individual poses while taking into467

account smooth transitions. Note that the pose invariance property of the468

EHC allows us to compare poses (and motions) of subjects regardless of469

translation, rotation and scaling .470

The video V can also be considered as a stream of clips resulting from471

the video segmentation approach and clusters here gathers clips with similar472

repeated atomic actions. In this case: (1) the feature vector used as abstrac-473

tion for each clip is a trajectory on shape space of extremal human curves;474

and (2) the similarity distance, used to compare clips, is based on the DTW475

algorithm.476
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6.2. Content-based summarization477

Our approach for video summarization is based on three steps: First, the478

whole video is segmented and clustered into several clusters of clips. Second,479

only the most significant clip (the nearest one to all cluster elements) of each480

cluster is kept. Third, we construct a subsequence, from the starting video,481

where this representative clips of each cluster are concatenated. Finally,482

This new subsequence, is clustered into clusters of poses, and only most483

representative poses are kept to describe the dataset.484

This summarization allows a reduction of dimension for the original dataset485

where we can display only main clips if we stop on third step, or to display486

key frames if we continue summarization process until pose clustering.487

6.3. Pose and motion Retrieval488

As in a classical retrieval procedure, in response to a given query, an489

ordered list of responses that the algorithm found nearest to the query is490

given. Then to evaluate the algorithm, this ranked list is analyzed. Whatever491

the given query, pose or clip, the crucial point in the retrieval system is the492

notion of ”similarity” employed to compare different objects.493

For content-based pose retrieval, thanks to the static shape similarity, we494

are able to compare human poses using their extremal human curve descrip-495

tors and decide if two poses are similar or not. In this scenario, the query496

consists of a 3D human shape model in a given pose and the response is 3D497

human bodies more similar in pose to the query. We advocate the usage of498

the EHC to represent the 3D human shape model in a given pose and then499

comparison between each pair of models using the elastic metric defined in500
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the Proposition 4.1. This system can find a number of utilities like pose-501

based searching and facilitate retrieval of efficient information as subjects in502

same poses in the database of 3D models scanned in different poses [47, 48].503

Note also that identifying frames with similar shape and pose can be used504

potentially for concatenative human motion synthesis. Concatenate existing505

3D video sequences allows the construction of a novel character animation. A506

good descriptor that much correctly correspondent frames allows the synthe-507

sis of videos with smooth transitions and finding best frames to summarize508

the video. However, extension of static shape descriptor to include tem-509

poral motion information is required to remove the ambiguities inherent in510

static shape descriptor for comparing 3D video sequences of similar shape.511

Therefore, the static shape descriptor can be extended to the time domain512

by applying a simple time filter with a window size like 2Nt + 1. This time513

filter is a way of incorporating motion in the similarity measure, as so-called514

temporal similarity, also used by Huang et al. [12]. The temporal similarity515

is presented in the following Equation:516

stij =
1

2Nt + 1

Nt
∑

k=−Nt

s(i+ k, j + j) (6)

where s is the frame-to-frame similarity matrix and Nt is a time filter with517

window size 2Nt + 1.518

For content-based motion retrieval, we advocate the usage of the EHC519

representation, where a query consists of a trajectories representing a clip on520

the shape space. As response to this specific query, our approach looks in the521

sequence for most similar trajectories and returns an ordered list of similar522

ones using the process of motion clip explained in section 5.2.523
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7. Experimental results524

To show the practical relevance of our method, we perform an experimen-525

tal evaluation on several databases (summarized in Table 1) and compare it526

to the most efficient descriptors of the state-of-the-art methods. We first eval-527

uate our descriptor for shape similarity application over public static shape528

database [48] and evaluate the results against Spherical Harmonic descriptor529

[11]. Secondly, we measure the efficiency of our descriptor to capture the530

shape similarity in 3D video sequences of different actors and motions from531

other public 3D synthetic [12] and real [49, 50] video databases. We evaluate532

this later against Temporal Shape Histogram [12], Multi-resolution Reeb-533

graph [21] and other classic shape descriptors, using provided Ground Truth.534

Motion segmentation into clips and clip matching performance are tested on535

several video sequences of different people doing different motions. Finally,536

we evaluate our clustering and summarization approach for pose/clip-based537

video retrieval.538

7.1. Feature matching539

The extraction and comparison of our curves requires the identification of540

feature end-points as head, right/left hand and right/left foot, which is not541

affordable in practice. This requirement is important to perform the curve542

matching separately between models. In order to overcome this problem,543

our method is based on two benefits from the morphology of the human544

body. First, we deduce that geodesic path connecting each one of the hand545

end-points and the head end-point is shortest among all possible geodesics546

between the five end-points. Second, the geodesic path connecting right hand547
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Dataset Motions/Poses Number of frames

