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Abstract

Recent research trends in content-based video retrieval have shown topic

models as an effective tool to deal with the semantic gap challenge. In this

scenario, this work has a dual target: (1) it is aimed at studying how the

use of different topic models (pLSA, LDA and FSTM) affects video retrieval

performance; (2) a novel incremental topic model (IpLSA) is presented in

order to cope with incremental scenarios in an effective and efficient way.

A comprehensive comparison among these four topic models using two dif-

ferent retrieval systems and two reference benchmarking video databases is

provided. Experiments revealed that pLSA is the best model in sparse con-

ditions, LDA tend to outperform the rest of the models in a dense space and

IpLSA is able to work properly in both cases.
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1. Introduction

With the expansion of new technologies, video collections are increasingly

larger and more complex, therefore one of the biggest current challenges is
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how to retrieve users’ relevant data from this huge amount of information.

The Content-Based Video Retrieval (CBVR) problem is concerned about how

to provide users with videos which satisfy their queries by means of video

content analysis. Over the past years, CBVR has become a very important

research field and several CBVR systems have been developed [1, 2, 3, 4]. In

general, a CBVR system has three main components involved in the retrieval

process: (1) a query, represented by a few video examples of the semantic

concept the user is looking for; (2) a database, which is used to extract

videos related to the query concept; and (3) a ranking function, which sorts

the database according to the relevance to the query. These three compo-

nents are usually integrated together with the user in a Relevance Feedback

(RF) scheme [5] to provide the most relevant videos through several feedback

iterations.

One of the most used rankings in multimedia retrieval is distance-based

ranking. Such ranking is performed according to the minimum distance or

maximum similarity to the query in the video representation space [6, 7].

However, these measures tend not to work properly when the multimedia

data is rather complicated [8]. Other ranking algorithms are based on induc-

tive learning [9, 10] which typically use a bank of classifiers to represent the

set of possible events to test. Nevertheless, the performance of this approach

heavily depends on the training data what limits its usage in unconstrained

retrieval applications. Alternative ranking methods are based on transduc-

tive ranking which use the topology of the data distribution to improve the

output ranking [11, 12]. The main drawback of these functions is their high

computational cost because they need to carry out demanding matrix oper-
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ations over the retrieval process.

Several of these approaches have shown to be successful at retrieval tasks

when they are used on reduced databases with a small number of concepts

[13]. However, the so-called semantic gap [14] between computable low-

level features and query concepts is still a challenge for large unconstrained

video collections. The visual variability of unconstrained queries is so high

that current approaches often do not adequately scale semantic concepts

[8]. As a result, new capabilities are required in CBVR to bring the video

characterization to a higher semantic level.

Ranking functions work in a specific representation space where videos

are encoded in feature vectors according to the information provided by a

descriptor. Different types of descriptors have been developed using static

information (Scale Invariant Feature Transform - SIFT [15]), spatio-temporal

(Spatial Temporal Interest Points - STIP [16]) or audio (Mel Frequency Cep-

stral Coefficients - MFCC [17]). The standard procedure to encode all this

low-level information in feature vectors is the visual Bag of Words (vBoW)

[18]. The vBoW quantization starts by learning a visual vocabulary made

up of the clustering of the local features. Then, each video is represented

in a single histogram of visual words by accumulating the number of local

features into their closest clusters. In the literature, it is quite common to

see how authors refer to this quantized space as descriptor space although it

is not the direct output of the descriptor functions

Some recent works have presented more advanced descriptors which are

able to achieve better results for a specific sort of applications. For example,

in [19] Wang and Schmid presented a video representation based on dense
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trajectories specially designed for action recognition which outperforms the

most common motion-based descriptors. However, in unconstrained CBVR

the type of concepts to deal with is so wide that simpler and non-specialised

descriptors are commonly used [8].

Although early research on topic models suggested that they may be used

in video retrieval, it was not until recently that topic models were success-

fully applied to large unconstrained video collections [20]. In general, topic

models provide for automatically organizing, understanding, searching and

summarizing large electronic archives [21]. For many years, topic models

have not been considered useful in tasks where precision is important be-

cause traditional ranking functions tend to perform worse in the latent space

than in the original characterisation space. The latent topic space is usually

a lower dimensionality representation where concepts and classes are more

diffuse and besides it allows connections among different concepts through

patterns defined by topics. As a result, the most effective ranking functions

in the original feature space are usually not useful in the topic space because

this space has an utterly different nature.

