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Abstract

This paper introduces four classes of rotation-invariant orthogonal moments by generalizing four

existing moments that use harmonic functions in their radial kernels. Members of these classes

share beneficial properties for image representation and pattern recognition like orthogonality and

rotation-invariance. The kernel sets of these generic harmonic function-based moments are complete

in the Hilbert space of square-integrable continuous complex-valued functions. Due to their resemble

definition, the computation of these kernels maintains the simplicity and numerical stability of existing

harmonic function-based moments. In addition, each member of one of these classes has distinctive

properties that depend on the value of a parameter, making it more suitable for some particular

applications. Comparison with existing orthogonal moments defined based on Jacobi polynomials

and eigenfunctions has been carried out and experimental results show the effectiveness of these

classes of moments in terms of representation capability and discrimination power.
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1 Introduction

Rotation-invariant features of images are usually extracted by using moment methods [1] where an

image f on the unit disk (x2 + y2 ≤ 1) is decomposed into a set of kernels {Vnm | (n,m) ∈ Z2} as

Hnm =

∫∫
x2+y2≤1

f(x, y)V ∗nm(x, y) dxdy,

where the asterisk denotes the complex conjugate. According to [2], a kernel that is “invariant in form”

with respect to rotation about the origin must be defined as

Vnm(r, θ) = Rn(r)Am(θ),

where r =
√
x2 + y2, θ = atan2(y, x), Am(θ) = eimθ, and Rn could be of any form. For example,

rotational moments (RM) [3] and complex moments (CM) [4] are defined by using Rn(r) = rn;

continuous generic Fourier descriptor (GFD) [5] employs ei2πnr for Rn(r); and angular radial transform

(ART) [6] uses harmonic functions as

Rn(r) =

{
1, n = 0

cos(πnr), n 6= 0.
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However, the obtained kernels Vnm of RM, CM, GFD, and ART are not orthogonal and, as a result,

information redundancy exists in the moments Hnm, leading to difficulties in image reconstruction and

low accuracy in pattern recognition, etc. Undoubtedly, orthogonality between kernels Vnm comes as a

natural solution to these problems. Orthogonality means

〈Vnm, Vn′m′〉 =

∫∫
x2+y2≤1

Vnm(x, y)V ∗n′m′(x, y) dxdy

=

∫ 1

0
Rn(r)R∗n′(r) r dr

∫ 2π

0
Am(θ)A∗m′(θ) dθ = δnn′δmm′ ,

where δij = [i = j] is the Kronecker delta function. It can be seen from the orthogonality between the

angular kernels ∫ 2π

0
Am(θ)A∗m′(θ) dθ =

∫ 2π

0
eimθe−im

′θ dθ = 2πδmm′

that the remaining condition on the radial kernels is∫ 1

0
Rn(r)R∗n′(r) r dr =

1

2π
δnn′ . (1)

This equation presents the regulating condition for the definition of a set of radial kernels Rn in order

to have orthogonality between kernels Vnm.

There exists a number of methods that have their radial kernels satisfying the condition in Eq. (1)

and they can be roughly classified into three groups. The first employs Jacobi polynomials [7] in r of

order n for Rn(r) obtained by orthogonalizing sequences of polynomial functions or by directly using

existing orthogonal polynomials. Members of this group are Zernike moments (ZM) [8], pseudo-Zernike

moments (PZM) [2], orthogonal Fourier–Mellin moments (OFMM) [9], Chebyshev–Fourier moments

(CHFM) [10], and pseudo Jacobi–Fourier moments (PJFM) [11] (see [12, Section 6.3], or [13, Section

3.1] for a comprehensive survey). It was demonstrated recently that the Jacobi polynomial-based

radial kernels of these methods are special cases of the shifted Jacobi polynomials [14, 15]. Despite its

popularity, this group of orthogonal moments however involves computation of factorial terms, resulting

in high computational complexity and numerical instability, which often limit their practical usefulness.

The second group employs the eigenfunctions of the Laplacian ∇2 on the unit disk as Vnm, similar

to the interpretation of Fourier basis as the set of eigenfunctions of ∇2 on a rectangular domain. These

eigenfunctions are obtained by solving the Helmholtz equation, ∇2V + λ2V = 0, in polar coordinates

to have the radial kernels defined based on the Bessel functions of the first and second kinds [16]. In

addition, by imposing the condition in Eq. (1) a class of orthogonal moments is obtained [17] and different

boundary conditions were used for the proposal of a number of methods with distinct definition of λ:

Fourier–Bessel modes (FBM) [18], Bessel–Fourier moments (BFM) [19], and disk-harmonic coefficients

(DHC) [20]. However, the main disadvantage of these eigenfunction-based methods is the lack of an

explicit definition of their radial kernels other than Bessel functions, leading to inefficiency in terms of

computation complexity.

And the last group uses harmonic functions (i.e., complex exponential and trigonometric functions)

for Rn by taking advantage of their orthogonality:∫ 1

0
ei2πnre−i2πn

′r dr = δnn′ , (2)∫ 1

0
cos(πnr) cos(πn′r) dr =

1

2
δnn′ , (3)
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∫ 1

0
sin(πnr) sin(πn′r) dr =

1

2
δnn′ , (4)∫ 1

0
cos(πnr) sin(πn′r) dr = 0, n− n′ is even, (5)

It can be seen that the integrand in Eqs. (2)–(5) is “similar in form” with that in Eq. (1), except for

the absence of the weighting term r which prevents a direct application of harmonic functions as radial

kernels. This obstacle was first overcome in [21] by using the multiplicative factor 1√
r

in the radial

kernels to eliminate r in the definition of radial harmonic Fourier moments (RHFM) as

Rn(r) =
1√
r


1, n = 0
√

2 sin(π(n+ 1)r), n > 0 & n is odd
√

2 cos(πnr), n > 0 & n is even.

(6)

Recently, a different strategy was proposed to move r into the variable of integration, rdr = 1
2dr2,

in the definition of three different forms of polar harmonic transforms[22]: polar complex exponential

transform (PCET), polar cosine transform (PCT), and polar sine transform (PST). The radial kernels

of these transforms are respectively defined as

Rn(r) = ei2πnr
2
, (7)

RCn (r) =

{
1, n = 0
√

2 cos(πnr2), n > 0
(8)

RSn(r) =
√

2 sin(πnr2), n > 0 (9)

It is straightforward that the radial kernels in Eqs. (6)–(9) all satisfy the orthogonality condition in

Eq. (1) and that their corresponding kernels are orthogonal over the unit disk. In addition, the radial

kernels of RHFM in Eq. (6) are actually equivalent to Rn(r) = 1√
r
ei2πnr in terms of image representation,

similar to the equivalence between different forms of Fourier series (namely trigonometric and complex

exponential functions). The resemblance between the exponential form of RHFM’s radial kernels and

PCET’s radial kernels suggests that they are actually special cases of a generic class of radial kernels

that are defined based on complex exponential functions. And each member of this class can be used to

define kernels that are orthogonal over the unit disk. Similar observation also leads to generic classes of

radial kernels defined based on trigonometric functions.

The main contribution of this paper is a generic view on strategies that were used to define orthogonal

moments. This leads to the introduction of four classes of radial kernels that correspond to four generic

sets of moments and take existing harmonic moments as special cases. This paper proves theoretically

that the generic sets of kernels are complete in the Hilbert space of all square-integrable continuous

complex-valued functions over the unit disk. It also shows experimentally that the proposed harmonic

moments are superior to Jacobi polynomial-based moments and are comparable to eigenfunction-based

moments in terms of representation capability and discrimination power. It is also interesting to note

that these generic harmonic moments can be computed very quickly by exploiting the recurrence relations

among complex exponentials and trigonometric functions [23]. The generalization by introducing a

parameter in this paper is similar to the generalization of the R-transform published recently[24].

The content of this paper is a comprehensive extension of the research work presented previously

in [25]. The next section will derive explicit form of generic classes of radial kernels defined based

on complex exponentials and trigonometric functions. The completeness of the sets of orthogonal

decomposing kernels is proven in Section 3, along with some beneficial properties obtained from the
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generalization. Section 4 is devoted to the stability of the numerical computation. Experimental results

in terms of representation capability and discrimination power are given in Section 5. And conclusions

are finally drawn in Section 6.

2 Generic polar harmonic transforms

In order to formulate the generalization, assuming that the harmonic radial kernels have the generic

exponential form Rns(r) = κ(r) ei2πnr
s
, where s ∈ R and κ is a real functional of r. Then∫ 1

0
Rns(r)R

∗
n′s(r) r dr =

∫ 1

0
κ2(r) ei2πnr

s
e−i2πn

′rsr dr.

Since drs = srs−1dr = srs−2rdr then∫ 1

0
Rns(r)R

∗
n′s(r) r dr =

∫ 1

0

κ2(r)

srs−2
ei2πnr

s
e−i2πn

′rsdrs.

By letting κ2(r)
srs−2 = const =C,∫ 1

0
Rns(r)R

∗
n′s(r) r dr =

∫ 1

0
Cei2πnr

s
e−i2πn

′rsdrs = Cδnn′ .

In order to have orthonormality between kernels, it follows directly from Eq. (1) that C = 1
2π . Then

κ(r) =
√

srs−2

2π and Rns have the following actual definition:

Rns(r) = κ(r) ei2πnr
s
, (10)

or

Vnms(r, θ) = Rns(r)Am(θ) = κ(r) ei2πnr
s
eimθ. (11)

The generic polar complex exponential transform (GPCET) is thus defined as

Hnms =

∫∫
x2+y2≤1

f(x, y)V ∗nm(x, y) dxdy =

∫ 2π

0

∫ 1

0
f(r, θ)κ(r) e−i(2πnr

s+mθ) r drdθ. (12)

By considering s in the above development as a parameter, it can be seen that Rns is a true

generalization of the harmonic radial kernels of PCET [22]: Rns(r) in Eq. (10) becomes Rn(r) in Eq.