Dataset (1) [48]:

144 subjects (59

men/55 women)

18 static poses (1 neutral done

by all subjects and 17 other dif-

ferent poses)

⊘

Dataset (2) [12]:

14 people (10 men

and 4 women)

28 motions: sneak, walk (slow,

fast, turn left/right, circle left/right,

cool, cowboy, elderly, tired, ma-

cho, march, mickey, sexy,dainty),

run (slow, fast,turn right/left, cir-

cle left/right), sprint, vogue, faint,

rockn’roll, shoot.

392 seq, 39200f

(100f per seq.)

Dataset (3) [49]: 3

people (2 men and

1 woman)

6 motions: 2×cran, 2×marche,

2×squat, 1×handstand, 1×samba,

1×swing.

1582f (on average

226± 48 per seq.)

Dataset (4) [50]:

Roxanne

Game character motion: walk 32 f

Table 1: Summarization of data used for all experimental tests.

to left foot end-points or left hand to right foot end-points is the longest. The548

first observation allows to identify precisely the end-point corresponding to549

the head, the two end-points connected to this later corresponding to the550

hands without distinguishing between right and left. The second one allows551

the identification of the couple of hand/foot as corresponding to same side of552

the body without distinguishing between right and left. A prior knowledge553

on the direction of the posture of the human body for static pose and in the554

starting frame for video sequence has allowed to distinguish between left and555
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right. Once the end-points are correctly detected from the starting frame556

in the video sequence, a simple algorithm of end-point tracking over time is557

performed.558

7.2. Static shape similarity559

The protocol and the dataset used to validate the experiments are firstly560

presented and then, the results following this protocol are analyzed and com-561

pared to those obtained by other approaches.562

7.2.1. Evaluation methodology563

To assess the performance of the EHC for static shape similarity, sev-564

eral experiments were performed on a statistical shape database [48]. This565

database, summarized in Table 1 (1st row), is challenging for human body566

shape and pose retrieval as it is realistic shape database captured with a567

3D laser scanner. It contains more than hundred subjects doing more than568

thirty different poses. We perform our descriptor on a subset of 338 shape569

models obtained from 144 subjects 59 male and 55 female aged between 17570

and 61 years. There are 18 consistent poses (p0, p1, p2, p3, p4, p5, p6, p7,571

p8, p9, p10, p11, p12, p13, p16, p28, p29, p32). Some poses are illustrated572

in Figure 8. Each pose represents a class where at least 4 different subjects573

do the same pose.574

For evaluation, we use Recall/Precision plot in addition to the three575

statistics which indicate the percentage of the top K matches that belong to576

the same pose class as the query pose:577

• The nearest neighbor statistic (NN): it provides an indication to how578

well a nearest neighbor classifier would perform (here K = 1).579
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Figure 8: Example of body poses in the static human dataset [48].

• The first tier statistic (FT): it indicates the recall for the smallest K580

that could possibly include 100% of the models in the query class.581

• The second tier statistic (ST): it provides the same type of result, but582

it is a little less stringent (i.e., K is twice as big).583

• E-Measures: it is a composite measure of precision and recall for a fixed584

number of retrieved results.585

We note here that these statistics will be used for static and video retrieval586

evaluations.587

7.2.2. Curve selection588

From five feature endpoints, we have extracted ten extremal curves rep-589

resenting the human body shape model. According to the human poses,590

extremal curves exhibit different performance and some curves are more effi-591

cient to capture the shape similarity between two poses. Our shape descriptor592
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can be seen as a concatenation of ten curve representations and the similarity593

between two shape models doing two different poses, is represented by a vec-594

tor of ten elastic distance values. Before all tests, we analyze the performance595

of all possible combinations of curves on the shape similarity measurements.596

A Sequential Forward Selection method, applied on elastic distance values597

and coupled with ST statistic, has been used to select the best combination598

of curves among all possible ones (1013 combinations according to Eq. 7):599

n
∑

k=2

Ck
n =

n
∑

k=2

n!