However, this fact does not mean the topics’ lack of usefulness. In those

applications in which the semantic gap is important, the retrieval precision in

the original feature space tend to be very low and topic models can provide a

competitive advantage by means of hidden patterns which may be interpreted

as a higher characterization level. It is the case of unconstrained CBVR,

where the difference between the low-level characterization of the videos and

the query concepts that users can manage is so huge that topic models can

help us to obtain a better performance in retrieval tasks.
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The majority of the topic methods are in the families of two reference

models: probabilistic Latent Semantic Analysis (pLSA) [22] and Latent

Dirichlet Allocation (LDA) [23]. These two algorithms and other topic mod-

els are typically used by retrieval systems in three steps: (1) Extract the

hidden patterns (topics) that pervade the data collection; (2) Annotate the

documents according to these topics; (3) Use these annotations to rank the

documents according to users’ queries. The topic extracting process has

shown to be affordable when it is carried out in moderate size databases

with a limited number of concepts. However, current video collections tend

to be very large and besides they grow day by day with a wide range of con-

cepts. For these incremental databases, topic extraction algorithms such as

pLSA and LDA, have a computational burden too heavy to recompute topics

each time the databases increase their size with new samples. In other kinds

of applications, some authors [24] have shown the advantages of considering

an incremental scenario to manage large video collections in an efficient way,

therefore this scheme may help us to improve the topic extraction task. In

this work, we are interested in exploring whether video retrieval performance

is affected by the use of different topic models and how video retrieval sys-

tems based on topic models are able to efficiently manage these incremental

databases.

In the literature, several alternative models have been proposed in order

to improve the computational efficiency of the topic extraction process. Some

authors have proposed dynamic models which are able to adapt topic struc-

ture over time. One of the most representative ones is presented in [25] where

Blei and Lafferty developed the Dynamic Topic Model which can capture the
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evolution of topics in a sequentially organized corpus of documents. Other

authors have developed window-based models where the database is consid-

ered a temporal flow in which old documents are removed as new documents

are introduced. For instance, Tzu-Chuan et al [26] presented a pLSA version

to address the problem of on-line event detection and Wu et al [27] devel-

oped a pLSA extension for automatic question recommendation. In general,

these models follow the same idea than that of dynamic models but allow

the management of new words in documents. Dynamic models as well as

window-based models use the concept incremental in the sense of changing

word distribution of topics over time, that is, they maintain the number of

topics fixed and adapt these topics to the new samples. However, in an incre-

mental retrieval environment the new samples may require additional topics

to capture new patterns for retrieving these new samples. This fact makes

these models unsuitable for an incremental retrieval scenario and in this work

we use the concept incremental in the sense of extending the number of topics

by adding new patterns.

Traditional topic models assume that topics have a non-zero contribu-

tion to generate documents and this leads to a dense representation with a

high computational complexity. Other authors have proposed more efficient

approaches which assume sparse topic proportions in documents. In [28],

Khoat and Bao presented the Full Sparse Topic Model (FSTM) which is able

to reduce significantly the computational burden with respect to pLSA and

LDA. Although experimental results in [28] are encouraging, there are not

works in the literature which have tested the performance of FSTM in a

video retrieval system based on latent topics.
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In this scenario, the presented work has a dual target. On the one hand,

we pretend to study the performance of pLSA, LDA and FSTM models for

the unconstrained video retrieval problem. On the other hand, we present

an extension of the pLSA model in order to enable CBVR systems based on

latent topics to handle incremental collections in an effective and efficient

way. Some works [29, 30, 31] have already explored topic performance but

always related to text or image retrieval, in this case we would like to test

if the same behaviour can be observed in an unconstrained video retrieval

system. In particular, we are going to use as a testing protocol two different

retrieval systems based on latent topics: (1) the retrieval method proposed

in [20] and (2) the cosine similarity function used in [32].

