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Abstract

Concurrently obtaining an accurate, robust and fast global registration of
multiple 3D scans is still an open issue for modern 3D modeling pipelines,
especially when high metric precision as well as easy usage of high-end de-
vices (structured-light or laser scanners) are required. Various solutions have
been proposed (either heuristic, iterative and/or closed form solutions) which
present some compromise concerning the fulfillment of the above contrasting
requirements. Our purpose here, compared to existing reference solutions, is
to go a step further in this perspective by presenting a new technique able
to provide improved alignment performance, even on large datasets (both in
terms of number of views and/or point density) of range images. Relying
on the ‘Optimization-on-a-Manifold’ (OOM) approach, originally proposed
by Krishnan et al., we propose a set of methodological and computational
upgrades that produce an operative impact on both accuracy, robustness and
computational performance compared to the original solution. In particular,
always basing on an unconstrained error minimization over the manifold of
rotations, instead of relying on a static set of point correspondences, our al-
gorithm updates the optimization iterations with a dynamically modified set
of correspondences in a computationally e↵ective way, leading to substan-
tial improvements in terms of registration accuracy and convergence trend.
Other proposed improvements are directed to a substantial reduction of the
computational load without sacrificing the alignment performance. Stress
tests with increasing views misalignment allowed to appreciate the conver-
gence robustness of the proposed solution. Eventually, we demonstrate that
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for very large datasets a further computational speedup can be reached by
the adoption of an hybrid (local heuristic followed by global optimization)
registration approach.

Keywords: Global Registration, 3D Scanning, Range Images,
Correspondence Selection, Newton-type Optimization, Di↵erential
Geometry

1. Introduction

Objects and scene modeling from 3D scan data requires an accurate align-
ment of the acquired multiple views. In a conventional alignment pipeline
[1], two consecutive alignment steps, usually called coarse (or initial) and
fine (or refined), are performed on all the overlapping views. Either these
steps are carried out in a pairwise fashion (with possible accumulation of
alignment errors) or according to some multi-view heuristics, high quality
3D modeling requires a final optimized global registration of the whole set
of views in order to further reduce and evenly distribute the residual align-
ment errors. Other than guaranteeing the highest alignment accuracy, this
last step should also provide other desirable properties. First of all robust-
ness, because it is not guaranteed that all views are already well aligned, e.g.
when loop closure problems are to be solved. Secondly computational e�-
ciency, where computation time becomes an issue especially for dense view
and large view collections. Moreover, several advanced specialized and pro-
fessional application fields (e.g. biomedicine, orthopedics and orthodontia,
cultural heritage, industrial design and reverse engineering) tend to generate
large data sets (both in terms of number of views, spatial point density, as
well as metric accuracy) so that the overall usability of the acquisition and
processing pipeline emerges as another primary requirement.
Pretty fast heuristic methods have been proposed to handle the global reg-
istration problem; the most popular one, and also a recognized reference in
terms of performance, is the method proposed by Pulli [2]. However, such
kind of methods can not guarantee (as we also verify in this work) to actually
minimize the alignment error, so that the views’ position remains subopti-
mal while, as stated, maximized metric accuracy of the views alignment is a
sine qua non for the aforesaid demanding application fields. For this reason,
more connatural methods for approaching the global registration problem
are those that adopt some numerical optimization solutions. However, 1) the
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global nature of the problem can easily generate computational issues, and
2) optimization methods are to be well designed and conditioned in order to
reduce the risk to be stuck in local minima or to behave incorrectly. Our pro-
posed solution relies on the optimization over the di↵erentiable manifold of
3D rotation matrices (i.e. the orthogonal Lie group SO(3)) [3, 4], a functional
theoretical framework which, however, in its early proposed global registra-
tion implementation [5, 6], reveals itself not fully adequate to address the
above problems 1) and 2). Our main contribution here consists in a new re-
designed algorithmic approach which significantly improves the performance
of the original one, demonstrating to be suitable for the most demanding
modern applications in terms of convergence, accuracy, and computational
performance. A hybrid approach, which combines a first heuristic-based
alignment stage followed by the proposed solution, is also tested in order to
further reduce the global registration time for the most demanding cases.
Since the proposed solutions are designed to be used in the context of mod-
ern and high-quality 3D object modeling chains, a gentle introduction to
the problem we tackle is firstly provided in Sec.1.1 (which can be possibly
skipped by the informed reader). Subsequently, a literature review is pre-
sented in Sec.1.2. Finally, an outline of the paper concludes this introduction
(Sec.1.3).

1.1. Problem description

The possibility to create accurate 3D models of real objects is a primal
asset of several application domains such as industrial reverse engineering
[7] and visual inspection [8], cultural heritage preservation [9], robot local-
ization and navigation [10], biological and medical imaging [11]. This is
increasingly influencing a number of related fields such as computer anima-
tion and augmented reality, environmental remote sensing, construction site
management, e-commerce, entertainment, fashion industry, and more. When
metric accuracy is a priority, the acquisition is usually made by active 3D
optical devices such as laser or structured light 3D scanners which today
guarantee high quality and dense point sets captured from their field of view
(FoV). At the same time, the physical FoV limitation of the scanner and the
spatial morphology of the objects to acquire, require the collection of several
(dozen or even hundreds) views in order to build a complete 3D model of
the object or the scene of interest. Starting from a collection of independent
views (lying in their own local reference systems), and under proper view
overlapping and object surface coverage hypothesis, the construction of a 3D
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model is obtained through a pipeline consisting in a series of (geometric) data
processing steps, where the main objective is the registration (or alignment)
in a common reference system of all views toward a unique digital model,
under application-driven requirements that are usually related to accuracy,
robustness, computational speed and automatism.

[Figure 1 about here.]

Due to the intrinsic complexity nature of the acquired data (caused by the
presence of occlusions, noise, outliers, residual distortions and variable view
overlapping area) it is not viable to conceive and formalize the alignment
problem according to a unique single-step, closed-form solving approach. A
main distinction regards the concepts of ‘local’ and ‘global’. It is clear how
the alignment problem would have a global nature as a whole, however it
must be recognized that the alignment of a single view is quite a local prob-
lem, and that in most cases the acquisition of an object or the navigation of
an environment follows a certain path, either decided on-the-fly or planned
in advance, and this is usually linked to local decisions as well. Therefore
the alignment problem can be conceived as a local-to-global approach, in
that each view is registered with respect to its neighboring ones, possibly
according to a specific path, with the aim of arriving to a global registration.
The role of global registration is twofold: to perform an equal redistribution
of residual alignment errors due to data imperfections, and to solve the clo-
sure problems that are likely to happen whenever the acquisition path turns
around the object, possibly several times and through crossing paths, in order
to obtain a complete coverage of the object. The typical strategy employed
by well-defined, state-of-art approaches is to apply a local coarse alignment
technique followed by a local fine alignment step, which is in turn used to
initialize a global registration phase. Usually, each phase defines di↵erent
problems that require distinct solving approaches. In the present work we
focus on the final step of the alignment problem, that is, the global regis-
tration phase. We initially assume that we can rely on a fairly good initial
alignment of the views, as the one that can ordinarily be provided by refer-
ence fine alignment techniques, e.g. those based on pairwise Iterative Closest
Point solutions, being the fine alignment usually applied in a sequential pair-
wise order following the object scanning path. We will also strain our system
by gradually releasing the strictness of the fine alignment assumption, while
concurrently performing an enlarged exploration of the basin of convergence
of the proposed optimization solution. Overall, our method will prove to be
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e↵ective, robust and versatile to guarantee a highly accurate global align-
ment for a wide class of challenging (large and dense) experimental datasets
(here anticipated in Fig. 1) and initial alignment conditions.