k!(n− k)!
(7)

where n is equal to 10 and it represent the number of curves.600

Experiment of pose-based retrieval on the dataset [48] shows that the best601

combination is obtained by the five curves: right hand to right foot, left hand602

to left foot, left hand to right hand, left foot to right foot, and head to the603

right foot (Figure 9).604

The selected five curves seem to be the most stable ones and they are605

sufficient to represent at best the body like a skeleton on the surface. There-606

fore, the elimination of five curves allows to eliminate the ambiguity due to607

the redundancy of some curves on the body parts.608

7.2.3. Result analysis609

The self similarity matrix obtained from the mean elastic distance of the610

five selected curves is shown in the Figure 10.611

This matrix demonstrates that similar poses have a small distance (cold612

color) and that this distance increases with the degree of the change be-613

tween poses (hot color). This allows pose classification or pose retrieval by614
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Figure 9: Second-Tier statistic for all combinations of curves. The best

combination is obtained by 5 curves (green) and the worst combination is

obtained by 2 curves (red).

comparing models using their extremal curve representation and the elastic615

metric.616

From a quantitative point of view, we present the Recall/Precision plot617

obtained by EHC compared to the popular Spherical Harmonic (SH) descrip-618

tor with optimal parameter setting (Ns = 32 and Nb = 16) [8]. This plot and619

accuracy rates (NN, FT and ST) reported in Table 2 show that our approach620

provides better retrieval precision. EHC using only the five selected curves621

outperforms SH and EHC using the 10 curves to retrieve models with the622

same pose.623

Note finally that the accuracies of retrieval ranks for some poses are rela-624

tively low. Such ambiguities can be noticed in the case of comparison between625

neutral pose and a pose where subjects just twist their body to the left, or626
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Figure 10: Confusion similarity matrix. The matrix contains pose dissimi-

larity computation between models of a 3D humans in different poses. More

the color is cold more the two poses are similar.

Approach NN(%) FT(%) ST(%) E-Measure(%)

SH 71.0 57.9 75.5 41.3

EHC 10 curves 80.3 75.5 85.2 42.5

EHC 5 curves 84.8 77.2 89.1 43.0

Table 2: Retrieval statistics for pose based retrieval experiment

twist their torso to look around.627
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Figure 11: Precision-recall plot for pose-based retrieval.

7.3. Temporal shape similarity for 3D video sequences628

We firstly present the protocol and the dataset used in these experiments629

and then, the results following this protocol are analyzed and compared to630

the most relevant state-of-the-art approaches.631

7.3.1. Evaluation methodology632

The recognition performance of the temporal shape descriptor is evaluated633

using a ground-truth dataset from a synthetic 3D video sequences proposed634

by Huang et al. [12] and a real captured 3D video sequences of people [49].635

As described in Table 1 (2nd raw), the synthetic data is obtained by 14 people636

(10 men and 4 women) performing 28 motions. Each sequence is composed637

of 100 frames and the whole dataset contains a total of 39200 frames.638

Given the known correspondences, a temporal ground-truth similarity is639

computed between each two surfaces. The known correspondence is only640
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used to compute this ground truth similarity. Having two Mesh X and Y641

with N vertices xi ∈ X and yi ∈ Y , a temporal-ground truth CT is computed642

by combining a shape similarity Cp and a temporal similarity Cv as follows:643

CT (X, Y ) = (1− α)Cp(xi, yj) + αCv(xi, yj)

Cp(X, Y ) = 1
N

∑N

k=1 d(xi, yj)

Cv(X, Y ) = 1
N

∑N

k=1 d(ẋi, ẏj)