The rest of the work is organized as follows. In Section 2, a short review

about topic models is provided mainly focused on pLSA and the reasons to

extend this model rather than any other. Section 3 presents the Incremental

probabilistic Latent Semantic Analysis (IpLSA) model which is an extension

of pLSA in order to reduce computational complexity and to deal with the

over-fitting problem. In Section 4, the experimental setting is described as

well as the empirical results obtained by the retrieval systems [20] and [32],

including a comparison among pLSA, LDA, FSTM and IpLSA in terms of

video retrieval performance using the Consumer Columbia Video database

[33] and the collection TRECVID 2007 [34] . Finally, Section 5 discusses the

results and Section 6 draws the main conclusions arising from this work.
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Figure 1: pLSA model: d represents the documents, z the topics (hidden variable) and w

the words. M is the number of documents of the collection and N the number of words

in the document d.

2. Background

Latent Semantic Analysis (LSA) [35] was one of the starting points for a

group of techniques aimed at mapping the original high dimensional repre-

sentation of data into a reduced representation, the so-called latent semantic

space, where it is supposed that objects (documents, speech, images, videos

. . . ) will represent semantic relationships among them. LSA had an algebraic

interpretation of the latent semantic space, using a Singular Value Decom-

position (SVD) approach to find such a representation. Probabilistic Latent

Semantic Analysis (pLSA) [22] was later introduced by Hofmann, which is

based on a statistical approach, defining a semi-generative data model and

introducing a latent context variable associated with the different word pol-

ysemy occurrences. In pLSA (Figure 1), each document d is modelled as a

mixture of topics z. The generative process is made as follows: (1) Select a

document d with probability p(d); (2) Pick a latent class z with probability

p(z|d); (3) Generate a word w with probability p(w|z).

Statistical topic models have become an important data analysis tool,

and pLSA has been developed in more general frameworks. Blei et al. in-

troduced the Latent Dirichlet Allocation (LDA) model [23] which represents
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documents as a multinomial of topic mixtures generated by a Dirichlet prior.

Both pLSA and LDA are a reference in topic modelling although there are

significant differences between them. On the one hand, pLSA uses the doc-

uments of the collection as parameters of what makes the model pLSA a

highly spatial demanding model and generates topic over-fitting when too

many parameters are considered. On the other hand, LDA tries to over-

come pLSA drawbacks by using two Dirichlet distributions, one to model

documents p(z|d) ∼ Dir(α) and another to model topics p(w|z) ∼ Dir(β).

Logically, these parameters α and β have to be estimated during the topic

extraction process which adds an extra computational burden.

Although the experimentation in [23] shows that LDA is able to achieve

lower perplexity than pLSA, it is not clear how the perplexity correlates

with the performance in retrieval tasks and other kind of applications. The

same Blei [36] concludes that pLSA often obtains a topic structure more

correlated to the human judgement than LDA, even though the perplexity

values suggest the opposite. The work presented in [29] reveals that pLSA

outperforms the performance of LDA for automatic essay grading tasks in a

collection with less than 150 documents. In [31], the authors suggest that

LDA does not have a competitive edge over pLSA especially for small training

datasets and other authors [30] conclude that more elaborated topic models

provide no additional gains in retrieval tasks.

As a result, it seems that the pLSA scheme may enable to adapt the topics

to the data distribution better when few samples are available according to

the complexity of the problem. In the standard LDA algorithm, the parame-

ter estimation is carried out by maximizing the marginal log-likelihood of the
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data using a tractable lower bound. In practice, this estimation is performed

by iterating over the document collection what produces that LDA requires

a certain number of documents to adequately estimate its hyper-parameters.

In an application like CBVR, the concept to retrieve is a priori unknown

because it is up to the user and besides the initialization and feedback are

often very limited. Then, it is usual to deal with complex concepts having

very little information about them. For these reasons, we have decided to

extend the pLSA model as the basis of our incremental model for CBVR.

2.1. Computational complexity issues

One of the most important drawbacks of topic models is the computa-

tional complexity of their algorithms. In this section, we are going to have a

look at the computational cost of the original pLSA algorithm [22] in order

to figure out the best way to extend the model efficiently.