(7) when s = 2, except for the constant multiplicative factor 1√
π

. Thus, a class of harmonic radial

kernels can be obtained by changing the value of s. Due to the generic definition, members of this class

share beneficial properties to image representation and pattern recognition. However, each member

also possesses distinctive characteristics that are determined by the actual value of s, making it more

suitable for some particular applications. Some beneficial properties of GPCET will be discussed in

Section 3 and be supported by experimental evidence in Section 5. Figure 1 illustrates the phase of

GPCET kernels using four different values of s = 0.5, 1, 2, 4 for {(n,m) | n,m ∈ [0, 2], (n,m) ∈ Z2}. It

can be seen that the phase of Vnms, unlike that of the kernels defined based on polynomials, is the

sum of the phase of Rns and Am. The phase image of Vnms thus has a rotational symmetry pattern

composing of repetitive slices when n or m 6= 0. The dependence of this pattern on n, m, and s can be

described as follows:

- an increase in n results in thinner and longer slices.
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Figure 1: 2D view of the phase of GPCET kernels Vnms defined in Eq. (11) using s = 0.5, 1, 2, 4 for

{(n,m) | n,m ∈ [0, 2], (n,m) ∈ Z2}. In each figure (i.e., for a specific value of s), the row and column

indices indicate the values of n = 0, 1, 2 (top to bottom) and m = 0, 1, 2 (left to right), respectively.

- an increase in m increases the number of slices.

- a change in s corresponds to a change in the thickness uniformity of each slice.

In addition to the harmonic radial kernels of GPCET defined in Eq. (10), there exist three other

classes of harmonic radial kernels that result from generalizing the harmonic radial kernels of RHFM (RHns)

[21], PCT (RCns), and PST (RSns) [22]. By using similar development procedures, it is straightforward

that

RHns(r) = κ(r)


1, n = 0
√

2 sin(π(n+ 1)rs), n > 0 & n is odd
√

2 cos(πnrs), n > 0 & n is even

(13)

RCns(r) = κ(r)

{
1, n = 0
√

2 cos(πnrs), n > 0
(14)

RSns(r) = κ(r)
√

2 sin(πnrs), n > 0. (15)

These three classes of harmonic radial kernels correspond to three classes of transforms: the generic

radial harmonic Fourier moments (GRHFM), the generic polar cosine transforms (GPCT), and the

generic polar sine transforms (GPST). GRHFM is in fact a variant of GPCET in terms of representation,

similar to the equivalence between different forms of Fourier series. It becomes RHFM in Eq. (6) when

s = 1, except for the constant multiplicative factor 1√
2π

. In addition, GPCT/GPST arise naturally from

GRHFM when the function to be represented by RHns is considered as half of an even/odd periodic

function. Again, GPCT/GPST become PCT/PST in Eqs. (8)/(9) when s = 2, except for the constant

multiplicative factor 1√
π

.

Orthogonal sets

At a specific value of s, 〈Vnms, Vn′m′s〉 = δnn′δmm′ means that

Bs = {Vnms(r, θ) = Rns(r) eimθ | n,m ∈ Z} (16)

forms a set of kernels that are orthonormal over the unit disk. Similarly, there are three other sets of

orthonormal kernels at a specific value of s defined as

BHs = {V H
nms(r, θ) = RHns(r) eimθ | n ∈ N,m ∈ Z}, (17)
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BCs = {V C
nms(r, θ) = RCns(r) eimθ | n ∈ N,m ∈ Z}, (18)

BSs = {V S
nms(r, θ) = RSns(r) eimθ | n ∈ Z+,m ∈ Z}. (19)

Each of the sets Bs, BHs , BCs , and BSs can be used as the set of decomposing orthonormal kernels for

GPCET, GRHFM, GPCT, and GPST, respectively. The completeness of these sets is an important

issue that needs further consideration (see Section 3).

In spite of their common harmonic nature, each of GPCET, GRHFM, GPCT, and GPST captures

different image information even at the same value of s, similar to the difference among Fourier (complex

exponential and trigonometric), cosine, and sine series. This observation will have experimental evidence

in Section 5. Nevertheless, in the remaining of this paper, the theoretical discussions will mainly focus

on GPCET with an occasional foray into GRHFM, GPCT, and GPST only when necessary. This is to

avoid unnecessary repetition, since GRHFM, GPCT, and GPST essentially have many properties that

are identical to those of GPCET. In addition, if not explicitly mentioned, the parameter s will have a

fixed value in the remaining discussions.

3 Properties

This section discusses the completeness of the sets of orthogonal decomposing kernels defined in Eq. (16)

along with some beneficial properties of GPCET for image representation and pattern recognition that

result directly from the generalization. Other issues like relation with RM, 3D formulation, rotation

invariance, rotating-angle estimation, and computational complexity could also be derived with relative

ease [13, Section 3.3].

3.1 Completeness of Bs
A set of orthogonal kernels is called complete in a Hilbert space H if its linear span is dense in H. The

completeness of an orthogonal set in H is hence related to the ability of the set in representing functions

in H. In the case of Bs, H is defined as the space of all square-integrable continuous complex-valued

functions over the unit disk, denoted as L2(x2 + y2 < 1). A complete Bs can be used as an orthonormal

basis, meaning that every function f ∈ H can be written as an infinite linear combination of the kernels

in Bs as

fs(x, y) =
∞∑

n=−∞

∞∑
m=−∞

HnmsVnms(x, y). (20)

In addition, due to the Parseval’s identity:∑
(n,m)∈Z2

|Hnms|2 =

∫∫
x2+y2≤1

|f(x, y)|2 dxdy,

it can be seen that GPCET moments, Hnms, are bounded if and only if f is square-integrable. The

above identity is in fact stronger than the Bessel’s inequality claimed in [22, Eq. (8)], where a loose

inequality is used instead of an equality. This is because [22] lacks discussion on the completeness of its

proposed orthogonal sets.

In this subsection, the completeness of Bs in H is established by means of the interpretation of

GPCET through Fourier series by rewriting Eq. (12) as

Hnms=

∫ 2π

0

[∫ 1

0
f(r, θ)κ(r) e−i2πnr

s
r dr

]
e−imθdθ =

1

2π

∫ 2π

0

[ ∫ 1

0
g(r′, θ) e−i2πnr

′
dr′
]
e−imθdθ,

6



where r′= rs and

g(r′, θ) =

√
2π

s

(
r′
) 2−s

2s f
( s
√
r′, θ

)
. (21)

If g is viewed as a 2D function defined in a Cartesian coordinate system where r and θ are the

horizontal and vertical axes, respectively, then the GPCET moments Hnms of a function f ∈ H are

the 2D Fourier coefficients of g formulated as above: first in the radial direction, then in the angular

direction. This interpretation transforms the completeness issue of Bs in H into the convergence issue of

2D Fourier series, leading to the following two questions:

- The convergence of partial sums of 2D Fourier series of functions? Almost everywhere convergence

of “polygonal partial sums” of 2D Fourier series of functions in L2([0, 1] × [0, 2π)) was already

established in [26].

- The square-integrability of g? The necessary and sufficient conditions for the square-integrability

of g over the domain [0, 1]× [0, 2π) will be established in Theorem 1.

Theorem 1. The function g defined in Eq. (21) is in L2([0, 1]× [0, 2π)) if and only if the function f is

in L2(x2 + y2 < 1).

Proof. From the definition of g:∫ 2π

0

∫ 1

0
|g(r′, θ)|2 dr′dθ =

∫ 2π

0

∫ 1

0

2π

s

(
r′
) 2−s

s
∣∣f( s
√
r′, θ

)∣∣2 dr′dθ.

By changing the variable r = s
√
r′ → r′ = rs and dr′ = srs−1dr, the above equation becomes∫ 2π

0

∫ 1

0
|g(r′, θ)|2 dr′dθ =

∫ 2π

0

∫ 1

0

2π

s
r2−s|f(r, θ)|2srs−1 drsdθ

= 2π

∫ 2π

0

∫ 1

0
|f(r, θ)|2 r drdθ = 2π

∫∫
x2+y2≤1

|f(x, y)|2 dxdy.

Thus, it is straightforward that∫ 2π

0

∫ 1

0
|g(r′, θ)|2 dr′dθ <∞⇔

∫∫
x2+y2≤1

|f(x, y)|2 dxdy <∞

and the theorem is proven.

Thus, the set Bs = {Vnms | n,m ∈ Z} is complete in the Hilbert space H of all square-integrable

continuous complex-valued functions over the unit disk L2(x2 + y2 < 1). As a result, Bs can be used as

an orthonormal basis for H and writing f as in Eq. (20) is safe (i.e., the partial sums converge to the

image function). To our knowledge, there exists no such conclusion for other orthogonal sets over the

unit disk where the corresponding radial kernels are defined based on polynomials or eigenfunctions.

3.2 Zeros of Rns

The number of zeros of the radial kernels is an important indicator since it corresponds to the capability

of moments in representing high frequency components of images. In the case of GPCET, Rns is defined

based on complex exponential function and can be rewritten in the following form:

Rns(r) = κ(r)
[

cos(2πnrs) + i sin(2πnrs)
]
,
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Table 1: The number of zeros of the nth-order radial kernel of existing unit disk-based orthogonal

moments.