(8)

where d is an Euclidean distance, ẋi and ẏj are the derivation of x and644

y between next and current frame. the parameter α is used to balance the645

equation and it is set to 0.5 . In order to identify frames as similar or646

dissimilar, the temporal ground truth similarity matrix is binarized using a647

threshold set to 0.3 similarly to Huang et al. [12].648

Finally, recognition performance is evaluated using the Receiver-Operator-649

Characteristic (ROC) curves, created by plotting the fraction of true-positive650

rate (TPR) against the fraction of false-positive rate (FPR), at various651

threshold settings. The true and false dissimilarity compare the predicted652

similarity between two frames, against the ground-truth similarity.653

An example of self-similarity matrix computed using temporal ground-654

truth descriptor, static and temporal descriptors are shown in Figure 12.655

This figure illustrates also the effect of time filtering with increasing temporal656

window size for EHC descriptors on a periodic walking motion.657

7.3.2. Result analysis658

A comparison is made between our Temporal Extremal Human Curve659

(TEHC) and several descriptors from the state-of-the-art: Shape Distribu-660

tion (SD) , Spin Image (SI) , Spherical Harmonics Representation (SHR),661
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Figure 12: Similarity measure for ”Fast Walk” motion in a straight line com-

pared with itself. Coldest colors indicate most similar frames. 1st matrix:

temporal Ground-Truth (TGT). 2nd, 3rd and 4th matrix: self-similarity ma-

trix computed with Temporal EHC with window size 3, 5 and 7 respectively.

two Shape-flow descriptors, the global / local frame alignment Shape His-662

tograms (SHvrG / SHvrS) (Huang et al. [12]) and Reeb-Graph as skeleton663

based shape descriptors (aMRG) (Tung et al. [51]). Note that a spectral664

representation was also evaluated by Huang et al. [21] which is the Multi-665

Dimentional Scaling (MDS). Huang et al. [12] evaluated the performances666

of all these descriptors for the purpose of shape similarity.667

The effectiveness of our descriptor have been evaluated by varying temporal668

window and comparing it to the most relevant state-of-the-art descriptors669

[12] as shown in the plot of ROC curves in Figure 13.670

Several observations can be made on the obtained results: (i) Our descrip-671

tor outperforms classic shape descriptors (SI, SHR, SD) and shows compet-672

itive results with SHvrS and aMRG. We also notice that recognition perfor-673

mance of EHC increases with the increase of the window size of time-filter674

like any other descriptor. In fact, time-filter reduces the minima in the anti-675

diagonal direction, resulting from motion in the static descriptor (Figure 13).676
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Figure 13: Evaluation of ROC curve for static and time-filtered descriptors

on self-similarity across 14 people doing 28 motions. From right to left:

ROC curves obtained by our TEHC descriptor with three different values of

windows size Nt, ROC curve obtained by our EHC descriptor compared to

different algorithms and ROC curves obtained with Nt= 1.

Multiframe shape-flow matching required in SHvrS allows the descriptor to677

be more robust but the computational cost will increase by the size of se-678

lected time window.679

(ii) EHC descriptor by its simple representation, demonstrates a comparable680

recognition performance to aMRG. It is efficient as the curve extraction is681

instantaneous and robust as the curve representation is invariant to elastic682

and geometric changes thanks to the use of the elastic metric.683

(iii) The result analysis for each motion shows that EHC gives a smooth684

rates that are stable and not affected by the complexity of the motion. Such685

complex motions are rockn’roll, vogue dance, faint, shot arm (Figure 14).686

However, this is not the case for SHvrS where performance recognition falls687

suddenly with complex motions as illustrated in Figure 15.688

689
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Figure 14: Evaluation of EHC descriptor against Temporal Ground Truth

(TGT) for Nt=0 and Nt=1. ROC performance for 28 motions across 14

people.

We also applied the time filtering EHC descriptor on two real captured 3D690

video sequences of people. The first sequence is extracted from the dataset691

[49] described in Table 1 (3rd row). The second one is extracted from real692

data reconstructed by multiple camera video [50] and described in Table 1693

(4th row).694

Inter-person similarity across two people in a walking motion with an695

example similarity curve are shown in Figure 16 (a). Our temporal similarity696

measure identifies correctly similar frames across different people. These697

similar frames are located in the minima of the similarity curve. In addition,698
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(a) Vogue (b) Faint

(c) Shot arm (d) Rockn’roll

Figure 15: Evaluation of ROC curves for complex motions with Nt=3.