1.2. The related work

Due to the complexity of the alignment task and the strict interdepen-
dence of the phases of fine alignment and global registration, we now focus
on an essential literature overview of the above steps of the 3D modeling
pipeline. For a state-of-the-art of coarse alignment techniques, the inter-
ested reader can start o↵ with our recent work [12].
Fine alignment These methods are usually employed to improve the align-
ment obtained after the application of a coarse alignment technique. Many
approaches to this problem are related to the Iterative Closest Point (ICP)
technique, first introduced in [13] and [14], and to its e�cient variants in-
troduced afterwards [15], [16], [17], [18]. The ICP technique is an iterative
approach for which, at every iteration, a set of correspondences is estab-
lished between two views, and used to estimate the rototranslation matrix
that brings these views closer to alignment. Due to problems induced by
sample noise and partial occlusions in the superposition zones, some meth-
ods try to avoid the computation of the correspondence set and define the
registration problem using surface distance functions [19], [20]. Some work
has also been done on ‘non-rigid’ fine alignment as a form of compensation
for nonlinearities related to the acquisition device, such as optical distortions
and calibration errors [21, 22]. These techniques can be used to compen-
sate for discrepancies that appear in the overlapping areas of di↵erent scans,
which cannot be removed by the application of rigid transformations, since
each scan is subject to noise and distortion introduced during the acquisition
process. To this end, also some classes of surface reconstruction algorithms
can e↵ectively cope with this kind of residual misalignment [23].
Global registration After an initialization of the presentation of the di↵erent
scans of an object provided by a multiview coarse alignment, which is com-
monly followed by a sequence of multiple pairwise fine alignments, there is
the need to perform a simultaneous ’adjustment’ (commonly addressed as
’global registration’) of the positions of all the views. In fact, a mere chained
application of pairwise fine alignments (as proposed in early works [13], [24])
is usually unable to solve the typical problems that arise in multi-view align-
ment, such as error propagation and loop closure issues. A global registration
can be done in several ways and it usually leads to formalizations which com-
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prise non-convex minimization problems to solve with constraints related to
the rigid transformations of point sets belonging to the views. Graph based
representations of the overlapping views can help to define heuristics or al-
gorithms to better condition the problem while keeping the computational
load under control. In general, although various methods exhibit similar-
ities, it can be very di�cult to compare them due to several factors: the
diversity of used metrics and experimental conditions, di↵erent HW and SW
environments and, not least, the large heterogeneity existing in the dataset
we may want to consider (e.g. due to creation/acquisition tools/equipments,
synthetic/real(noisy) data, point/vertexes density, mesh/point cloud format,
number of views,...). In general, convergence trend studies are valuable but
should be carefully verified on real-world data and, as we will see, it is not
at all guaranteed that a better rate of convergence is also towards a better
minimum. The point correspondence theme is also very important. Some
works are based on out-of-core computed correspondence sets, others foresee
to update the correspondences in an iterative manner, others try to avoid
using them at all.
Among representative early works on global registration, Blais and Levine
[25] minimize an Euclidean distance cost function, calculated on sets of con-
trol points, by simulated annealing. Later, Silva et al. [26] adopt a similar
approach exploiting genetic algorithms with a surface interpenetration mea-
sure. Bergevin et al. [27] organize the pair of views in a network structure
to simultaneously and iteratively minimize the alignment error. Benjema
and Schmitt [28] propose a randomized ICP over a multi z-bu↵er structure
capable of representing overlapping portions of the views and accelerate oper-
ations on them. Another generalized multiview ICP is proposed by Williams
and Bennamoun [29]. Pennec [30] propose a method which alternates be-
tween the calculation and refinement of a mean shape and the alignment of
the views on it, while Stoddart and Hilton [31] map the registration prob-
lem on a physically inspired model where a minimum of potential energy is
found with an iterative numerical method based on gradient descent. An
improved force-based optimization method is also proposed by Eggert et al.
[32]. Huber and Hebert [33] use a global consistency measure on a graph
of pairwise matching looking for globally connected subgraphs on which to
solve a multiview point-to-plane distance minimization problem according to
the approach proposed by Neugebauer [34]. Pulli in [2] uses correspondence-
based pairwise alignments and matching heuristics as constraints for its ef-
fective multi-view error distribution among the aligned views. The method
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is still considered a valid approach thanks to its e↵ective error distribution
heuristic, computational e�ciency, outlier rejection rules and the capability
to handle large datasets. However, as we also observed in our experiments,
some criticality remain when handling multiple closure problems (from the
acquisition of complex objects), as well as when the number of views to align
increases up to the point that the underlying heuristic fails to converge to
the global minimum of the error function.
Quaternion representation of rigid rototranslation transformations [35] is ex-
ploited in several global registration works [36], [37], [38]. Benjemaa and
Schmidt [36] demonstrate that the optimal translation can be decoupled and
solved independently from the optimal rotation. Their approach is based on
an iterative method where rotation solutions are found based on the move-
ment of one view at a time while keeping the others fixed. The same decou-
pling is exploited in the work of Sharp et al. [37] where optimization over
the graph of neighboring views in a quaternion space is done and closed form
solutions are obtained on the cycles of a graph decomposition. The method
does not require the computation of point correspondences and can be com-
bined with any pairwise alignment algorithm to generate the estimates of
relative motion between each pair of views. Torsello et al. [38] adopt a dual
quaternion formulation to project pairwise alignments on the same reference
frame and to perform a di↵usion along the graph of adjacent views. Also in
this case an alternation of the di↵usion method and ICP pairwise alignment
is suggested for real-world data where alignment performance similar to those
of the Pulli method are obtained.
Pottman et al. [39] developed a method based on a first order kinematical
analysis that exploits local quadratic approximants of the squared distance
function associated to the surfaces to be aligned. This is further investigated
in [40], where the global registration problem from a geometric optimization
point of view is studied, trying to provide a theoretical framework for better
understanding of the empirical results reported in former literature (including
ICP-based methods which exhibit linear convergence), and to explore var-
ious constrained nonlinear least squares approaches based on Newton type
descent algorithms which can lead to faster (locally quadratic) convergence.
Krishnan et al. [5], [6] proposed an unconstrained optimization procedure
which exploits translation and rotation decoupling and solve for the vector of
all view rotations through an optimization method that explicitly works on
the constrained manifold of rotations SO(3). Breitenreicher and Schnörr [41]
further show (even if limited to pairwise alignment) that taking the intrinsic
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geometry of the underlying manifold into account for registration, signifi-
cantly increases robustness with respect to poor initialization. The global
registration method described in [6] guarantees a closed form solution in the
noiseless case (assuming the knowledge of a set of ‘exact’ correspondences),
while for real-world data the use of an iterative Gauss-Newton scheme ob-
tained locally quadratic convergence and computational costs independent
of the number of points in the views. In fact, to perform global registration,
a set of correspondences between the overlapping pairs of views has to be
provided, which is kept fixed during minimization. In the noisy case this
‘known correspondences’ assumption is motivated by the fact that methods
like ICP already deliver reliable correspondences at a pairwise level and that
global error distribution can rely on that. This is the same line of reasoning
we can find in Pulli’s work and in others that see the possibility of performing
global error distribution without or with minimal correspondence updating.
This is also considered an enabling factor to attain computationally a↵ord-
able techniques. Nevertheless, with regard to computational performance,
it has been observed by some comparison studies [42], [43] that, in general,
accuracy of the alignment comes at the price of heavier computational cost.
Therefore, methods that reach a good compromise between accuracy and
speed are of great value for practical applications. Our e↵ort here is directed
to advance some steps in this direction by proposing and demonstrating that
a substantial accuracy improvement and benefits in terms of computational
cost can be achieved with respect to [6] with a solution based on iterative
correspondence updating and other adjuvant technical solutions.