Moments Number of zeros Moments Number of zeros

ZM n−m
2 BFM n

PZM n−m DHC n

OFMM n GPCET 2n

CHFM n GRHFM n

PJFM n GPCT n

FBM n GPST n− 1

and the two equations

real(Rns(r)) = 0,

imag(Rns(r)) = 0

both have 2n distinct roots in the interval 0 < r < 1. For a better perception of how large this number is,

Table 1 provides the number of zeros of the nth-order radial kernel of existing unit disk-based orthogonal

moments. It can be seen that, except for ZM, PZM, and GPCET, the nth-order radial kernel of all other

methods has approximately n zeros. In the case of GPCET, this number is almost double whereas, for

ZM and PZM, it depends on the angular order m. In order to have the same number of zeros n0 as other

methods, the order of the radial kernel of ZM and PZM has to be 2n0 +m and n0 +m, respectively.

These numbers are much higher than that of GPCET, which is only n0
2 .

In addition to the quantity, the distribution of zeros is also an important property of the radial

kernels since it relates to the information suppression problem [4]. Suppression is the situation when the

computed moments put emphasis on certain portions of image and neglect the rest. When the essential

discriminative information is distributed uniformly over the image domain, an unfair emphasis of the

extracted moments is known to have a negative impact on their discrimination power. On the contrary,

when the essential discriminative information only exists in certain image portions, it is preferable to

move the emphasis towards those portions. In the case of GPCET, the distribution of the zeros of Rns
can be controlled by changing the parameter s. In other words, emphasis can be put on the image

portions that contain this information. This is the distinctive property of GPCET that existing methods

do not have.

When s = 1, the zeros of Rn1 are distributed uniformly, meaning a uniform emphasis over the image

region. The more deviation of the value of s from 1 is, the more “biased” to the inner (when s < 1) or

outer (when s > 1) portions of the unit disk the distribution of zeros is. This in turn corresponds to the

more emphasis on the inner or outer portions of image, respectively. Evidence for the observations on

the quantity and distribution of zeros of Rns is given in Figure 2 that contains the plot of real(Rns)

and imag(Rns) of orders n = 0→ 4 at s = 0.5, 1, 2, 4 (top row to bottom row). It can be seen that the

real and imaginary parts of GPCET radial kernel of order n have 2n zeros in the interval 0 < r < 1.

Moreover, the distribution of these zeros is biased towards 0 at s = 0.5, uniform at s = 1, and biased

towards 1 at s = 2, 4.

4 Numerical stability

Accuracy is another concern when moments are computed numerically. Error in the computed moments

may result from the discrete approximation of continuous mathematical formulas or from the digital
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Figure 2: Real and imaginary parts of GPCET radial kernels of orders n = 0→ 4 at s = 0.5, 1, 2, 4. The

real and imaginary parts of GPCET radial kernel of order n have 2n zeros in the interval 0 < r < 1.

The distribution of these zeros is uniform when s = 1 and biased towards 0 or 1 depending on whether

s < 1 or s > 1.

nature of computing systems, where numbers can only be represented in a certain range and to a certain

precision. In addition, error also has its root in the mathematical definition of moments. These two

error sources and their impacts will be discussed in the remaining of this section.

4.1 Approximation error

Since moments are originally defined based on a double continuous integral over the unit disk domain,

the following discrete approximation of Eq. (12) will incur error in the computed moments:

Hnms =
∑

[i,j]∈C

f(xi, yj)V
∗
nms(xi, yj)∆x∆y, (22)

where C is the set of pixels whose mapped regions lie entirely inside the unit disk; (xi, yj) are the

coordinates of the center of the mapped region of pixel [i, j]; and ∆x and ∆y are the dimensions of

each mapped region. In the above equation, there are two types of discrete approximations and they

correspond to two types of approximation errors [27]: geometric error and numerical error. Geometric

error occurs when the domain of integration does not exactly cover the unit disk, due to the difference

between circular and rectangular domains. This type of error, however, could be “avoided” if only the

pixels that lie entirely inside the unit disk are used and the image function over the remaining regions
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of the unit disk is assumed to take value 0. Since this strategy will be used for the computation of

harmonic function-based moments and comparison methods, geometric error hence does not exist in all

experiments in Section 5.

Numerical error arises when V ∗nms(xi, yj)∆x∆y in Eq. (22), which represents the value of the kernel

Vnms over the pixel [i, j], is computed by a numerical integration technique. Since the numerically

computed value of V ∗nms(xi, yj)∆x∆y is just an approximation to its analytical value, this type of error

cannot be avoided in any way if one chooses to compute moments by numerical approximation. The

magnitude of this type of error, however, could be reduced if only a highly accurate numerical integration

technique is employed (e.g., “pseudo” sub-sampling or cubature). It can be seen from the factor ∆x∆y

that the effect of numerical error depends on image size: a smaller-sized image will have a more severe

effect, and vice versa. The effect of numerical error on harmonic function-based moments and comparison

methods will be demonstrated experimentally by means of reconstruction error in Section 5.

4.2 Representation error

In computing systems nowadays, a real number is in general approximately represented in floating-point

format in order to allow reasonable storage requirement and relatively quick calculations. The typical

number that can be represented exactly is of the form:

Significand× baseexponent,

where significand denotes a signed digit string of a given length in a given base and exponent is a

signed integer which modifies the magnitude of the number. As computing systems are binary in nature,

floating-point numbers are normalized for representation as ±(1 + f)× 2e, where f is the fraction or

mantissa (0 ≤ f < 1) and e is the exponent. In 32-bit computers that use the IEEE 754 standard, double

precision floating numbers occupy two storage locations, or 64 bits, to store the value of f , e, and the sign:

52 bits for f , 11 bits for e+1023, and 1 bit for the sign. A double number v thus can only be represented

with the relative accuracy of one-half the machine epsilon, or 1
2 × eps = 1

2 × 2−52 ' 1.1102× 10−16. This

means that, when represented in the ordinary decimal numeral system, only the first 15 leftmost digits of

v are significant. Because of the limited range of e, the absolute values of double numbers are additionally

limited in the range 2−1022÷(2−eps) 21023, or approximately 2.2251×10−308÷1.7977×10308. This finite

set of double numbers with finite precision leads to the phenomena of underflow, overflow, and roundoff

in computing systems. Due to their nature, it is known in the literature that Jacobi polynomial-based

methods suffer from all three types of errors [28] as pointed out below.

Underflow error occurs when an absolute value of a computed quantity (except zero) is under the

range of its data type. Jacobi polynomial-based methods have this type of error due to the use of

powers of r in their definition. At a radial coordinate r that is close to zero, let’s say r = 0.001,

r102 = 1.0000× 10−306 and r103 = 1.0000× 10−309. Thus, any computation that involves r to the power

greater than 102 will cause underflow error. It is obvious that this type of error depends on the size of

images: a larger-sized image starts to have this error at a lower order. As an example, for an input image

of size 1024× 1024 pixels, the smallest value of r in the computation is 1
1024 = 2−10 = 9.7656× 10−4,

underflow error will start to occur at n = 103 onwards for all Jacobi polynomial-based methods.

Overflow error occurs when a computed quantity has a value above the range of its data type. Jacobi

polynomial-based methods has this type of error due to the use of factorials in their definition. Since

170! = 7.2574× 10306 and 171! = 1.2410× 10309, any computation that involves factorial of a number

greater than 170 will cause overflow error. From the definition of Jacobi polynomial-based radial kernels,

it is straightforward that ZM, PZM, OFMM, CHFM, and PJFM start to have this type of error at

n = 171, 85, 85, 171, and 84 onwards, respectively.
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Table 2: The radial orders of Jacobi polynomial-based methods from which underflow, overflow, and

roundoff errors start to occur for an input image of size 1024× 1024 pixels.

Error type ZM PZM OFMM CHFM PJFM

Underflow 103 103 103 103 103

Overflow 171 85 85 171 84

Roundoff 46 23 23 79 21

Roundoff error is the difference between an approximation of a number used in computation and its

exact (i.e., correct) value. Because of the finite precision in computing systems, this type of error occurs

in almost all numerical computation steps. However, Jacobi polynomial-based methods face the problem

of large polynomial’s coefficients in their radial kernels. These coefficients are sometimes larger than 252

and thus, for the commonly 15-digit precision, computing radial kernels produces error of the order of

unity or larger. It is not difficult to determine the order where each Jacobi polynomial-based method

starts to have this type of error. They are n = 46, 23, 23, 79, and 21 for ZM, PZM, OFMM, CHFM, and

PJFM, respectively.

The starting orders for each type of error for all Jacobi polynomial-based methods are collected and

given in Table 2. Due to their distinct definition, it can be seen that different methods have different

orders for overflow and roundoff errors. For underflow error, Jacobi polynomial-based methods have

the same order because their radial kernels of the same order have the same polynomial order. Among

these three types of representation errors, roundoff error occurs at the smallest order for each Jacobi

polynomial-based method. Thus, roundoff error is the main concern in moment computation.

From the above definition of three types of representation errors, it can be seen that eigenfunction-

based and harmonic function-based methods do not suffer from the underflow and overflow errors.

They do have roundoff error because of the nature of numerical computing systems. However, the

effect of roundoff error on them is not as severe as on Jacobi polynomial-based methods because their

definition does not use large-valued coefficients. In contrast, this effect causes serious problems in Jacobi

polynomial-based methods, as will be shown experimentally in the next section. Nevertheless, any of the

aforementioned error types is undesirable since it alters the computed values of moments, compromises

the orthogonality of moments/kernels, and finally corrupts the overall performance of applications.

4.3 Singularity

In theory, GPCET could be defined as in Eq. (12) for every s ∈ R. However, because the multiplicative

term is defined as κ(r) =
√

srs−2

2π , it should be aware that

lim
s<2,r→0

√
srs−2

2π
= +∞.