despite the topology change and the reconstruction noise as shown in Figure699

16 (b), our algorithm succeed to identify correctly the frame in the sequence700

similar to the query.701

7.4. Motion segmentation and retrieval702

In this section, we evaluate temporal shape similarity descriptor. Details703

about the computation of the ground truth descriptor are given in addition704

to the description of the different datasets used for evaluation. The results705

obtained by our approach, compared to those of different state-of-the-art706
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(a) (b)

Figure 16: Inter-person similarity measure for real sequences. Similarity

matrix, curve and example frames for (a) Walk motion across two actors [49]

(b)walk motion for Roxanne [50] Game Character Walk .

descriptors, are then discussed.707

7.4.1. Evaluation methodology708

The two datsets (2) and (3) presented in Table 1 are used in these experi-709

ments. From the synthetic dataset [12], we have chosen 14 different motions:710

walk (slow, fast, circle left/right, cowboy, march, mickey), run (slow, fast,711

circle left/right), sprint, and rockn’roll. These motions are performed by two712

actors (a woman and a man) making a total of 28 motions (2800 frames).713

They are chosen for their interesting challenges as: (i) change in execution714
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rate (slow/fast motions) (ii) change in direction while moving (walking in715

straight line, moving in circle and turning left and right) (iii) change in716

shape (a woman and a man). We used these motion sequences for both717

segmentation and retrieval experiment.718

To validate the segmentation step, we segment all these 3D video se-719

quences with the proposed approach and then compare results to manual720

segmentation ground-truth. In the retrieval process, each query clip is com-721

pared to all other clips obtained by the segmentation of sequences. Finally,722

the statistics (NN, FT, ST and E-measure) are used for the evaluation.723

7.4.2. Analysis of motion segmentation result724

Plotting the distance between EHC representation of successive frames725

gives a very noisy curve. The break points from this curve do not define726

semantic clips and the extracting of minima leads to an over-segmentation of727

the sequence (see Figure 17 (top)). To obtain more significant local minima,728

we convolve the curve with a time-filter allowing to take into account the729

motion variation, not only between two successive frames but also in a time730

window. The motion degree after convolution is shown in Figure 17 (bottom).731

Break points are more precise and delimits significant clips corresponding to732

step change in the video sequence. In order to evaluate its efficiency, we733

apply our segmentation method on the whole dataset (3) described in Table734

1 (3rd raw) and then compare the results to a manual segmentation of the735

base done carefully .736

We performed the clip segmentation for all window size values from 1737

to 11 over a representative set of clips extracted from the dataset (3) [49].738

Compared to manual ground truth, the best segmentation is obtained using739
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a window size of 5. This value is then fixed for the rest of the tests. The740

segmentation of the dataset(3) gives 83 segmented clips (78 correct clips and741

5 incorrect clips). This can be explained by the fact that the 5 failing clips742

are short. They contain about 6 frames at most and do not describe atomic743

significant actions. Otherwise, the a total of 144 clips have been obtained by744

the segmentation of the 14 motions taken from the dataset (2) described in745

Table 1 (2nd raw) performed by two actors.746

Figure 17: Speed curve smoothing.

Figure 18 shows some results of motion segmentation on a ”slow walk”747

and a ”fast walk” motions. Although the walk speed increases, the motion748
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segmentation remains significant and does not change and corresponds to the749

step change of the actor. The Rockn’roll dance motion segmentation is also750

illustrated in Figure 18 (bottom). Thanks to the selection of local minima751

in a precise neighborhood, only significant break points are detected.752

Figure 18: Various motion segmentation. From right top to left bottom,

motions are: slow walk, Rockn’roll dance, fast walk, vogue dance.