1.3. Paper outline

Following, we focus on rigid global registration solutions which are partic-
ularly suited for good quality (low noise and distortion) and high-resolution
(computational demanding) range scans produced by modern optical range
scanners, such as structured light optical devices. We propose some op-
erative modifications to the original ‘Optimization-on-a-Manifold’ (OOM)
framework proposed in [6] (here recapped in Sec.2.1 and 2.2) which are in-
tended to obtain a superior alignment accuracy as well as a boost in com-
putational speed. In Sec.2.3 we present the main ideas at the base of our
‘Improved Optimization-on-a-Manifold’ (IOM) technique. They consist in
the introduction of a fast technique for updating correspondences at each
OOM iteration, which was not foreseen in the original algorithm and which
can give significant improvements in terms of convergence rate and alignment
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accuracy. Moreover, we devise a significant computational speedup with re-
spect to the original algorithm, and a di↵erent correspondence matching
strategy that contributes to improve the convergence rate. Other optimized
implementation solutions are described in Sec.3, which allow us to increase
the execution speed of the IOM method. Experimental results and discus-
sions are presented in Sec.4, where robustness (with respect to input mis-
alignments), accuracy and execution time are evaluated and compared with
respect to reference methods. The present work is an updated extension
of our conference paper [44], where results are presented on a substantially
expanded dataset. In particular, the paper has been reorganized, improved
and partially rewritten in all parts (with expanded introductory sections), a
new stress test has been introduced aiming to establish the basin of conver-
gence of the proposed method, as well as an enriched comparison with the
Global Registration method of Pulli [2], with also new experiments about its
combined usage with IOM, aimed to explore the possibility to better manage
larger datasets.

2. Material and Methods

2.1. Mathematical framework
In this section we concisely give an overview of the underlying mathe-

matical framework for both the original OOM and our modified algorithm
described later. We essentially maintained the notation of [6] and [4] to
which the reader can refer for additional details. An early reference about
minimization on manifolds for computer vision applications is the work by
Taylor and Kriegman [3].
Let’s start with an idealization of the global registration problem. We will
see how, even if initially quite far from a real acquisition setup, this frame-
work allows to derive an optimization core that, with due expedients, can be
successfully deployed for the solution of real problems.

2.1.1. Algebraic derivation of the error function
Consider a 3D object as a set of K points lying in a ‘world’ reference

system:
W =

�
wk 2 R3, k = [1, K]

 
(1)

Now imagine to acquire N views of the object, each taken from a di↵erent
viewpoint. Then, view i only see a subset W

i

✓ W , that is:

W
i

=
�
wk

i

2 R3, k = [1, K
i

]
 
✓ W (2)
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Viewpoint variation also causes each point subset to lie within a di↵erent
reference frame:

V
i

=
�
vk
i

2 R3, k = [1, K
i

]
 

(3)

For each view i, however, it is possible to define the rotation and translation
matrices (R

i

, t
i

) that bring the viewpoint reference frame into the ‘world’
reference frame, so that the following holds:

wk

i

= R
i

vk
i

+ t
i

(4)

In order to globally register the N views, each must have an overlapping area
with respect to the others. Given a pair of views, say i and j, we address
W

ij

= W
i

\W
j

as the set of K
ij

3D points that appear in both views. Clearly,
W

ij

= W
ji

, and K
ij

= K
ji

. With respect to the acquisition reference frames
we have:

V
ij

=
�
vk
ij

2 R3, k = [1, K
ij

]
 

V
ji

=
�
vk
ji

2 R3, k = [1, K
ij

]
 (5)

such that, by applying (4), we have:

R
i

vk
ij

+ t
i

= wk

ij

= R
j

vk
ji

+ t
j

(6)

So, we can reinterpret what we defined above as an ‘ideal’ global registration
problem, to be solved with the minimization of an error function:

g =
NX

i=1

NX

j=i+1

KijX

k=1

���R
i

vk
ij

+ t
i

�
�
�
R

j

vk
ji

+ t
j

���2 (7)

After some algebraic operations that we minimally trace here, error function
(7) can be rewritten1 into a matrix form:

g (R, T ) = tr
�
RART + 2RBT T + T CT T

�

= tr
�
RART

�
+ 2vecT (T ) vec (RB)+

+ vecT (T ) (C ⌦ I
3

) vec (T ) ,

with R : = [R
1

R
2

. . . R
N

] 2 R3⇥3N

and T : = [ t
1

t
2

. . . t
N

] 2 R3⇥N

(8)

1
Given a r ⇥ c matrix A, we recall the definition of the vectorization operator vec(·),

which generates a rc⇥ 1 vector: vec(A) = [a1,1, . . . , ar,1, a1,2, . . . , ar,2, . . . , a1,c, . . . , ar,c]T.
The trace operator tr(·) of a square matrix B is such that tr(B) =

P
i b(i, i). The tensor

(or Kronecker) product of two matrices A and B, A ⌦ B, is a block matrix where each

elements ai,j of A is substituted with the block element ai,jB.
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Matrices A,B and C are constructed as follows:


A B
BT C

�
=

NX

i=1

NX

j=i+1

KijX

k=1


ak
ij

e
ij

� ⇥
ak
ij

T e
ij

T
⇤
� 0

where e
i

is the i
th

column of an N ⇥N identity matrix I
N

, e
ij

= e
i

� e
j

and
ak
ij

= (e
i

⌦ I
3

) vk
ij

� (e
j

⌦ I
3

) vk
ji

.
It is possible to remove the dependency from T by first minimizing (8) with
respect to vec (T ), which gets T (R) = �RBC†. Now substituting back
T (R) in (8), a new error function can be obtained:

f (R) = tr
�
RMRT

�
= vecT

�
RT

�
(I

3

⌦M) vec
�
RT

�
(9)

with M equal to A � BC†BT, where C† is the pseudoinverse of C, since
matrix C is singular.

2.1.2. The product manifold of SO(3)N and its parametrization
Now we concisely look at the geometry of the special orthogonal group

SO(3) (the group of 3 ⇥ 3 orthogonal matrices with determinant +1, R
i

2
SO(3) for i = [1, N ]) which is a Lie group. Its group operator is matrix
multiplication. Its associated Lie algebra so

3

is the set of 3⇥3 skew symmetric
matrices of the form:

⌦ =

2

4
0 �!

z

!
y

!
z

0 �!
x

�!
y

!
x

0

3

5 (10)

Now, considering a vector ! = [!
x

!
y

!
z

] 2 R3 this can be transformed to
the matrix ⌦ 2 so

3

by the map ⌦ = ⌦ (!) = Q
x

!
x

+Q
y

!
y

+Q
z

!
z

, with Q
x

,
Q

y

and Q
z

equal to

2

4
0 0 0
0 0 �1
0 1 0

3

5 ,

2

4
0 0 1
0 0 0
�1 0 0

3

5 ,

2

4
0 �1 0
1 0 0
0 0 0

3

5

respectively.
This denotes a known isomorphism which exists from the Lie algebra (R3,⇥)
to the Lie algebra (so