Evidence for this behavior can be seen in Figure 2 for the cases s = 0.5 and s = 1 where the magnitude

of the real and imaginary parts of GPCET radial kernels go to infinity as r → 0. These phenomena also

exist in the other harmonic function-based methods and in CHFM. However, this property does not

result in “big” problems because the actual computation is carried out by using Eq. (22), instead of Eq.

(12). As long as the center (xi, yj) of the pixel’s mapped region does not coincide (0, 0), the computed

moments are bounded and hence harmonic function-based methods with s < 2 and CHFM can still be

used for image representation and in pattern recognition problems. The practical usefulness of these

methods will be demonstrated by experiments in the following section.
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(a) Vector character images

(b) 16× 16 (c) 32× 32 (d) 64× 64

(e) 128× 128 (f) 256× 256 (g) 512× 512

Figure 3: (a) The vector character images used to generate six character datasets used in the recon-

struction experiments by sampling these images to have the sizes of 16× 16, 32× 32, 64× 64, 128× 128,

256× 256, and 512× 512 pixels, corresponding to the six datasets. (b)-(g) Some sampled images from

the six datasets.

5 Experimental results

The effectiveness of the proposed harmonic function-based moments will be demonstrated in comparison

with existing moments of the same nature, i.e. unit disk-based orthogonal moments, through two types

of experiments: image representation and pattern recognition. The first deals with the capability of

harmonic function-based moments in representing pattern images and is done via image reconstruction.

The second is on the applicability of harmonic function-based moments in rotation-invariant pattern

recognition problems at different levels of noise.

5.1 Image reconstruction and numerical stability

In the following experiments, a set of six character datasets has been generated by sampling 26 vector

images of Latin characters in Arial bold font (shown in Figure 3a) to have the sizes of 16× 16, 32× 32,

64× 64, 128× 128, 256× 256, and 512× 512 pixels. The purpose of using datasets of images of different

sizes generated from the same source is to investigate the influence of numerical error discussed in

Section 4 on the computed values of moments of comparison methods. The representation error, which

exists in Jacobi polynomial-based methods, will become apparent when moments of high-enough radial

orders are involved. Some samples of reconstructed images from the character image “E” of size 64× 64

pixels by GPCET are given in Figure 4. The corresponding images of harmonic function-based (GPCET,

GPCT, GPST), Jacobi polynomial-based (ZM, PZM, OFMM, CHFM, PJFM), and eigenfunction-based

(FBM, BFM, DHC) methods are given in Figures 1 and 2 in the Supplemental material. In these

figures, at each value of K, all moment orders (n,m) that satisfy the conditions in Table 3 are used for

reconstruction. These conditions are selected so that the moments that capture the lowest frequency

information are used first in the reconstruction process.

Generally, as more moments are involved, the reconstructed images get closer to the original ones.

However, in the case of PZM, OFMM, and PJFM, reconstructed images deteriorate quickly at K = 23,

23, and 21 onwards, respectively. Similar phenomena also exist in other Jacobi polynomial-based

methods but at a higher value of K (46 for ZM and 79 for CHFM). Harmonic function-based methods
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Table 3: The constraints on moment order n and repetition m of comparison methods with regard to K.

Moments Order range

ZM |m| ≤ n ≤ K, n− |m| = even

PZM |m| ≤ n ≤ K
OFMM/CHFM/PJFM 0 ≤ |m|, n ≤ K

FBM/BFM/DHC 0 ≤ |m|, n ≤ K
GPCET |m|, |n| ≤ K
GRHFM |m| ≤ K, 0 ≤ n ≤ 2K

GPCT 0 ≤ |m|, n ≤ K
GPST |m| ≤ K, 1 ≤ n ≤ K

s
=

0.
5

s
=

1.
0

s
=

2.
0

s
=

4.
0

Figure 4: Some samples of reconstructed images from the character image “E” of size 64× 64 pixels by

GPCET at s = 0.5, 1, 2, 4 for K = 0, 1, . . . , 29 (from left to right, top to bottom).

have difficulty in restoring the inner portion of the images when s = 2, 4 with more difficulty at s = 4. On

the contrary, they have difficulty with the images’ outer portion when s = 0.5. This is the experimental

evidence for the information suppression problem mentioned in Subsection 3.2. Among harmonic

function-based methods and at a specific value of s, GPCET has better reconstructed images when K is

small. At high values of K, images reconstructed by GPCT/GPST are closest/farthest to the original

images at the corresponding values of K. This means that GPCT/GPST require the least/largest

numbers of moments in order to reconstruct images of similar quality. These superiority/inferiority of

GPCT/GPST can be easily observed at boundary regions where r ' 0 and r ' 1. In addition, harmonic

function-based and eigenfunction-based methods capture the image information, especially the edges,

better than Jacobi polynomial-based methods. It thus can be concluded here that the more deviation

the value of s from 1 is, the more difficulty harmonic function-based methods will have to reconstruct

the inner (when s > 1) or outer (when s < 1) portions of images. Conversely, harmonic function-based

methods can reconstruct quickly the inner or outer portions of images when s < 1 or s > 1, respectively.

In other words, the parameter s could be used to control the representation capability of harmonic

function-based methods: more emphasis could be placed on certain regions of interest.
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Table 4: The cardinality |S(K)| of the set S(K) = {(n,m) | n,m ∈ Z} of comparison methods at a

specific value of K.

Moments |S(K)|
ZM (K+1)(K+2)

2

PZM (K + 1)2

OFMM/CHFM/PJFM (K + 1)(2K + 1)

FBM/BFM/DHC (K + 1)(2K + 1)

GPCET (2K + 1)2

GRHFM (2K + 1)2

GPCT (K + 1)(2K + 1)

GPST K(2K + 1)

The gauge of reconstruction capability is measured by how well the reconstructed image is similar to

the ground-truth one. For this purpose, the reconstruction error between an image and its reconstructed

version is considered to be a good measure. In order to compute it, a finite set of moments is first

calculated and then images are reconstructed from them in order to compute the errors. Since this

process involves the computation of moment kernels both in the decomposition and then reconstruction

steps, this measure can additionally be used for the investigation of the numerical stability of comparison

methods. Let S(K) be the set containing all (n,m) that satisfy the conditions stated in Table 3 at a

specific value of K. Table 4 provides the cardinality |S(K)| of S(K) of comparison methods. For an

image function f defined over the region {(x, y) ∈ R2 | x2 + y2 ≤ 1}, its reconstructed version by using

all moments of orders (n,m) ∈ S(K) is defined as

f̂s(x, y) =
∑

(n,m)∈S(k)

HnmsVnms(x, y).

The reconstruction error, normalized by the total image energy, is then defined as

MSRE(K) =

E

{ ∫∫
x2+y2≤1

[
f(x, y)− f̂s(x, y)

]2
dxdy

}

E

{ ∫∫
x2+y2≤1

f2(x, y) dxdy

} ,

where E{·} is the expectation in ensemble averaging over the image set. In the literature, MSRE(K)

is called the mean-square reconstruction error [3]. It is straightforward to show theoretically that

0 ≤ MSRE(K) ≤ 1. The lower (upper) bounds of MSRE(K) are reached when |S(K)| reaches its limits,

or |S(K)| = 0 (∞). However, because of the numerical/representation errors and the unreachable

theoretical point |S(K)| =∞, the statement 0 ≤ MSRE(K) ≤ 1 does not hold. Instead, it can only be

asserted that MSRE(K) > 0. In this experiment, a smaller value of MSRE(K) means the reconstructed

image f̂s is more similar to f or, in other words, a better reconstruction. In addition, by simple

observation, MSRE(K) should have a smaller value when more moments are used in the reconstruction

process, regardless of their orders.

The MSRE(K) curves of GPCET on the six character datasets at different values of s = 0.1 : 0.1 : 6.0

in MATLAB’s notation are given in Figure 5. The corresponding curves of all harmonic function-based

methods are given in Figures 3–6 in the Supplemental material. At a specific value of s in the horizontal

axis in each of these figures, there is a MSRE(K) curve where the number of employed moments |S(K)|
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(f) 512× 512

Figure 5: MSRE(K) curves of GRHFM on the six character datasets at different values of s. In each of

these figures, at a specific value of s in the horizontal axis, there is a MSRE(K) curve with the number

of employed moments |S(K)| and MSRE(K) values illustrated as the ordinate and the color of the grid

points having abscissa s.

and the mean-square reconstruction error MSRE(K) are illustrated as the ordinate and the color of the

grid points that have abscissa s. The values of MSRE(K) which are outside the color display range [0, 1]

is assigned the red color. A red color in MSRE(K) clearly means that the reconstructed image f̂s does

not reflect at all f . It can be seen from these figures that the color patterns in Supplementary Figure 3

are exactly the same as those in Supplementary Figure 4, suggesting that the reconstructed images by

GPCET and GRHFM are the same. This provides experimental evidence for the equivalence between

the radial kernels of GPCET and GRHFM that has been disclosed in Section 2. For the purpose of

representation and/or compression, GPCET and GRHFM moments can thus be used interchangeably

without any change in performance. For this reason, in the remaining of this subsection on image

reconstruction and numerical stability, GPCET can be used on behalf of GRHFM in discussions and

comparisons with other methods. Among GPCET, GPCT, and GPST, a closer resemblance between the

color patterns in Supplementary Figures 3 and 5 is observed. In addition, for a specific image size and

at the corresponding abscissas s and ordinates |S(K)|, MSRE(K) generally has its highest and lowest

values in the case of GPST and GPCT, respectively. This means that GPCT and GPST generally have

the highest and lowest representation power, respectively, among harmonic function-based methods. It

should be noted that similar observations have also been seen in other applications. For example in

compression, it turns out that cosine functions are much more efficient than the other functions.