7.4.3. Analysis of motion retrieval result753

The motion segmentation method, applied on 14 motion sequences from754

the dataset (2) and performed by a man and a woman, gives a total of755

144 clips. These clips, with an average number of frames per clip equal to756

15, are categorized into 14 classes. The motion sequences consist mainly757

of different styles of walking, running and some dancing sequences. Classes758

grouped together represent different styles of walking, running and dancing759

steps. For example, a step change in a walk may represent a class and groups760
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similar clips done with different speed and in different trajectories. We notice761

that right to left change step is grouped in a different class than left to light762

change step.763

The similarity metric represented by elastic measure values between each764

pair of clips allows us to generate a confusion matrix for all classes of clips,765

in order to evaluate the recognition performance by computing dynamic re-766

trieval measures thanks to a manually annotated ground truth. An example767

of the matrix representing the similarity evaluation score among clips in768

sequences performed by a female actress against the clips of sequences of769

motions performed by a male actor is shown in Figure 19. More the color is770

cold more the clips are similar.771

Thanks to the use of DTW, it is noticed that similarity score between772

same clips done in different speeds is small (see Figure 19). The matching773

between the clip representing change in step in a slow walk motion composed774

of 25 frames and a fast walk motion, composed of 18 frames, is small.775

Besides, our approach succeed to retrieve clips within motions done in776

different ways. For example, the walk circle clips can be matched with the777

clips of slow walk motion done in a straight line (see Figure 19). This explains778

why the use of an elastic metric, to compare and match trajectories, makes779

the process independent to rotation. Although the actors performing the780

motions are different, it is observed that similar clips yield smaller similarity781

score. Like it is shown in ”Rockn’roll” dance motion, steps of the dance782

performed by different actors are correctly retrieved.783

It is demonstrated that 79.26% of similar motion clips are included in784

the first tier and 93% of clips are correctly retrieved in the second tier. It785
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Figure 19: Similarity matrix evaluation between clips. More the color is

cold more the two clips are similar.

is a rather good performance considering that only such low-level feature as786

the EHC is utilized in the matching. This can be explained by the fact that787

geodesics are not completely invariant to the topology changes. Thereby, the788

extracted sequential curves that represent the trajectory tend to change the789

path on the models for certain motions and therefore mislead the matching790

performed by DTW.791

We also apply our retrieval approach to a real captured 3D video sequence792
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from the real dataset (3) described in Table 1 (3rd raw). Self similarity793

example with an actor in a walking motion (walking in circular way) and its794

similarity curve are shown in Figure 20. For the query clip presented at the795

right of the figure, retrieved clips are found correctly in the sequence when796

the actor is turning.797

Figure 20: Experimental results for 3D video retrieval using motion of ”walk

in circle”.

7.5. Data summarization and content-based retrieval798

In this section, we firstly conducted multiple experimental trials by ana-799

lyzing the video clustering method on two aspects: the pose-based clustering800

and the clip-based clustering. Secondly, we evaluate the impact of the sum-801

marization process on the retrieval system by comparing the results with and802

without using clustering.803

7.5.1. Content-based summarization804

The performance of the content-based summarization approach is eval-805

uated for pose and clip data. To validate the pose-based summarization,806

we use a composed long sequence of a subject performing walk and squat807
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motions from the dataset (3). For clip-based summarization experiment, the808

same 28 motions used for video segmentation and the retrieval have been809

used.810

The effectiveness of clustering process is evaluated by the number of clus-811

ters found which should allow the identification of eventual redundant pat-812

terns. The threshold Th in the Algorithm 2 is set accordingly to the values of813

the similarity function. The distances computed between descriptors (EHC814

for pose and trajectory of EHC for clip) are normalized to return values in815

the range [0 1], and Th was then defined experimentally. An optimal set-816

ting of Th should return a set of clusters similar to what a ”hand-made”817

ground-truth classification would perform. The Figure 21 shows the cluster-818

ing result obtained from the composed long sequence. The number of clusters819

decreases with the increase of the threshold Th. We obtain the best result820

for Th = 0.5 with 51 clusters partitioned as the bar diagram shown in the821

right of the Figure 21.

Figure 21: Frame clustering process with respect to threshold Th.

822

Pose-based clustering process can be improved by increasing the window823
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size of the time filter as shown in Figure 22.824

Figure 22: Frame clustering with respect to a threshold and with different

window size.