3

, [., .]), with ⇥ the cross product and [., .] the matrix
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commutator. Of interest here is the N -fold product manifold of SO(3) which
is a smooth manifold of dimension 3N , given by

SO(3)N = SO(3)⇥ . . .⇥ SO(3) (N times) (11)

Recall that the tangent space of SO(3) atR
i

is given as T
RiSO(3) = {R

i

⌦
i

|⌦
i

2 so

3

}
and the a�ne tangent space is T a↵

Ri
SO(3) = {R

i

+R
i

⌦
i

|⌦
i

2 so

3

}. Define
the block diagonal matrix

⌦̃ = ⌦
1

� ⌦
2

� . . .� ⌦
N

, ⌦
i

2 so

3

(12)

Due to isomorphism, the tangent space of SO(3)N at R 2 SO(3)N can be
identified as T

R

SO(3)N = R⌦̃ and the a�ne tangent space is T a↵

R

SO(3)N =
R +R⌦̃. Let N (0) ⇢ R3 denote a su�ciently small open neighborhood of
the origin in R3, and let R

i

2 SO(3). Then the exponential mapping

µ : N (0) ⇢ R3 ! SO(3), !
i

7! R
i

e⌦i(!i) (13)

is a local di↵eomorphism from N (0) onto a neighborhood of R
i

in SO(3).
Due to isomorphism, the product manifold SO(3)N at R 2 SO(3)N can be
locally parametrized by

' : R3N ! SO(3)N , (14)

! 7! Re
˜

⌦(!)

with ! = [!
1

. . .!
N

] T 2 N (0)⇥ . . .⇥N (0) ⇢ R3N ,
and Re

˜

⌦(!) = R
�
e⌦(!

1

) � . . .� e⌦(!N )

�
.

2.1.3. Constructing a local approximation
A local approximation of the error function f (9) is now constructed

using a second order Taylor expansion. Instead of di↵erentiating f , the local
parametrization of SO(3) will be exploited by performing the approximation
on the function f � ', whose domain is R3N . Intuitively, the use of the
local parametrization ' ensures to always remain on the manifold. The cost
function f at R 2 SO(3)N expressed in local parameter space using a smooth
local parametrization 'R : R3N ! SO(3),!

i

7! R
i

e⌦(!i) is given by:

f � 'R (!) = tr
⇣
Re

˜

⌦(!)Me
˜

⌦(!)

TRT
⌘

(15)
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Now we express

j
(2)

0

(f � 'R) : R3N ! R,

! 7!
✓
(f � 'R) (t!) +

d

dt
(f � 'R) (t!)+

+
1

2

d2

dt2
(f � 'R) (t!)

◆
|
t=0

(16)

as the second order Taylor approximation of f�'R about 0 2 R3N in direction
!, where:

(f � 'R) (t!)
���
t=0

= tr
�
RMRT

�

d

dt
(f � 'R) (t!)

����
t=0

= 2 · tr
⇣
R⌦̃MRT

⌘

= 2!Tr
f�'R (0)

1

2

d2

dt2
(f � 'R) (t!)

����
t=0

= !TH
f�'R (0)!

(17)

Since vec
�
⌦T

�
= Q!, we can compute the gradient as:

r
f�'R (0) = JTvec

�
MRT

�
(18)

where

J = (R⌦ I
3N

) Q̃

Q̃ = Q
e1

�Q
e2

� . . . Q
eN

Q
ei

=

2

4
e
i

⌦Q
x

e
i

⌦Q
y

e
i

⌦Q
z

3

5 (19)

By defining H = Ĥ + H̃, the quadratic expansion term of (17) can be de-
composed in a sum of two terms

!TH
f�'R (0)! = !TĤ

f�'R (0)! + !TH̃
f�'R (0)! (20)

where:
Ĥ

f�'R (0) = JT (I
3

⌦M) J � 0

H̃
f�'R (0) = �Q̃T

�
I
3N

⌦MRTR
�
Q̃

(21)

2.2. The original algorithm (OOM)

It is now possible to describe the algorithm proposed in [6], which consists
in the following iteration:

s = ⇡
2

� ⇡
1

: SO(3)N ! SO(3)N (22)
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where ⇡
1

maps a point R 2 SO(3)N to an element in the a�ne tangent space

T a↵

R SO(3)N that minimizes j(2)
0

(f � 'R) (0) and ⇡
2

projects that element back
to SO(3)N by means of the parametrization 'R. In turn, optimization in local
parameter space ⇡

1

consists of two steps: first, calculate a suitable descent
direction and then search for a step length that ensures reduction in cost
function, as described by the mapping:

⇡
1

= ⇡b

1

� ⇡a

1

: SO(3)N ! T a↵SO(3)N (23)

Here, ⇡a

1

is used to obtain a descent direction

⇡a

1

: SO(3)N ! T a↵SO(3)N , R 7! R+R⌦̃ (!
opt

(R))

where !
opt

2 R3N as a function of R = 'R (0) can be given by the Newton
direction when H

f�'R (0) > 0 as

!Newton

opt

(R) = � [H
f�'R (0)]�1 r

f�'R (0) (24)

otherwise, Gauss direction is calculated:

!Gauss

opt

(R) = �
h
Ĥ

f�'R (0)
i�1

r
f�'R (0) (25)

Once an optimal direction is computed, an approximate one-dimensional line
search is carried out in that direction. The search is performed over the scalar
value � > 0 such that the cost function f � 'R (0) is reduced at every step,
giving rise to the mappings:

⇡b

1

: T a↵SO(3)N ! T a↵SO(3)N

R+R⌦̃ (!
opt

(R)) 7! R+R⌦̃ (�
opt

!
opt

(R))
(26)

where �
opt

is the step length that reduces the cost function in direction !
opt

,
and is found using the simple backtracking line search.
Eventually, the OOM algorithm pseudocode can be summarized as follows:

initialize (R, T );
provide the set of correspondences;
while (! convergence) do
apply (R, T ) to the corresponding points;
compute matrices A, B;
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compute matrices M, J ;
compute gradient r

f�'R (0);
compute Ĥ

f�'R (0) and H̃
f�'R (0);

if

⇣
Ĥ

f�'R (0) + H̃
f�'R (0) > 0

⌘
then

compute Newton step !Newton

opt

(R);
else

compute Gauss step !Gauss

opt

(R);
end if

compute step size �
opt

;

projection step: R = Re
˜

⌦(�

opt

!

opt

(R));
compute matrix T from R;

end while

apply (R, T ) to the range data;

The two initialization steps are left quite general on purpose because there
are significant di↵erences depending on whether the algorithm is used in an
ideal context or in a real context, as will be discussed later.

2.3. Algorithm modifications

Despite the original OOM solution [6] can be seen as a definitely favorable
mathematical framework to the problem of global registration, it presents the
limitation of remaining stuck on the same set of correspondences, without
updating them during the iterative minimization procedure. If, on one hand,
this produces a fast convergence to a solution, at the same time this repre-
sents a great limitation (as we will clearly see) to the potentialities of the
method, especially in terms of accuracy, i.e. the main requirement we have.
On the other hand, updating the correspondence at each iteration appears
discouraging because, even not considering that the OOM already presents
some computational burden, this would come with a great increase in com-
putation load, especially for large datasets, i.e. our most challenging target.
In the present work, having recognized the importance of the correspon-
dence update, we conceive and experiment methodological and algorithmic
solutions to realize it e�ciently, producing at the same time relevant improve-
ments in terms of alignment accuracy and a performance boost in terms of
robustness and convergence behavior, especially for challenging datasets. The
main adopted solutions are presented later in this section where, to give an
immediate idea of their e↵ect, they are tested on representative cases. Other
implementation solutions which determine further computational gains are

15



presented in Sec.3, while more exhaustive experimental comparisons on the
considered set of data are documented in Sec.4. In order to allow a direct
and fair comparison of the original OOM and the proposed IOM we reimple-
mented the OOM algorithm as described in [6], and use the same software
modules for our IOM implementation.