For each harmonic function-based method and at a specific value of s, increasing the image size

leads to a decrease in the values of MSRE(K) at the corresponding ordinates |S(K)|. This means that

the reconstructed images f̂s are more similar to the original one f . The difference between MSRE(K)

at different image sizes indicates the existence of numerical error in the computed moments. This

provides experimental evidence for the effect of image size on this type of error already mentioned in

Subsection 4: a smaller image size will lead to a higher numerical error, and vice versa. However, a
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Figure 6: MSRE(K) curves of harmonic function-based methods (GPCET, GPCT, GPST) at s =

0.5, 1, 2, 4 on the 64× 64 character dataset.

small difference in MSRE(K) between image sizes 256 and 512 suggests that the effect of numerical

error becomes negligible for large-sized images. In addition, for each harmonic function-based method

and at a specific image size, changing the value of s also leads to a change in the values of MSRE(K)

at the corresponding ordinates |S(K)|. The value of MSRE(K) decreases slowly when s has a too

small or a too high value. This is due to the negligence of the extracted moments on certain portions

of images as discussed in Subsection 3.2. For better visualization and for the purpose of comparison,

Figure 6 illustrates MSRE(K) curves of harmonic function-based methods (GPCET, GPCT, GPST) at

s = 0.5, 1, 2, 4 on the 64× 64 character dataset. These curves are plotted in the traditional 2D Cartesian

coordinate system where the number of employed moments |S(K)| and the mean-square reconstruction

error MSRE(K) are used as the abscissa and ordinate, respectively. The comparison results on the

six character datasets are given in Figure 7 in the Supplemental material. From the six figures that

correspond to the six character datasets, the above observations on harmonic function-based methods

can be verified with relative ease.

Comparison of GPCET with Jacobi polynomial-based and eigenfunction-based methods using

MSRE(K) curves computed from the 64× 64 character dataset is given in Figure 7. The comparison

results on the six character datasets are given in Figure 8 in the Supplemental material. It can be

seen from the figure that numerical error causes MSRE(K) to take higher values at a smaller image

size at the corresponding abscissas |S(K)|, similar to the phenomenon already observed in harmonic

function-based methods. This provides another experimental evidence for the theoretical arguments on

numerical error in Subsection 4.1: a smaller image size will lead to a higher numerical error, and vice

versa. Numerical stability of Jacobi polynomial-based methods breaks down when K is increased up

to a certain value. The quick deteriorations in the images reconstructed by Jacobi polynomial-based

methods observed in Figure 2 in the Supplemental material are exhibited here by sudden upturns in

their corresponding MSRE(K) curves at K = 46, 21, 23, and 23 for ZM, PZM, OFMM, and PJFH,

respectively. MSRE(K) curve of CHFM breaks down later at K = 79 (not shown in the figure). These

observations conform with the theoretical arguments on representation error in Subsection 4.2. The

starting values of K that cause deteriorations here are equal to the starting radial orders that cause

roundoff error in Jacobi polynomial-based methods given in Table 2. For large-sized images, except

for GPCET at s = 4 and for the sudden upturn of Jacobi polynomial-based methods, all comparison
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Figure 7: MSRE(K) curves of GPCET at s = 0.5, 1, 2, 4, Jacobi polynomial-based (ZM, PZM, OFMM,

CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on the 64× 64 character dataset.

Figure 8: Eight samples out of the 100 images from the COREL photograph dataset used in the pattern

recognition experiments.

methods have similar performance with the lowest curves belong to eigenfunction-based methods. For

small-sized images, ZM has the highest representation power, followed by GPCET at s = 4.

It is thus clear from the experiments carried out in this subsection that numerical and representation

errors each affects the computed moments in a different way. Approximation error causes a slightly

change in the computed moments. On the contrary, a sudden upturn in the MSRE(K) curve caused by

representation error means that the computed moments from that point are totally unreliable and they

should not be used in other applications, such as image compression or pattern recognition.

5.2 Pattern recognition

In the experiments that follow, images are taken from the COREL photograph dataset [29]: 100 images

have been selected, cropped, and scaled to a standard size of 128× 128 pixels. These 100 images are the

training images and their computed moments are used as the ground-truth for comparison with those of

the testing images. Some samples of these training images are given in Figure 8 where only the pixels

[i, j] ∈ C, with C defined in Eq. (22), keep their original intensity value. The remaining pixels, which are

irrelevant to the experiments, have their intensity value set to zero.

The testing images are generated from the training images by rotating them with angles φ =

0◦, 30◦, . . . , 330◦ and then contaminating them with Gaussian white noise of variances σ2 = 0.00 : 0.05 :
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Figure 9: Sample noisy images of variance σ2 = 0.1 at rotating angles φ = 0◦, 60◦, 120◦, 180◦ from the

three testing datasets.

0.20 in MATLAB’s notation1. In order to investigate the role of the parameter s on the recognition

results, three different testing datasets (NoiseAll, NoiseInner, and NoiseOuter) are generated separately

by restricting the noise to be added to the whole image, the outer portion, and the inner portion,

respectively. The inner and outer portions form the whole image and the boundary between them

is the circle of radius 32 that has the same center with the image. Thus, for each training image,

12× 5× 3 = 180 testing images are generated from it, making a total of 100× 180 = 18× 103 images to

be classified according to their computed moments. As an example, sample testing images of variance

σ2 = 0.1 at angles φ = 0◦, 60◦, . . . , 180◦ from these three datasets generated from a single training image

are given in Figure 9.

Each image of the training and testing datasets is then represented by a feature vector, which is the

magnitude of its computed moments. Classification is carried out based on the `2-norm distance between

feature vectors. It is not difficult to see that when the testing images are not contaminated by noise,

all methods theoretically produce 100% classification rate on rotation-invariant pattern recognition

problems. This is because the magnitude of unit disk-based moments is theoretically invariant to the

rotation operation about the origin [13]. However, due to the digital nature of the imagery (sampling

and quantization errors) and the numerical computation in digital computers (approximation and

representation errors), the computed moments are not truly invariant [30]. For this reason, a set of

K values is used on each dataset: K = 3, 6, 9, 12, 15 on NoiseAll, K = 1, 2, 3, 4, 5 on NoiseInner, and

K = 2, 4, 6, 8, 10 on NoiseOuter. The reason to use a different set of K values on each dataset is the

difference in the amount of discriminative information that remains in the images after adding noise to

them. In the presence of noise, the larger the image region that is contaminated by noise is, the less the

discriminative information remains in the image. A larger value of K is thus required to maintain the

classification performance for images that have a larger noisy region.

The classification rates for harmonic function-based methods (GPCET, GRHFM, GPCT, GPST)

at s = 0.5, 1, 2, 4 on NoiseAll dataset are given in Table 5. The corresponding results on all the three

datasets NoiseAll, NoiseInner, and NoiseOuter are given in Tables 1–3 in the Supplemental material,

respectively. From these tables, it can be seen that when the testing images get noisier, meaning an

increase in the value of σ2, the classification rate in the same dataset decreases at the corresponding

values of K. In addition, the classification rate at the corresponding noise levels σ2 and in the same

1The variances are normalized values, corresponding to image’s intensity values ranging from 0 to 1.
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dataset increases along with the increase in K, or increases when more moments are employed in the

feature vector. On NoiseAll, the classification rates of GRHFM, GPCT, GPST have their peak at

s = 1 and decrease as s goes away from 1. In contrast, the classification rate of GPCET does not

have a similar trend, it seems to have its minimum value at s = 2 and increases as s goes away from

2. On NoiseOuter and NoiseInner, as s increases from 0.5 to 4, the classification rate of all harmonic

function-based methods decreases on NoiseOuter and increases on NoiseInner. It should be noted here

that when performing on the same dataset, GRHFM generally has the best classification performance

at the corresponding values of K and σ2.

The change in performance that results from a change in the value of σ2 and K is predictable.

The dependence of the performance on the value of s could be explained by the theoretical arguments

in Subsection 3.2. The peak performance on NoiseInner/NoiseOuter at s = 4/s = 0.5 is due to the

bias of the distribution of zeros of Rn4(r)/Rn0.5(r) towards 1/0. This means that the information

contained in the extracted moments is from the outer/inner portion of the images where the noise is

not present. Similarly, the peak performance on NoiseAll of GRHFM, GPCT, GPST at s = 1 is due

to the uniform distribution of zeros of Rn1(r) over 0 ≤ r ≤ 1. The irregular trend observed in the

classification rates of GPCET could be explained by the complex nature of its radial kernels. Although

the zeros of the real and imaginary parts GPCET radial kernels are clearly defined, GPCET radial

kernels themselves do not have zeros due to the employed complex exponential functions. And the

dominance of GRHFM over other harmonic function-based methods has the following two explanations.

First, GRHFM has been shown to be a variant of GPCET in terms of representation, similar to the

equivalence between different forms of Fourier series. The radial kernels of GRHFM are trigonometric

function-based and do not contain phase information as in the radial kernels of GPCET, which are

exponential function-based. Accordingly, GRHFM suffers less from the problem of phase information

loss [31] when a magnitude operator is used to compute rotation-invariant feature vectors. As a result,

GRHFM generally performs better than GPCET. Second, GPCT and GPST are respectively defined

based on the cosine and sine series, which are the so-called half-range expansions of a function. They

are special cases of the Fourier series and arise naturally when decomposing an even/odd function. For

this reason, many of the properties of cosine and sine series are less elegant and more involved than the

corresponding ones of the Fourier series [32]. This may explain for the inferiority of GPCT and GPST

to GRHFM in terms of classification performance.