We notice from this figure that for a Th = 0.2, the number of clusters825

varies from 330 to 440 and a good compromise is obtained for Nt = 3.826

Furthermore, clustering is applied on 14 motions extracted from the827

dataset (3) and performed by two actors (a man and a woman) in order828

to evaluate the efficiency of the clip-based clustering. By decreasing the829

threshold Th of the clustering algorithm, we obtain more clusters. Experi-830

mentally, we set Th to 0.43 and obtain 23 clusters from initially 110 clips for831

the first actor and 26 clusters for the second one (see Figure 23). We notice832

that clips representing sprint or running steps are clustered together.833

The video summarization process can be used efficiently in hierarchical834

structure, starting by video segmentation into clips, followed by clip-based835
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Figure 23: Clustering clips from a sequence of two actors performing 14

motions from the dataset (3) for a total of 1400 frames, with respect to Th.

In second raw, the variation of clip number in each cluster is presented.

clustering and then a pose-based clustering performed on the frames of all836

represented clusters of the clips resulting from the last step. The effectiveness837

of our summarization process is shown in Figure 24 for the sequence of a real838

actor performing walking and squatting motion. From 500 frames segmented839

into 18 clips, the clustering process gives 6 clusters. The new subsequence840

containing 6 clips (most representative clip in each cluster) and 180 frames841

is then clustered into 41 clusters where each one represent a class of pose.842
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Figure 24: Summarization process: (a) for a sequence of 500 frames seg-

mented into 18 clips, the clustering process returns 6 clusters of clips using

Th = 0.38 (b) subsequence of clustered clips (180 frames) where each cluster

is represented by only one clip chosen as the Karcher Mean clip of the cluster,

(c) clustering of subsequence into 41 clusters of frames using Th = 0.5, (d)

distribution of the number of frames in clusters.

7.5.2. Hierarchical data retrieval843

For a mesh model of 1 MB size, the size of the 3D video sequence grows844

linearly of 1 MB per frame. Hence, the video retrieval becomes very difficult845

in long sequences. Within our framework, we propose to combine the data846

clustering approach with the content-based retrieval in order to perform an847
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hierarchical retrieval.848

The clustering approach gathers models with similar poses/clips in clus-849

ters. If we consider the element of cluster as a pose, clusters are firstly850

performed over the entire sequence in order to gather frames with similar851

poses and then a template model is obtained for each cluster by computing852

its Karcher Mean as described in section 4.3. The retrieval system can then853

be described as an hierarchical structure composed of two levels, the first one854

containing templates and the second one containing all models of the dataset.855

In view of this structure, a natural way is to start at the top, compare the856

query with the template of each cluster and proceed down the branch that857

leads to the closest shape.858

We reconsider the same experiments for pose based retrieval in section 7.2859

by applying the hierarchical approach to the dataset summarized in Table 1860

(1st raw) . Each query model is compared to each one of the template models861

representing the clusters. The elastic measure values are used to generate a862

confusion matrix for all classes of pose, in order to evaluate the recognition863

performance by computing statistic retrieval measures thanks to the provided864

ground truth. The matrix of comparison in the first level (model-template865

comparison), is shown in Figure 25.866

If we compare this matrix to that already obtained for the same dataset867

without the use of summarization (Figure 10), you can easily notice the868

effectiveness of the summarization. The main advantage of this approach is869

the reduction of computation time which complexity pass from n to log(n)870

while keeping relevant information. Retrieval performances obtained from871

this matrix for FT, ST and E-Measure are respectively 84.5% , 88.2% and872
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Figure 25: Similarity matrix and its binarization for template pose of each

class against all models in the dataset.

43.6%. Comparing these results to those in Table 2, a small improvement is873

achieved for classic retrieval scenario in term of second tier.874

In term of pose classification, the obtained accuracy is about 90.24%.875

Models of the class ♯2 are the most ones affected by misclassification and are876

assigned to the class ♯16. Looking at these two classes, we perceive that their877

poses are close to each other, both represent people with hands outstretched.878

The only difference is that one does with open legs and the other with closed879

ones.880

881

Finally, if we consider the element of cluster as a clip, where a video882

segmentation is firstly performed on the whole sequence. In this case, the883

template model is a ”mean” clip obtained for each cluster of clips by com-884

puting its Karcher Mean (see Algorithm 1). The retrieval system can then885
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be viewed as above with hierarchical structure. As experimental test, we886

performed a similar experimentation on the 14 motions performed by two887

actors as already evaluated in the section 7.3. In this experimentation, each888

query is a clip compared to each one of the template models representing889

the clusters of clips. The similarity measure values obtained by DTW algo-890

rithm between clips are used to generate a confusion matrix for all classes of891

clips, in order to evaluate the recognition performance by computing statis-892

tic retrieval measures thanks to the provided ground truth. The matrix of893

comparison in the first level (model-template comparison) is shown in Figure894

26.895

Figure 26: Similarity matrix and its binarization for template clip of each

class against all clips in the dataset.