[Figure 2 about here.]

[Figure 3 about here.]

2.3.1. R and T initialization
The first substantial di↵erence we introduce with respect to the algorithm

presented in [5, 6] is about the initialization of matrices R and T . The
original work presents a closed-form solution that is capable of perfectly
aligning, in a single step, a set of views in the ideal case of absence of noise
and prior knowledge of exact correspondences. Of course, this cannot be
assumed for real registration and modeling scenarios. What the authors
of [5, 6] propose in these cases is to use a modified version of the closed-
form solution to initialize R and T at the beginning of the iterative OOM
algorithm. However, under our assumptions of good initial alignment, such
an initialization is redundant thus it can be skipped, to the benefit of the
computation time. Thus, in a real scenario, one can initialize R and T to
zero motion, that is to identity R

i

’s and zero valued t
i

’s, and let the first
optimization step do the hardest job. This will be clearer in Sec.3.1.2 where
we will take full advantage of this zero initialization assumption to realize a
major reduction of computation time, while in Sec.4.2 the application extent
and robustness of our initialization related assumptions is evaluated.

2.3.2. Correspondence set update
As stated, a major limitation of the framework proposed in [6] is related to

the fact that it requires an ‘exact’ correspondence set as an input. However,
in such a case, a closed form solution such as [35] would su�ce in recovering
the correct alignment. In real cases, e.g. under the reasonable assumption we
made in Sec.1.1 of a good approximate initial alignment between the views,
the initial correspondences that can be obtained are still far from being exact.
In order to get rid of such an implausible correctness requirement, rather than
exploiting the same correspondence set throughout the optimization process,
we constantly update the correspondence set at each iteration by randomly
selecting points on one scan, and determining the matching points on each
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overlapping scan. This way, provided that the initial alignment between the
views is close enough to the optimal solution, at each iteration the views will
be brought closer to the final solution, which in turn improves the correctness
of the next correspondence set, until convergence is reached. Updating the
correspondence set, however, comes at a price, as it would require for each
iteration applying the estimated rototranslation matrices at each scan in the
dataset to allow the correspondence update procedure. This would signify
a substantial increase in computational cost, proportional to both the num-
ber and resolution of the scans, which would render our modified technique
not at all appealing for practical applications. However, such computational
burden can be considerably reduced by employing a smart correspondence
update procedure (described in Sec.3.1.1).
One factor that can negatively a↵ect the success of any correspondence-based
alignment technique is the potential presence of outliers: depending on its
severity, such presence can slow down, or even prevent the attainment of a
successful alignment. In our case (good initial alignment assumption) we can
devise to use a simple outlier rejection policy, which should be e↵ective in
handling problems that occur on the scan borders and holes. To this pur-
pose, we implemented a twofold correspondence filtering criteria: for each
potential correspondence, both the maximum euclidean distance between
candidate points and the angle formed between their normals are computed.
In case one of such values exceeds a given threshold, the considered corre-
spondence is discarded. Default values employed for such thresholds were 2
mm for the absolute distance, and 60 degrees for the normal angles. How-
ever, in some cases, the distance threshold needed to be adjusted to the field
of view of the acquisition device.
Fig. 2 allows to appreciate the impact of the correspondence update, both
in absolute terms and on the convergence behavior, by depicting the conver-
gence rates obtained for the dataset ‘Capital’ (see Fig. 1 for a pictorial and
Sec.4 for a quantitative description of the datasets) by the original algorithm
(thus without updating the correspondences) with respect to a modified ver-
sion of the OOM that instead updates the correspondence set at each itera-
tion: while the first one only obtains a modest improvement of convergence
in a single iteration and does not progress any further2, the second one ex-

2
This is consistent with what observed in [6], where only 2-3 iterations were enough to

get convergence for datasets of similar size.
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ploits the additional information to reach a definitely better alignment and
convergence behavior.

2.3.3. Correspondence matching strategy
[Figure 4 about here.]

Another factor that influences the algorithm convergence rate is related to
the correspondence matching strategy that is employed. Given the source
(S) and destination (D) scans, and a point s

p

with associated normal s
n

on
the source scan, the matching process tries to determine the corresponding
point d

p

on the destination scan that best matches the original point s
p

(see Fig. 4). Rather than employing a straightforward closest point search
(Fig. 4a), we compared two di↵erent variants of the normal shooting strategy,
depicted respectively in Fig. 4b and Fig. 4c. Both the strategies proceed
iteratively as follows: given the starting point s

p

on S, at first the closest
point to D surface d

0
p

is computed. Then, the di↵erence vector l
0
= d

0
p

�
s
p

is computed and projected onto the source normal ⇡
0
= l

0 · s
n

. Such
projection value is used to compute a new starting point s

0
p

= s
p

+ ⇡
0 · s

n

along the normal vector which draws closer to the D surface. From this point
on, we iterate until the corresponding point to sn

p

(the new source point at
iteration n) does not change with respect to the one found at sn�1

p

. Given
the destination point dn

p

determined through this iterative procedure, the first
variant assumes as putative correspondence to s

p

the point d
p

= dn
p

, while the
second one determines a fictional point by performing a last projection of dn

p

onto the source normal, obtaining d
p

= sn
p

+ ⇡n+1 · s
n

. This second variant is
particularly useful when the two scans are close to alignment, since the norm
associated with the distance d

p

� s
p

tends to be consistently lower than the
norm of vector l, and thus better convey the alignment condition (similarly
to what happens for point-to-point versus point-to-plane error metric). We
compared the convergence rates obtained for the dataset ‘Venus’ of the first
variant [13] with respect to the second version we adopted, to guarantee a
fair error comparison point-to-plane metric has been employed in both cases.
As can be seen in Fig. 3, the second variant obtained a non-negligible error
reduction3. These evaluations are consistent and lead, on a regular basis, to

3
In the assessment of a global registration technique even an improvement of the order

of 10 µm, as obtained here, can be significant. As we will see in the experimental section

this improvement is of the same order of magnitude of the final obtained average view
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an improvement we observed for all the considered datasets. Therefore from
now on we adopt this modified normal shooting technique for correspondence
matching as an additional feature of our improved manifold optimization.

[Figure 5 about here.]

2.3.4. Avoiding H̃ computation
One of the most expensive operations foreseen in [6] is the computation of

the matrix H̃, used to determine the optimal descent direction for a Gauss-
Newton iteration (see (16)-(21)). The reason can be easily understood if one
considers the dimension of the matrices involved in its calculation:

H̃
f�'R (0)| {z }
[3N⇥3N ]

= �Q̃T

| {z }
[3N⇥9N

2

]

�
I
3N

⌦MRTR
�

| {z }
[9N

2⇥9N

2

]

Q̃|{z}
[9N

2⇥3N ]

, (27)

where N is the number of images constituting the dataset. In our implemen-
tation, for a small dataset of 23 views, H̃ computation takes approximately
half of the time required by a single iteration. Moreover, as stated in [5], there
is no guarantee that it could be eventually employed. In fact H = Ĥ+H̃ is in
general not positive-definite, while as seen in (25), a trustworthy descent di-
rection can be estimated from Ĥ, which is positive-semidefinite (as reported
in [5]). This is confirmed by a number of tests we run to check in which
proportion matrix H̃ contributed to the final convergence. Every performed
test on all the considered datasets revealed that H̃ is always discarded since
H never passed the positive definiteness test, therefore we have decided to
completely ignore the calculation of H̃, and estimate the optimal descent
direction only through Ĥ, which is expected to provide a reliable result due
to its positive-semidefiniteness.