Taking GRHFM as the representative of harmonic function-based methods, comparison of GRHFM

at s = 0.5, 1, 2, 4 with non-orthogonal (ART, GFD, RM), Jacobi polynomial-based (ZM, PZM, OFMM,

CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on NoiseAll, NoiseInner, and

NoiseOuter datasets are given in Tables 4–6 in the Supplemental material, respectively. Besides similar

trends in the dependence of the classification rate on the values of K and σ2, it can also be seen from

these tables that non-orthogonal methods have lower classification rates than orthogonal ones on the

three datasets. This inferiority demonstrates clearly that non-orthogonal methods are less efficient than

orthogonal ones in rotation-invariant pattern recognition problems. In addition, except for OFMM

on NoiseAll, Jacobi polynomial-based methods have lower performance than GRHFM at their peak

performance (s = 1 on NoiseAll, s = 4 on NoiseInner, and s = 0.5 on NoiseOuter) at the corresponding

values of K and σ2 and in the same dataset. Eigenfunction-based methods perform better than GRHFM

on NoiseAll (s = 1) when the value of K is high enough K ≥ 6. They perform worse than GRHFM on

NoiseInner (s = 4) and have comparable performance with GRHFM on NoiseOuter (s = 0.5).

From the experimental results on pattern recognition, it can be concluded that harmonic function-

based moments could be used as region-based feature vector in rotation-invariant pattern recognition

problems. They out-perform non-orthogonal and Jacobi polynomial-based moments and have comparable
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Figure 10: Sample character images from the MNIST dataset.

performance with eigenfunction-based moments on the three experiential datasets. Moreover, the decisive

role of s on the recognition results, as theoretically argued in Subsection 3.2, has also been confirmed.

The performance of GRHFM has also been evaluated on the well-known MNIST dataset [33] of

handwritten digits. MNIST consists of 60,000 training and 10,000 testing images of size 28× 28 pixels.

In this experiment, only 6000 images are used for training and 1000 for testing to avoid large memory

requirement. Some sample digits are shown in Figure 10. To further demonstrate the benefit of harmonic

function-based moments and to simulate the imperfectness in digit image normalization, the images in the

testing set are randomly rotated by −45◦ to 45◦. In the following comparison, the “direct” method uses

raw pixel intensities as feature vector for the nearest neighbor classifier. GPCET, GRHFM, GPCT, and

GPST moments are combined into a single feature vector to make it more discriminant. This is because

harmonic function-based moments capture different characteristics of an image. The classification

results are shown in Table 6. It can be seen from the table that harmonic function-based moments

give relatively high classification accuracy, while the direct method fails as expected. These results

also demonstrate clearly the benefit of rotation-invariant features in a real-world pattern recognition

problem. Harmonic function-based moments extracted from the images do contain adequate information

for pattern classification. However, it should be noted here that although harmonic function-based

moments already provide a sufficient set of features for image representation, these features are not

specifically designed to for classification. This is because the discrimination power is not considered

from the beginning. Thus, a feature selection procedure combined with an intelligent classifier might be

necessary in order to take full advantage of the rich representation capability of harmonic function-based

moments.

6 Conclusions

In this paper, the generalization of existing unit disk-based orthogonal moments using harmonic functions

has been pursued where the radial kernels are defined using exponential or trigonometric functions

(GPCET or GRHFM), cosine series (GPCT), and sine series (GPST). The sets of harmonic function-

based orthogonal kernels have been shown to be complete in the Hilbert space of square-integrable

continuous complex-valued functions. In addition, the use of a parameter s in the definition brings in

four classes of moments that maintain beneficial properties of the original moments (PCET, RHFM,

PCT, and PST) while giving more flexibility in their definition. This flexibility has been demonstrated

to be useful both theoretically and experimentally in some particular applications, especially in image
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compression and pattern recognition problems.

In terms of representation capability, harmonic function-based methods suffer from numerical error,

like all other methods. However, they do not suffer from representation error as Jacobi polynomial-based

methods do. As a result, the well-known numerical instability in Jacobi polynomial-based methods does

not exist in harmonic function-based methods. Apart from this numerical instability, the representation

power of all unit disk-based orthogonal moments is comparable. However, the ability to control the

representation emphasis on certain image regions by changing the value of s is a distinct feature of

harmonic function-based methods. It is possible to have a faster reconstruction of the image function in

certain regions of interest. This characteristic could lead to potential applications in image compression.

In rotation-invariant pattern recognition problems, harmonic function-based methods have been

shown to generally perform better than non-orthogonal and Jacobi polynomial-based methods. They

also have comparable performance with eigenfunction-based methods. Thus, harmonic function-based

moments could be used as region-based feature vector in rotation-invariant pattern recognition problems.

In addition, the decisive role of s on the recognition results has been confirmed. It can be used to

direct the extracted feature vector to emphasize on certain image regions that contain discriminative

information. This ability is also a distinct feature of harmonic function-based methods.

Since harmonic function-based moments can be computed very quickly by exploiting the recurrence

relations among complex exponentials and trigonometric functions [23], they promise to provide an

efficient and useful technique for a number of image processing and pattern recognition applications.
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Table 6: Classification rates of “direct” and harmonic function-based methods at s = 2 using the MNIST

dataset.

Direct Harmonic moments

Without rotation 89.20 96.54

With rotation 16.49 91.19
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Figure 1: Some samples of reconstructed images from the character image “E” of size 64× 64 pixels

by harmonic function-based methods at s = 0.5, 1, 2, 4 for K = 0, 1, . . . , 29 (GPCET, GPCT) and

K = 1, 2, . . . , 30 (GPST) (from left to right, top to bottom).
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(a) ZM

(b) PZM

(c) OFMM

(d) CHFM

(e) PJFM

(f) FBM

(g) BFM

(h) DHC

Figure 2: Some samples of reconstructed images from the character image “E” of size 64× 64 pixels by

Jacobi polynomial-based (ZM, PZM, OFMM, CHFM, PJFM) and eigenfunction-based (FBM, BFM,

DHC) methods for K = 0, 1, . . . , 29 (from left to right, top to bottom).
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Figure 3: MSRE(K) curves of GPCET on the six character datasets at different values of s. In each of

these figures, at a specific value of s in the horizontal axis, there is a MSRE(K) curve with the number

of employed moments |S(K)| and MSRE(K) values illustrated as the ordinate and the color of the grid

points having abscissa s.
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Figure 4: MSRE(K) curves of GRHFM on the six character datasets at different values of s. In each of

these figures, at a specific value of s in the horizontal axis, there is a MSRE(K) curve with the number

of employed moments |S(K)| and MSRE(K) values illustrated as the ordinate and the color of the grid

points having abscissa s.
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Figure 5: MSRE(K) curves of GPCT on the six character datasets at different values of s. In each of

these figures, at a specific value of s in the horizontal axis, there is a MSRE(K) curve with the number

of employed moments |S(K)| and MSRE(K) values illustrated as the ordinate and the color of the grid

points having abscissa s.
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Figure 6: MSRE(K) curves of GPST on the six character datasets at different values of s. In each of

these figures, at a specific value of s in the horizontal axis, there is a MSRE(K) curve with the number

of employed moments |S(K)| and MSRE(K) values illustrated as the ordinate and the color of the grid

points having abscissa s.
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Figure 7: MSRE(K) curves of harmonic function-based methods (GPCET, GPCT, GPST) at s =

0.5, 1, 2, 4 on the six character datasets (to be continued on the next page).
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Figure 7: MSRE(K) curves of harmonic function-based methods (GPCET, GPCT, GPST) at s =

0.5, 1, 2, 4 on the six character datasets.
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Figure 8: MSRE(K) curves of GPCET at s = 0.5, 1, 2, 4, Jacobi polynomial-based (ZM, PZM, OFMM,

CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on the six character datasets (to

be continued on the next page).
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Figure 8: MSRE(K) curves of GPCET at s = 0.5, 1, 2, 4, Jacobi polynomial-based (ZM, PZM, OFMM,

CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on the six character datasets.
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Table 1: Classification rates of harmonic function-based methods (GPCET, GRHFM, GPCT, GPST) at s = 0.5, 1, 2, 4 on NoiseAll dataset under

different degrees of Gaussian noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 3, 6, 9, 12, 15.