The pLSA implementation of Hoffmann [22] uses the Expectation Max-

imization (EM) algorithm. EM alternates into two steps: E-step (expecta-

tion) where the posterior probability of topics (z) given documents (d) and

words (w) p(z|d,w) is calculated, and M (maximization) which maximizes

the complete log-likelihood that depends on the posterior computed in the

E-step. Therefore, the complexity of the standard pLSA algorithm is the

following:

Ctime(pLSA) = O( I︸︷︷︸
Iters

(VMK︸ ︷︷ ︸
Estep

+VMK︸ ︷︷ ︸
Mstep

) = O(IVMK) (1)

Cspace(pLSA) = O(VMK︸ ︷︷ ︸
p(z|d,w)

+V K︸︷︷︸
p(w|z)

+KM︸︷︷︸
p(z|d)

) = O(VMK) (2)
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where I is the maximum EM iterations, V the size of the vocabulary,

M the number of documents and K the number of topics. According to

these expressions, we can improve the computational complexity of the model

by reducing any of these variables, but we have to analyse the best option

according to our aims.

The maximum number of EM iterations (I) is a pre-fixed value which

is typically set at 1000 by default and a lower value may produce a worse

convergence of the algorithm, then taking a lower value does not seem to be

a good alternative. Another possibility of reducing the complexity of pLSA

could be by reducing the number of topics K. Choosing the right number

of topics is a critical question in topic modelling and there are several works

which deal with this problem. Some approaches are based on non-parametric

topic models, such as the case of the Hierarchical Dirichlet Processes [37],

and other ones use an evaluation function to decide the best number of topics

[38]. However, all of them require performing the topic extraction process

several times and therefore they are not practical in improving the efficiency

of the topic extraction process. In order to simplify, we are going to assume

that the number of topics K is set manually following a specific criterion, for

instance a percentage of the total number of documents M .

Reducing the number of words of the vocabulary could be another option

to improve the efficiency of the pLSA model. In fact, we explored vocabulary

reduction in a previous work [39] where we used the LDA model to reduce

the vocabulary size and that reduction allowed us to carry out the topic

extraction process faster. However, reducing the vocabulary may not be

enough especially when the number of documents increases dramatically.
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With a huge number of documents, the pLSA model has two main draw-

backs: the high spatial complexity and the over-fitting problem. By reducing

the number of documents to extract the topics, we can try to cope with these

two issues at the same time. On the one hand, the less documents the less pa-

rameters, and then the less spatial complexity. On the other hand, by using

less parameters the model is supposed to avoid part of the over-fitting pro-

duced when all the documents of the collection are considered parameters.

Note that the pLSA-based models always have over-fitting because docu-

ments are parameters of the model, but using less parameters may allow us

to avoid part of it.

Therefore, reducing the number of documents seems to be the best option

to improve the efficiency and to obtain a better performance of a pLSA-based

model. In an incremental environment, a CBVR system based on latent

topics starts from an initial stage where it has a set of initial M0 documents

expressed as p(w|d0), a set of initial Z0 topics p(w|z0) and the description of

the documents in these topics p(z0|d0). For the next stage, a set of M new

documents p(w|d) arrives into the database and topics must be recomputed

to take into account the new data distribution. Normally, the amount of new

samples will be quite lower than the number of samples of the previous stage

(M0 << M), therefore if the initial topics could be expanded using only

the new documents the process would reach a great efficiency improvement.

Precisely, the proposed incremental model follows that idea.
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Figure 2: IpLSA model: d represents the new documents to add into the database, z0 the

initial topic structure of the previous stage, z the new extracted topics to describe the

new documents and w the words. Eventually, N represents the number of words of the

document d and M the number of new documents to add into the database.

3. Incremental probabilistic Latent Semantic Analysis (IpLSA)

At a given stage of the retrieval process, an incremental database has three

main components: a set of previous documents d0, a set of topics z0 extracted

from the previous documents and a set of new documents d to extend the

database. The goal of the proposed incremental model is to extract a new

set of topics z using only the new documents d but taking into account the

initial topics z0 in order to extract only new patterns. In the end, these new

documents will be represented using a combination of previous topics z0 and

new topics z.

The IpLSA model (Figure 2) extends the pLSA model by adding the ran-

dom variable corresponding to topics z0 of the previous stage. The generative

process of the IpLSA model stems from the document probability distribu-

tion p(d) of the new documents. In the model, documents d;d = 1,...,M are

expressed as topic mixtures of previous topics z0;z0 = 1,...,Z0 and new topics

z;z = 1,...,Z, according to parameters p(z0,z|d). Therefore, the process to

generate a document d can be interpreted as follows:
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• A document d is chosen from p(d) probability distribution.