3. Computationally e↵ective solutions

Given the formerly presented algorithmic modifications, additional im-
plementation solutions are detailed in this section which lead to further com-
putation speed up, without involving any accuracy degradation.

distance.
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3.1. Boosting the computational speed

3.1.1. Correspondence update
In section 2.3.2 it has been shown how alignment accuracy and related

convergence behavior can be improved by updating the correspondence set
at each algorithm iteration. Such operation, however, can be very expen-
sive since it would require applying the di↵erential rototranslation matrices
e
˜

⌦(�

opt

!

opt

(R)) estimated after each iteration (see (13),(14) and the original
algorithm in Sec.2.2), to every range data belonging to the dataset. Here
we show how to avoid such steps by modifying the correspondence update
process, thus greatly reducing its impact on the overall computational cost.
Assume we have two range images, V A

A

and V B

B

, lying in their own reference
systems (where the subscript letters identify the image, while the superscript
letters indicate the reference system). Also, assume we have an estimation
of the rototranslation matrices [R

A

, t
A

] and [R
B

, t
B

] that bring the images
within a common reference system W , thus obtaining V W

A

and V W

B

. Our
goal is to determine an updated set of correspondences CW

AB

. A standard
correspondence update procedure would require to rototranslate images V A

A

and V B

B

, then select a subset of points SW

A

✓ V W

A

(src) and determine the
corresponding points (through, for example, point-to-plane correspondence
search) on V W

B

(dst). Each found correspondence is put in the correspondence
set CW

AB

for the current iteration. This procedure is also visually described
in the left branch of Fig. 5. In order to avoid the time consuming burden
of applying the rototranslation to all the points constituting V

A

and V
B

, we
propose an alternate procedure for updating correspondences that consists in
the following steps. We select the samples set SA

A

and rototranslate it in the
reference system associated with image B, obtaining SB

A

. Then we determine
the correspondence set CB

AB

, and finally rototranslate them within the com-
mon reference system W , obtaining CW

AB

. Fig. 5 shows the two alternative
procedures. Since the proposed one only requires to perform the rototrans-
lations over the sample sets SA

A

and CB

AB

rather than rototranslate the entire
images V

A

and V
B

, it grants a tremendous improvement in terms of compu-
tational speed. Without the proposed expedient the correspondence update
would have no practical use due to the preponderance of computational issues
with respect to the obtainable benefits.

3.1.2. Matrix precomputing
In the previous section we have shown how to update a set of correspon-

dence points given the scans and the related rototranslation matrices. Other
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than being fast, another benefit of this method is that it implicitly applies
the rototranslation matrices estimated by the algorithm up to that point:
thanks to this fact, the algorithm can be run as if (R, T ) were just initialized
to identity (that is, each R

i

composing R is an identity, while each trans-
lation vector t

i

is set to zero). In practice this means that we can employ
a set of identity rototranslation matrices throughout all the steps of the al-
gorithm, with the exception of the correspondence update step, where the
overall rototranslation matrices are employed. As a consequence, matrix J
(a sparse matrix of dimension 9N2 rows by 3N columns which depend on
R) can be precomputed and remains constant throughout all the iterations.
This constitutes another significant computational reduction which does not
influence accuracy.

3.1.3. Final modified algorithm (IOM)
Following, we show how the algorithm pseudocode varies with respect to

the modifications proposed in Sec.2.3 and this section:

initialize (R, T ) to zero motion;
precompute J matrix;
while (! convergence) do
compute the new correspondence matches;
compute matrices A, B;
compute M matrix;
compute gradient r

f�'R (0);
compute Ĥ

f�'R (0);
compute Gauss step !Gauss

opt

(R);
compute step size �

opt

;

projection step: R = Re
˜

⌦(�

opt

!

opt

(R));
compute matrix T from R;

end while

apply (R, T ) to the range data;

3.2. Convergence and stopping rules

The algorithm should iterate the registration until an absolute minimum
for the alignment error is reached. However, setting an absolute threshold on
the error is impractical, since such a threshold would be dataset-dependent
and could not be determined in advance. As an alternative, we could evalu-
ate the average alignment error di↵erence de

k

= e
k

�e
k�1

between successive
iterative steps, and exit when the di↵erence goes below a given threshold.
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Unfortunately, such an approach is again problematic due to the fact that
the di↵erence is influenced by two main factors: de

k

= de
k,imp

+de
k,var

, where
de

k,imp

is the error improvement obtained by the technique at every iteration,
which will tend to decrease while the approach gets closer to convergence,
while de

k,var

is the error variation caused by the fact that error analysis is
performed on di↵erent sets of correspondences which are varied at every iter-
ation. An e�cient termination rule should therefore determine the value of
k when the error dynamic begins to be only marginally influenced by de

k,imp

,
and is only influenced by de

k,var

.
To do so, we consider a vector eV ec

k

of the last error values e
k

recorded during
the previous five iterations, and estimate their standard deviation �(eV ec

k

).
When close to alignment, such value should only be influenced by the same
error variations that give rise to the factor de

k,var

. Such variations are likely
to follow a Gaussian distribution, due to the random selection of the corre-
spondence sets. Therefore by setting a threshold thresh

�

= 1.96 · �(eV ec
k

),
if de

k

is greater than thresh
�

, then it is highly probable that the de
k,imp

has
not yet reached a negligible value, and the iterations should proceed.
We also found it useful to enforce a second constraint, thresh

e

: if the error
e
k

of the current iteration results greater than thresh
e

, it is assumed that
convergence has not been reached yet and the iterative process continues.
Such threshold is a fraction of the average point spacing on the incoming set
of views (to be precise, thresh

e

= avgSpacing

4

), and is helpful to prevent the
algorithm to quit prematurely in cases of particularly slow convergence rates.
In conclusion, the termination rule can be described as a function, called at
the end of every iteration, which accepts as input the current error estimate
e, as follows:

bool DoAnotherIteration(double e)

insert e as first element in eVec;
if (size of eVec >= 5) then
remove last element of eVec;

else

return true;
end if

if (e < thresh
err

) then
de = eVec[4] � eVec[0];
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e
stdDev

= stdDev(eVec);
if (de < 1.96 · e

stdDev

) then
return false;

else

return true;
end if

else

return true;
end if

3.3. Hybrid global registration

As it will be confirmed in the next section, heuristic methods can be
faster but their convergence is not guaranteed. On the other hand, although
being definitely faster than the OOM, our IOM method remains slower than
reference heuristics based methods, with a performance gap that tends to
increase for bigger datasets (e.g. dozens or even hundreds of hi-res range
images), where many correspondences must be evaluated and where matrix
inversions su↵er from the increase of N .
Despite our e↵ort and achievements in finding technical solutions and expe-
dients to reduce the computational burden of the original framework, other
computational optimizations are still possible (optimized sparse matrix han-
dling, multi-threading and parallel computed correspondence update) which
are left to further works. What we propose and test here is the possibil-
ity to obtain additional computational benefits (always without sacrificing
the algorithm’s accuracy) through a simple hybrid registration policy which
consists in the cascade of an heuristic alignment method followed by an op-
timization based one, aiming at bringing the scans closer to the optimal
solution in a first stage while reducing the subsequent optimization engine
workload. In particular, we are interested in evaluating the performance of a
hybrid scheme where Pulli’s algorithm [2] is executed prior to the proposed
IOM. This will give us the chance to improve computational performance on
bigger datasets and also to make some observations that could be useful for
the design and use of such hybrid strategy.