Retrieval performances obtained from this matrix for FT, ST and E-896

Measure are respectively 84.09%, 95.83% and 55.26%. In term of clip classi-897

fication, obtained accuracy is about 93.75%. The analysis of the result given898

by the binarized matrix shows that the most misclassified clips are those of899
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”fast run” class. In fact, they are assigned to class template representing900

“sprint” motion class.901

8. Discussion902

The advantages of using EHC to represent human pose and motion in our903

approach include: (1) invariance to affine transformation (2) possibility to904

compute mean poses and mean clips (3) the use of well defined measure for905

pose comparison in Reimannian manifold and (4) the use of well established906

algorithm of DTW to align sequences taking benefits from the temporal907

aspect of curves.908

However, this representation has some limitations. Firstly, EHC depends909

on the accuracy of extremities (head and limbs) extraction and on the defini-910

tion of the path connecting end-points. In fact, the extraction of end-points911

and extremal curves is based on the definition of geodesic distance between912

each pair of curves. Thus, geodesic distances play an important role in our913

geometric representation of the human body shape. However, they are sensi-914

tive to significant topology changes as shown in Figure 27. In this figure, only915

4 extremities are successfully detected and the left hand extremity is missed.916

Thus, information about position of this hand is lost. In the future, other917

strategies will be investigated for the extremities extraction step and shortest918

path detection on the mesh by using diffusion or commute time distances as919

presented by Elkhoury et al. [15] and Sun et al. [52].920

Secondly, we note that our curve extraction can be sensitive to loose921

clothes. For example, the mesh represented in Figure 27 shows a girl wearing922

a skirt and the shape of the curve connecting her feet is different from the923
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same curve extracted on her mesh if she were wearing a trouser. This problem924

will be even more critical if she wears a long skirt.925

Thirdly, a prior knowledge on the direction of the posture of the human926

body for the starting frame in video sequence is used to distinguish between927

left/right hand and foot. Other feature matching algorithms, like Heat Kernel928

Signature as proposed by Sun et al. [52] and Zheng et al. [53], could be used929

in future work to correctly identify the right from the left side.930

Figure 27: Example of failed extraction of EHC in presence of a topological

change.

9. Conclusion931

In this work, we have proposed a unified framework able to represent932

human body shape with a pose descriptor, as well as a sequence of frames933

with a specific representation. This framework relies on an Extremal Human934

Curve descriptor (EHC), based on extremal features and geodesics between935

each pair of them. This descriptor has the advantage of being a skeletal rep-936

resentation, which is trackable over time. It is also an extremal descriptor937

of the surface deformation which is composed by a collection of local open-938
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3D-curves. The representation of these curves and the comparison between939

them are performed in the Riemannian shape space of open curves. By this940

way, we have chosen to represent the pose of a mesh regardless to its rota-941

tion, translation and scale. Convoluted with a time filter to incorporate the942

motion, it becomes a temporal descriptor for pose retrieval. The degree of943

motion using feature vector, extracted from this descriptor, is then used for944

spliting continuous sequence into elementary motion segments called clips.945

Each clip describing an atomic movement is characterized by EHC repre-946

sentation associated to human mesh. The open curves in 3D space, which947

are the elements of EHC representation, are viewed as a point in the shape948

space of open curves and hence each clip is represented by a trajectory on949

this space. Dynamic time warping is used to align different trajectories and950

give a similarity score between each two clips.951

The quality of our descriptor regarding the recognition performance of952

shape similarity in 3D video is analyzed and verified also by comparison953

with other related recent techniques. Moreover, our approach achieves a954

performance accuracy of 93.44% for video retrieval as second tier, which is955

encouraging. Finally, we will investigate 3D human action recognition and956

semantic activity analysis based on this framework.957
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