K σ2
GPCET GRHFM GPCT GPST

s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 98.00 97.08 96.08 98.00 97.92 97.75 97.00 96.92 97.67 96.75 94.67 95.75 96.58 95.67 87.92

0.10 87.67 81.67 75.25 78.00 86.58 87.08 81.58 81.83 75.67 83.83 75.08 75.92 72.58 78.75 70.50 70.17

0.15 57.00 56.00 47.75 49.42 59.50 65.42 56.50 50.42 46.33 53.75 46.67 47.00 45.33 50.75 42.00 41.33

0.20 34.75 35.08 27.67 28.25 38.42 41.25 33.25 32.08 28.33 33.08 27.42 28.33 28.17 32.00 22.08 23.00

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 98.00 98.00 97.92 98.00 98.00 98.00 97.92 98.00 98.00 98.00 97.92 98.17 98.00 98.00 96.00

0.10 93.42 91.83 84.42 86.17 92.75 92.50 88.25 88.83 88.67 91.08 87.42 86.50 90.58 91.92 87.83 82.92

0.15 73.33 68.17 60.50 66.67 74.00 76.25 67.42 65.83 62.25 71.17 63.58 62.67 67.92 73.25 62.50 64.67

0.20 43.67 42.17 37.33 43.33 45.58 49.50 44.83 43.83 37.42 42.92 39.92 38.50 42.83 46.92 38.00 40.58

9

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.33 98.00 98.00 96.83

0.10 94.33 93.08 88.33 89.50 94.00 93.25 91.42 90.17 91.58 92.33 91.17 88.08 93.33 92.67 91.58 86.92

0.15 79.92 77.17 67.92 73.83 79.50 81.33 72.83 74.00 69.83 77.33 70.92 69.83 74.58 80.00 71.25 72.42

0.20 50.83 49.00 44.42 50.50 51.50 56.75 52.58 51.00 45.42 49.25 48.17 46.25 46.92 52.33 46.42 48.75

12

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.08 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.50 98.00 98.00 97.00

0.10 95.00 94.58 90.33 89.75 95.00 94.58 93.25 91.42 93.00 93.17 92.58 89.58 95.33 93.25 92.92 88.17

0.15 84.17 80.58 72.58 76.67 83.42 84.75 76.25 78.00 76.08 81.08 75.50 73.58 79.08 83.50 74.08 74.67

0.20 57.17 55.33 50.75 58.08 58.42 62.33 57.67 57.08 49.83 54.75 53.42 50.75 51.67 58.25 51.83 52.42

15

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.17 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.75 98.00 98.00 97.08

0.10 96.17 95.67 92.00 90.75 95.58 95.33 94.25 92.25 94.25 93.92 93.33 90.17 96.00 93.83 93.25 88.83

0.15 86.92 83.08 75.92 79.08 85.75 86.50 79.67 79.58 78.50 83.58 78.33 76.42 82.17 85.33 76.83 76.33

0.20 61.67 60.00 55.58 62.25 63.33 66.17 61.17 62.33 52.92 59.00 57.92 56.17 56.25 61.92 55.67 55.83
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Table 2: Classification rates of harmonic function-based methods (GPCET, GRHFM, GPCT, GPST) at s = 0.5, 1, 2, 4 on NoiseInner dataset under

different degrees of Gaussian noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 1, 2, 3, 4, 5.

K σ2
GPCET GRHFM GPCT GPST

s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4

1

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.33 98.67 99.33 97.33

0.05 91.50 92.58 97.33 99.08 94.00 97.67 97.67 99.00 86.42 86.00 87.75 98.67 7.58 16.67 43.83 83.08

0.10 75.08 77.42 84.83 97.58 79.08 83.00 91.83 98.92 63.50 69.58 70.50 92.08 4.50 8.67 28.58 73.25

0.15 63.08 66.50 76.50 95.17 67.50 71.08 82.83 97.33 45.50 53.08 57.33 84.67 3.42 6.08 21.00 66.67

0.20 52.00 56.33 67.08 93.50 56.17 61.75 69.42 94.83 37.33 44.00 48.33 79.33 3.33 4.83 17.58 63.33

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.83 98.92 100.00 100.00 99.25 99.75 100.00 100.00 99.00 99.67 100.00 100.00 93.67 98.58 100.00 100.00

0.10 96.75 96.50 99.00 100.00 96.17 98.67 100.00 100.00 89.75 96.33 97.83 100.00 76.00 87.17 99.50 100.00

0.15 91.92 92.92 98.50 100.00 92.25 94.67 98.42 100.00 80.67 89.67 94.42 100.00 62.67 77.17 94.67 100.00

0.20 86.00 88.50 93.75 100.00 86.17 90.50 94.92 99.83 70.08 81.25 87.67 99.50 49.75 65.67 92.83 100.00

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 100.00 100.00 100.00 100.00 99.58 99.92 100.00 100.00 99.58 99.75 100.00 100.00 99.00 99.17 100.00 100.00

0.10 98.83 98.83 99.08 100.00 98.50 98.92 100.00 100.00 97.17 98.83 100.00 100.00 93.58 98.58 100.00 100.00

0.15 96.58 96.83 99.00 100.00 97.08 97.25 99.17 100.00 92.92 97.17 98.75 100.00 82.00 91.92 100.00 100.00

0.20 95.75 95.92 98.42 100.00 93.92 95.33 98.58 99.92 84.67 92.33 97.83 99.83 70.08 88.25 99.92 100.00

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 100.00 100.00 100.00 100.00 99.67 99.83 100.00 100.00 99.67 99.75 100.00 100.00 99.00 99.33 100.00 100.00

0.10 99.00 98.92 99.75 100.00 98.67 99.00 100.00 100.00 98.25 99.00 100.00 100.00 95.50 98.83 100.00 100.00

0.15 97.42 97.17 99.00 100.00 97.92 97.67 100.00 100.00 96.42 98.00 99.75 100.00 90.83 95.50 100.00 100.00

0.20 96.75 96.92 98.83 100.00 96.92 96.92 99.42 99.83 92.17 97.00 98.33 99.08 83.67 93.92 99.58 100.00

5

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 100.00 100.00 100.00 100.00 99.92 100.00 100.00 100.00 99.92 100.00 100.00 100.00 99.00 99.92 100.00 100.00

0.10 99.00 99.00 100.00 100.00 98.92 99.00 100.00 100.00 98.58 99.00 100.00 100.00 97.17 99.00 100.00 100.00

0.15 97.58 97.58 99.42 100.00 98.00 98.00 100.00 100.00 97.42 98.25 100.00 100.00 93.17 97.75 100.00 100.00

0.20 97.08 97.08 98.92 100.00 98.00 97.17 99.58 99.92 95.50 97.33 99.17 99.17 88.00 96.08 99.50 100.00
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Table 3: Classification rates of harmonic function-based methods (GPCET, GRHFM, GPCT, GPST) at s = 0.5, 1, 2, 4 on NoiseOuter dataset

under different degrees of Gaussian noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 2, 4, 6, 8, 10.

K σ2
GPCET GRHFM GPCT GPST

s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 97.17 97.08 94.25 97.42 98.08 96.08 94.08 94.33 95.08 92.92 93.25 95.67 92.58 80.17 79.58

0.10 95.42 86.25 75.58 75.83 92.92 91.00 82.58 79.08 76.83 85.83 72.17 70.08 79.25 69.75 53.17 47.42

0.15 79.67 73.00 57.42 46.17 82.75 78.33 65.25 52.92 57.67 64.08 55.83 45.42 64.33 46.67 32.17 25.08

0.20 65.75 59.58 42.83 29.50 67.92 65.25 52.25 34.92 46.58 51.00 40.08 31.08 49.00 33.92 20.92 16.33

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.00 98.83 98.00 97.92 98.42 99.00 98.00 97.92 98.00 98.83 98.00 97.42 98.33 98.17 97.17 94.67

0.10 98.00 96.75 89.42 87.25 96.42 95.08 90.83 88.58 94.17 93.33 88.50 85.67 95.92 94.17 87.42 78.75

0.15 94.42 88.33 77.00 68.33 92.33 89.33 79.33 71.67 83.33 85.17 73.33 68.17 87.08 85.75 69.50 56.83

0.20 83.25 75.50 62.83 48.25 82.50 79.42 67.33 52.00 69.50 71.08 61.92 48.75 76.33 75.83 52.33 34.50

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.00 99.00 98.00 98.00 98.92 99.00 98.00 98.00 98.00 99.00 98.00 98.00 99.00 99.00 98.00 96.67

0.10 98.00 98.00 93.25 89.33 98.00 97.58 94.67 89.92 96.75 95.08 93.00 88.83 97.00 96.17 91.58 84.42

0.15 95.17 91.17 83.75 77.17 93.08 92.00 85.08 79.42 88.92 90.67 82.25 77.50 92.25 90.83 79.00 68.50

0.20 90.50 82.67 70.75 58.58 88.17 84.58 73.42 61.25 77.75 80.00 69.42 57.42 86.83 84.08 62.33 45.67

8

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.50 99.00 98.00 98.00 99.25 99.00 98.00 98.00 98.42 99.00 98.00 98.00 99.50 99.00 98.00 96.83

0.10 98.00 98.00 95.00 89.92 98.00 97.92 96.50 90.58 97.75 96.92 95.83 89.50 97.00 97.00 92.67 86.50

0.15 95.42 92.58 85.67 82.00 94.08 92.08 87.33 82.92 91.42 91.83 85.00 81.83 95.50 93.08 83.75 73.75

0.20 91.33 86.17 74.83 65.00 88.92 87.08 77.50 67.50 81.33 84.67 74.08 64.25 88.67 86.17 68.42 52.25

10

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.58 99.00 98.00 98.00 99.42 99.00 98.00 98.00 98.58 99.00 98.00 98.00 100.00 99.00 98.00 97.00

0.10 98.00 98.00 96.50 90.17 98.00 97.92 97.17 91.00 98.00 97.42 96.50 90.00 97.00 97.50 93.50 88.00

0.15 95.58 93.08 87.25 83.58 94.50 92.17 88.50 84.17 92.25 91.92 86.33 83.75 95.92 93.17 85.17 76.00

0.20 91.75 87.67 78.17 70.42 89.67 88.67 79.92 72.33 83.58 86.92 76.42 69.33 91.08 88.00 73.50 58.00

12



Table 4: Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal (ART, GFD, RM), Jacobi polynomial-based (ZM, PZM, OFMM,

CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on NoiseAll dataset under different degrees of Gaussian noise σ2 =

0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 3, 6, 9, 12, 15.