4. Results and discussion

In this section we present a number of tests and comparisons involving the
proposed IOM solution, the original OOM algorithm [6], the Global Regis-
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tration technique proposed by Pulli (hereinafter referred as GRP)[2] and the
hybrid approach (here called HYB) defined above. All the algorithms have
been implemented in C++ and run on a PC Intel I5 M520 (2⇥2,4 GHz)
with 4 GB of RAM. The implementations of OOM, IOM and HYB exploit
the Newmat library package [45] for matrix computation, while the GRP
approach does not require any matrix computation.

4.1. Datasets and settings

Comparisons were performed considering a heterogeneous collection of 14
datasets which are well representative of a wide variety of real life objects
(Fig. 1). The considered datasets are also diversified in terms of number of
views, as they are composed by a number of range scans comprised between
8 and 170 (for a total of around 740 scans). Dimensions of the acquired
objects range from 10 cm (Denture) up to 1.5 meters (Neptune). Objects
are representative of a variety of real high-quality and challenging acquisi-
tion scenarios and present very di↵erent surface and geometric properties.
Range images have been acquired through a professional structured-light
range scanner, and may contain up to 1,3 million points each. The datasets
upon which the comparison is performed have been acquired and later pro-
cessed by an experienced operator that supervised an alignment pipeline
comprising a feature-based automated coarse alignment phase [46] followed
by an ICP based fine alignment [16] along the acquisition path, and even-
tually a final global alignment performed through the Pulli’s algorithm [2].
From such a condition of supposed good global alignment, we executed a
scrambling of each view by applying a random rototranslation matrix com-
posed by a rotation of maximum ±3.0 degrees and a translation of maximum
±0.1mm for each of the three axes, thus reproducing a situation we can find
after a generic coarse alignment phase. This is then followed by a pairwise
fine alignment performed over the scan sequence (again using the approach
of [16]). This reproduces a realistic and general acquisition scenario in which
the range images have been sequentially acquired and aligned in pairs, thus
requiring a final global registration phase. This seemingly redundant dou-
ble global alignment cycle is indeed suitable for a more neutral and flexible
performance assessment. In fact, this way we are able to 1) realistically
simulate a generic coarse alignment (i.e. without the constraint to be stuck
with a specific method with the possible bias this could introduce with the
consequence of potentially influencing the reliability and repeatability of our
results) and 2) to modulate the gap from the desired optimal result (a very
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useful and enabling feature for the stress test we executed).
In order to quantitatively assess the global registration quality of the consid-
ered methods we define an average distance over the dataset, which is com-
puted by averaging error contributions referred to each scan of the dataset.
The scan error is, in turn, computed as the average of the pairwise dis-
tances estimated between the current view and all other overlapping scans,
the pairwise distance being calculated by first selecting a suitably large set
of points on a view, finding its correspondences in the other scan, and finally
calculating the average of their (point-to-plane) distances.

[Figure 6 about here.]

[Figure 7 about here.]

4.2. Robustness to initial misalignments (stress test)

With a preliminary test we want to assess and compare the convergence
properties of the GRP and IOM algorithms with respect to an increasing
initial view misalignment. To this end, we consider datasets which have
been intentionally scrambled with an increasing strength, according to what
is described in Sec.4.1 but this time without performing the subsequent fine
alignment step. It is worth considering that such scenario does not fully sat-
isfy our assumptions of good initial alignment, since we are stressing our IOM
system on purpose, in order to widely assess its basin of convergence. This
way, we also inherently verify the feasibility of the zero motion initialization
described in Sec. 2.3.1 and further exploited with matrix J precomputation
described in Sec. 3.1.2.
Here we consider two datasets, Hurricane and Cupid, and randomly scram-
ble each of their range images by applying a bounded amount of angular and
translation o↵set for each of the three axes. By increasing the maximum
value of the o↵sets we created, for each dataset, 10 di↵erent misalignment
scenarios which range linearly from ±1.5 degrees and ±0.1 mm (scenario 1)
up to ±15 degrees and ±1.0 mm (scenario 10). The GRP and IOM tech-
niques have been carried out for each of the misaligned datasets, giving the
results summarized in Fig. 6, while Fig. 7 shows three di↵erent misalignment
scenarios for the Cupid dataset (the misalignment entity for the worst case is
evident). The obtained results suggest the fact that IOM is far more robust
than GRP in avoiding local minima (it only slightly fails for the scenario
number 10 of the Cupid dataset). The superior convergence properties of
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IOM can be motivated by the fact that it optimally aligns all the views si-
multaneously at each iteration; on the contrary GRP tries to optimally align
each view with respect to the rest, in a sequential way, thus being liable to er-
ror propagation and loop closure phenomena. Fig. 8 shows an example of the
obtained global registration on the Hurricane dataset: Fig. 8a represents the
misaligned dataset, Fig. 8b represents the alignment obtained through GRP
(note the misaligned views corresponding to the statue hair, upper right),
while Fig. 8c shows the alignment obtained through IOM.
The obtained robustness against misalignments, which we also observed in
all the other datasets, reveals that the range of exploitation of our IOM ap-
proach is wider with respect to what is commonly intended and required
as ‘good’ initial alignment conditions. Such working hypothesis should cer-
tainly be preserved in terms of ‘good practice’ rules, which however can be
regarded as conservative in our framework. The obtained results are also
a clear confirmation of the suitability of the algorithmic initializations we
made and the observed stability of the alignment results, irrespective to the
di↵erent set of randomly chosen correspondences, is an indirect confirmation
of the fact that we are still moving within the basin of convergence of the
method. In fact, although we cannot give a rigorous mathematical definition
and assurance about the basin of convergence of the proposed approach (way
too many possible factors can influence the convergence basin shape and di-
mension), the performed stress test at least gave an experimental evidence
that the IOM algorithm can also be considered capable of handling up to
moderate misalignments (i.e. more unfavorable conditions than what it can
be normally expected to have as input of a global registration phase).

[Figure 8 about here.]

4.3. Global registration performance

4.3.1. Alignment accuracy
For the experimental assessment of the alignment accuracy we are in-

terested in the registration error produced by every implemented algorithm
(OOM, IOM, GRP, HYB) for each acquired dataset. The first three columns
of Table 1 give quantitative information about the average scan densities
(typical of state-of-the-art structured light scanners) as well as the number
of views of each considered dataset (in ascending order with respect to dataset
size). The fourth column reports the initial average distance among the views
associated to their initial alignment condition. Global registration results are
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then reported in terms of average and standard deviation of the measured
view distances. Note that OOM could not be executed on big datasets,
due to memory failures caused by the computation of H̃ (Sec.2.3.4)), which
reached the maximum matrix dimension (as confirmed by the Newmat online
documentation), and therefore generated a runtime exception. Nevertheless,
as stated in Sec.2.3.2, OOM did not grant any further improvement at any
iteration following the first one, therefore we would not expect it to behave
di↵erently when employed on bigger datasets.