K σ2
GRHFM

ART GFD RM ZM PZM OFMM CHFM PJFM FBM BFM DHC
s=0.5 s=1 s=2 s=4

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 97.92 97.75 97.00 96.75 97.92 79.25 78.67 93.83 97.42 97.92 96.50 97.33 97.92 96.42

0.10 86.58 87.08 81.58 81.83 79.92 83.50 39.17 43.92 68.00 77.00 78.50 79.58 87.67 84.42 83.50

0.15 59.50 65.42 56.50 50.42 51.50 54.50 19.33 20.42 43.00 55.50 53.67 55.92 66.58 65.67 55.25

0.20 38.42 41.25 33.25 32.08 28.67 31.92 11.17 9.67 26.08 36.83 31.67 32.50 42.33 39.67 34.83

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 98.00 98.00 97.92 98.00 98.00 93.08 97.58 98.00 98.00 98.00 98.00 98.25 98.00 98.00

0.10 92.75 92.50 88.25 88.83 89.75 91.83 63.50 84.58 90.58 92.83 89.75 89.08 94.50 94.42 93.33

0.15 74.00 76.25 67.42 65.83 68.58 67.42 36.00 56.75 67.75 73.83 67.42 67.00 81.67 82.83 75.67

0.20 45.58 49.50 44.83 43.83 44.75 41.67 20.67 35.00 44.33 54.00 42.00 44.58 57.42 56.83 52.92

9

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 98.00 98.00 98.00 98.00 98.00 95.50 97.92 98.00 98.00 98.00 98.00 99.00 98.00 98.00

0.10 94.00 93.25 91.42 90.17 92.17 93.67 71.75 90.50 93.08 94.83 91.67 91.17 95.67 95.50 94.25

0.15 79.50 81.33 72.83 74.00 75.83 74.92 45.00 72.08 77.17 81.67 73.33 74.42 85.92 86.33 83.42

0.20 51.50 56.75 52.58 51.00 50.17 49.17 26.17 44.83 55.58 64.33 48.08 49.08 68.33 67.17 64.42

12

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 98.00 98.00 98.00 98.00 98.00 97.25 98.00 98.00 98.08 98.00 98.00 99.00 98.00 98.00

0.10 95.00 94.58 93.25 91.42 93.33 94.17 77.08 93.33 93.92 96.00 92.67 92.25 96.50 96.08 95.50

0.15 83.42 84.75 76.25 78.00 77.58 79.00 48.83 77.67 81.75 86.08 77.42 77.83 90.17 91.25 88.67

0.20 58.42 62.33 57.67 57.08 54.33 53.83 28.92 56.08 63.42 71.75 54.58 54.17 74.42 76.08 71.42

15

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.00 98.00 98.00 98.00 98.00 98.00 97.50 98.00 98.00 98.25 98.00 98.00 99.00 98.25 98.25

0.10 95.58 95.33 94.25 92.25 94.08 94.42 79.67 94.50 94.42 96.42 93.50 92.92 97.58 96.50 95.92

0.15 85.75 86.50 79.67 79.58 80.33 81.42 51.75 81.08 85.08 89.67 80.00 80.75 92.75 93.00 91.33

0.20 63.33 66.17 61.17 62.33 58.75 57.83 30.83 60.83 67.33 75.67 58.17 57.17 79.75 81.50 76.17
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Table 5: Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal (ART, GFD, RM), Jacobi polynomial-based (ZM, PZM, OFMM,

CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on NoiseInner dataset under different degrees of Gaussian noise σ2 =

0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 1, 2, 3, 4, 5.

K σ2
GRHFM

ART GFD RM ZM PZM OFMM CHFM PJFM FBM BFM DHC
s=0.5 s=1 s=2 s=4

1

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 94.00 97.67 97.67 99.00 91.83 97.08 93.83 43.08 72.42 83.08 85.58 86.92 83.25 85.08 88.17

0.10 79.08 83.00 91.83 98.92 75.08 84.08 72.17 28.00 50.92 63.08 69.33 61.25 64.58 62.92 66.75

0.15 67.50 71.08 82.83 97.33 64.58 74.58 57.00 21.75 40.00 50.50 53.33 45.67 48.25 47.92 51.75

0.20 56.17 61.75 69.42 94.83 56.58 67.17 47.83 18.83 34.00 40.17 45.00 38.00 39.25 36.92 42.17

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.25 99.75 100.00 100.00 100.00 100.00 100.00 93.00 98.08 100.00 99.58 99.75 99.25 99.25 100.00

0.10 96.17 98.67 100.00 100.00 98.67 99.67 97.33 82.75 91.75 97.00 95.92 97.83 93.75 93.58 98.92

0.15 92.25 94.67 98.42 100.00 94.50 97.67 93.25 73.50 84.75 92.25 88.00 92.00 88.67 88.42 95.33

0.20 86.17 90.50 94.92 99.83 92.67 95.58 87.08 64.17 76.50 85.50 80.67 84.50 83.33 84.00 89.25

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.58 99.92 100.00 100.00 100.00 100.00 100.00 98.25 100.00 100.00 99.58 100.00 99.33 99.83 100.00

0.10 98.50 98.92 100.00 100.00 99.00 100.00 100.00 95.00 99.33 100.00 98.83 99.00 98.25 99.00 99.92

0.15 97.08 97.25 99.17 100.00 98.83 99.00 99.33 87.75 95.92 96.50 97.58 97.75 95.25 95.42 98.67

0.20 93.92 95.33 98.58 99.92 97.75 98.08 97.58 80.25 91.25 91.83 93.33 95.50 93.25 91.33 96.58

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.67 99.83 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.67 100.00 100.00 100.00 100.00

0.10 98.67 99.00 100.00 100.00 100.00 100.00 100.00 96.83 99.92 100.00 99.00 99.00 98.67 99.00 100.00

0.15 97.92 97.67 100.00 100.00 99.00 99.00 99.75 93.67 98.42 98.67 98.00 98.33 97.25 97.83 100.00

0.20 96.92 96.92 99.42 99.83 98.58 98.92 99.00 91.25 96.58 96.17 96.58 97.08 96.25 95.50 99.08

5

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.92 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.10 98.92 99.00 100.00 100.00 100.00 100.00 100.00 99.25 100.00 100.00 99.00 99.00 99.00 99.00 100.00

0.15 98.00 98.00 100.00 100.00 99.00 99.17 99.83 97.25 99.33 99.00 98.00 98.75 97.75 98.33 100.00

0.20 98.00 97.17 99.58 99.92 98.75 99.00 99.00 94.00 98.58 97.33 97.42 97.00 97.00 96.50 99.92

14



Table 6: Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal (ART, GFD, RM), Jacobi polynomial-based (ZM, PZM, OFMM,

CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on NoiseOuter dataset under different degrees of Gaussian noise σ2 =

0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 2, 4, 6, 8, 10.

K σ2
GRHFM

ART GFD RM ZM PZM OFMM CHFM PJFM FBM BFM DHC
s=0.5 s=1 s=2 s=4

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 97.42 98.08 96.08 94.08 91.42 96.08 70.75 59.50 87.17 93.00 93.83 93.67 98.08 95.25 96.33

0.10 92.92 91.00 82.58 79.08 74.00 81.33 37.00 21.42 62.17 76.42 79.17 81.42 89.33 85.17 84.00

0.15 82.75 78.33 65.25 52.92 52.75 63.08 21.58 9.83 41.58 64.33 64.17 63.58 76.08 73.00 61.75

0.20 67.92 65.25 52.25 34.92 32.50 46.00 15.08 7.42 28.67 50.83 51.67 51.33 58.25 57.08 46.92

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.42 99.00 98.00 97.92 97.92 98.00 91.83 92.58 98.00 98.00 98.25 98.00 99.67 98.17 98.00

0.10 96.42 95.08 90.83 88.58 87.58 91.33 66.00 77.08 91.67 92.92 92.83 92.92 96.92 95.83 95.17

0.15 92.33 89.33 79.33 71.67 73.17 77.58 37.75 57.17 74.08 81.50 84.08 83.17 94.00 88.92 86.25

0.20 82.50 79.42 67.33 52.00 56.75 58.42 20.50 38.17 60.75 73.75 70.08 68.58 86.58 79.92 76.25

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 98.92 99.00 98.00 98.00 98.00 98.00 95.08 98.00 98.08 98.25 99.00 98.00 100.00 99.08 99.67

0.10 98.00 97.58 94.67 89.92 92.58 94.08 74.08 89.42 94.83 96.92 94.00 94.25 98.67 97.92 97.00

0.15 93.08 92.00 85.08 79.42 81.67 84.42 47.42 75.83 87.33 88.00 88.00 88.00 95.50 93.75 91.33

0.20 88.17 84.58 73.42 61.25 63.33 65.00 30.58 57.33 76.00 79.25 76.92 77.17 91.92 88.08 84.50

8

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.25 99.00 98.00 98.00 98.00 98.00 96.17 98.00 99.17 99.00 99.00 98.00 100.00 100.00 100.00

0.10 98.00 97.92 96.50 90.58 94.25 95.75 81.42 93.25 96.50 97.33 96.17 95.58 98.92 98.00 97.75

0.15 94.08 92.08 87.33 82.92 85.25 86.00 52.42 84.42 89.42 89.50 90.08 89.75 96.67 94.67 93.50

0.20 88.92 87.08 77.50 67.50 69.50 68.83 35.25 71.33 82.17 83.92 80.67 81.33 93.17 90.67 87.42

10

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.05 99.42 99.00 98.00 98.00 98.00 98.00 97.50 98.33 99.83 99.42 99.00 98.00 100.00 100.00 100.00

0.10 98.00 97.92 97.17 91.00 95.17 96.67 84.33 96.17 97.42 97.83 97.58 97.42 99.00 98.00 98.08

0.15 94.50 92.17 88.50 84.17 85.92 87.58 56.08 87.50 91.33 92.17 91.25 90.67 97.17 95.17 94.50

0.20 89.67 88.67 79.92 72.33 73.67 72.17 38.83 77.08 84.17 86.42 84.75 82.50 94.75 92.75 88.58

15