4.3.2. Convergence trends
Fig. 9 shows the convergence behavior for a selection of datasets (note

that iteration number, which is not informative of the actual computation
time, is reported on the horizontal axis). From these results, a number of
considerations can be drawn. First, IOM granted the lowest dataset error for
all the datasets and, most importantly, the dynamic of its error function drifts
regularly toward its minimum, following a linear convergence rate. On the
contrary, no hints about the GRP convergence course can be deducted from
its error dynamics, confirming the heuristic nature of this technique. While
for small datasets (such as Denture, Dog and Capital) all the techniques
converge to the optimal minimum, in some cases (such as Hurricane, Venus
and Neptune) GRP fails to reach the optimal global registration: in fact, such
bigger cases are more liable to incur into problematic phenomena such as
error propagation and loop closure. On the other hand, the cascade of GRP
followed by IOM (that is, the HYB approach) obtained similar alignment
error than the one reached by IOM approach, suggesting once more that the
proposed approach is capable of recovering from conditions of potential error
propagation misalignments.

4.3.3. Visual quality assessment
Global registration performance obtained for each of the approaches on

a small set of the datasets can also be visually inferred in Fig. 10 where the
greater perceived color interpenetration denotes a better alignment result.
For each dataset its constituting range images are shown, each associated
with a di↵erent color: in principle, the lower the residual alignment error is,
the better the color interpenetration appears. In the first column of Fig. 10
the Crankcase dataset (93 views) is displayed. For the GRP configuration it
is easy to identify three distinct colors near the two bigger holes of the model
(purple, sky and orange), while for the IOM and HYB approaches a greater
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interpenetration is obtained. The second column shows the alignment re-
sults for the Neptune dataset (169 views). For the GRP configuration, one
can distinguish separate colors on the statue stomach (purple and sky) and
pedestal (yellow) more easily than for the alignments obtained with the other
techniques. In the third column, for the Capital dataset (23 views), one can
see separate colors in the upper part of the object for the GRP, while again
a better interpenetration is obtained for the other techniques. At last, for
the Cupid dataset (45 views), three main colors (green, blue and purple) can
be easily identified for the GRP, while this is not the case for the other two
techniques.

4.3.4. Computational speed
Table 2 shows the computational times required for each technique. With

respect to OOM algorithm, IOM presents a significantly reduced computa-
tional burden: up to 10 times less on smaller datasets, while higher gains
seem to be possible for bigger ones, as in the case of Hurricane dataset.
Nevertheless, GRP is faster than IOM in reaching its error minimum, es-
pecially for bigger datasets: in fact, while GRP is composed by a sequence
of ICP runs, which are very fast to compute, IOM needs to consider the
alignment globally, causing the computational burden of such approach to
increase exponentially with the number of scans to be processed. This is
the main reason why we proposed the HYB approach: we try to exploit the
GRP speed to bring the alignment closer to optimum, so that the IOM can
then converge faster. However, the results we obtained do not allow us to
draw any bold conclusion at this stage. In fact, if HYB registrations are as
accurate as the IOM ones, the related computational behavior is somehow
fluctuating; in some cases (as for Hurricane, Decoration and Crankcase) HYB
takes moderately longer than the pure IOM approach, while in others (such
as Horse, Shell and Neptune) the HYB grants a significant improvement.
Our best guess to explain such behavior is that it may be possible that, for a
given initial alignment condition, the GRP results in a local minimum which
is more distant (on the SO(3)N manifold) than the initial alignment with
respect to the optimal solution, therefore the IOM has to compensate for
the augmented distance. In short, we can conclude that HYB computational
performance are dataset-dependent, however, the HYB cascade seem to be
an e↵ective way to reduce the computational burden of bigger datasets. Fi-
nally, we believe that computational performance can be sensibly improved
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by surpassing some limitations of our current implementation. First of all,
we verified that a significant portion of time for IOM is spent in computing
matrices A, B and M, and since some of these computations involve sparse
matrices, this time could be reduced by switching from Newmat toward a
matrix library that better supports sparse calculus. Moreover, correspon-
dence selection at each iteration is parallelizable and can thus be computed
on GPU hardware.

[Table 1 about here.]

[Table 2 about here.]

[Figure 9 about here.]

5. Conclusion

In this work, a new approach capable of guaranteeing accurate and ro-
bust global registration of collections of range images is presented. Based
on the valuable Optimization-on-a-Manifold engine, originally proposed in
[6] (OOM), a series of major algorithmic improvements and technical solu-
tions are introduced and described in detail. In particular, the updating of
correspondence points at each iteration is made feasible by a fast procedure
and produces a considerable qualitative and quantitative change in the con-
vergence properties of the algorithm. The resulting Improved Optimization-
on-a-Manifold (IOM) demonstrates a significant boost in terms of both ac-
curacy and computational e�ciency with respect to the original OOM ap-
proach. When IOM is compared to the Pulli’s multiview registration tech-
nique (GRP), the benefit of using an unconstrained minimization approach
on the manifold SO(3) compared to heuristics-based methods for global regis-
tration is evident in terms of achievable alignment accuracy (GRP presented
in all cases worse and less consistent accuracy results compared to IOM).
Moreover, a robustness test was performed on both GRP and IOM evidenc-
ing the sensitivity of the former and the resilience of the latter to various
misalignment scenarios. On the other hand, GRP tends to scale better in
terms of resource allocation (and computation time) when the number of
views increase (order of a hundred and more range images were used in our
tests). Therefore, a hybrid scheme where IOM is preceded by GRP has been
also explored with the idea to facilitate convergence. Even if not systemati-
cally, this scheme led to computational improvements for the most demanding
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analyzed cases, where the discrepancy between GRP and IOM computation
time is more evident. Nevertheless, keeping in mind that the main and fully
reached objective of the present work was the improvement of the original
OOM approach, future works on parallelized computing (multi-thread or
GPU based) and sparse matrix exploitation (e.g. by using dedicated soft-
ware libraries) are expected to yield a further boost in computational perfor-
mance, while fully maintaining the achieved outperforming accuracy. What
can be eventually said is that the presented IOM demonstrates to be a viable
solution for the global registration of large collections (dozens of views) of
dense (hundreds to million points per single view) range images in modern
high-quality 3D object modeling pipelines.

[Figure 10 about here.]

References

[1] F. Bernardini, H. Rushmeier, The 3D model acquisition pipeline, Com-
puter Graphics Forum 21 (2) (2002) 149 – 172.

[2] K. Pulli, Multiview registration for large data sets, in: 2nd International
Conference on 3-D Digital Imaging and Modeling, 1999, pp. 160 – 168.

[3] C. J. Taylor, D. J. Kriegman, Minimization on the lie group SO(3) and
related manifolds, Tech. Rep. 9405, Yale University (1994).

[4] P. Y. Lee, Geometric optimization for computer vision, Ph.D. thesis,
Australian National University (2005).

[5] S. Krishnan, P. Y. Lee, J. B. Moore, S. Venkatasubramanian, Global
registration of multiple 3D point sets via optimization-on-a-manifold,
in: 3rd Eurographics Symposium on Geometry Processing, 2005.

[6] S. Krishnan, P. Y. Lee, J. B. Moore, S. Venkatasubramanian,
Optimisation-on-a-manifold for global registration of multiple 3D point
sets, International Journal of Intelligent Systems Technologies and Ap-
plications 3 (2007) 319 – 340.

[7] V. Raja, K. J. Fernandes, Reverse Engineering: An Industrial Perspec-
tive, Springer, 2008.

30
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