• For each one of the N words in the document d,

– A topic pair (z0,z) is chosen according to conditional distribution

p(z0,z|d) that expresses documents in the previous topics z0 and

the new ones z.

– A word w is chosen according to the conditional distribution p(w|z0,z)

which expresses the set of previous and new topics in words.

3.1. Formulation by EM

The parameters p(w|z), p(z|d) and p(z0|d) of the IpLSA model can be esti-

mated by maximizing the log-likelihood using an Expectation-Maximization

(EM) algorithm. In particular, let us define first the joint distribution of

the model Eq. (3) and later the log-likelihood Eq. (4) in terms of the joint

probability distribution:

p(w,d,z) = p(w|z,z0)p(z,z0|d)p(d) (3)

L =
∑
w

∑
d

n(w,d)logp(w,d) (4)

where n(w,d) is the number of occurrences of the word w in the document

d. In order to maximize the log-likelihood by EM, the complete log-likelihood

can be expressed using the latent variables z and z0 as:
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E =
∑
w

∑
d

n(w,d)(Z + Z0) (5)

Z =
∑
z

p(z|w,d)log[p(w|z)p(z|d)p(d)] (6)

Z0 =
∑
z0

p(z0|w,d)log[p(w|z0)p(z0|d)p(d)] (7)

Introducing the normalization constraints of the parameters p(z|d), p(z0|d)

and p(w|z) in expression (5) by inserting the appropriate Lagrange multipli-

ers α and β:

H = E +
∑
z

α

[
1−

∑
w

p(w|z)

]
+
∑
d

β

[
1−

(∑
z

p(z|d) +
∑
z0

p(z0|d)

)]
(8)

Taking derivatives with respect to the parameters, setting them equal to

zero and solving the equations to isolate each parameter:

p(z|d) =

∑
w

n(w,d)p(z|w,d)∑
z

∑
w

n(w,d)p(z|w,d) +
∑
z0

∑
w

n(w,d)p(z0|w,d)
(9)

p(z0|d) =

∑
w

n(w,d)p(z0|w,d)∑
z

∑
w

n(w,d)p(z|w,d) +
∑
z0

∑
w

n(w,d)p(z0|w,d)
(10)

p(w|z) =

∑
d

n(w,d)p(z|w,d)∑
w

∑
d

n(w,d)p(z|w,d)
(11)

For the E-step, we need to estimate the parameters p(z|w,d) and p(z0|w,d).

Applying the Bayes’ rule and the chain rule, we obtain:
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p(z|w,d) =
p(w,d,z)

p(w,d)
=

p(w|z)p(z|d)∑
z

p(w|z)p(z|d) +
∑
z0

p(w|z0)p(z0|d)
(12)

p(z0|w,d) =
p(w,d,z0)

p(w,d)
=

p(w|z0)p(z0|d)∑
z

p(w|z)p(z|d) +
∑
z0

p(w|z0)p(z0|d)
(13)

The EM process is performed as follows. First of all, the set of new

documents p(w|d) and the set of previous topics p(w|z0) are loaded. Secondly,

p(w|z), p(z|d) and p(z0|d) are randomly initialized. Then, the E-step (Eqs.

(12) and (13)) and the M-step (Eqs. (9) and (10)) are alternated until a

convergence condition is reached. As default settings to converge, we have

used a threshold of 10−6 in the difference of the log-likelihood (equation (4))

between two consecutive iterations and a maximum of 1000 EM iterations.

3.2. Relation between IpLSA and pLSA

The proposed IpLSA model has a similar basis to pLSA, however IpLSA

provides some novelties which may be interesting for incremental CBVR. In

[22], Hofmann proposed a folding-in strategy to estimate the representation of

new documents given a set of topics. Mainly, this strategy fixes the parameter

p(w|z) of the EM formulation in order to estimate only p(z|d). The proposed

IpLSA model follows a similar idea but was used in a different manner.

Specifically, IpLSA makes a kind of combination of folding-in from previous

topics and a regular pLSA for new topics at the same time. In contrast to

pLSA, the proposed model manages the initial topics z0 and the new ones

z simultaneously, which enables the connection between previous and new

patterns via the Lagrange multiplier β in Eq. (12). This connection is aimed
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at fostering the unseen patterns of the data in order to avoid extracting

redundant topics. In other words, the proposed model allows us to learn

only new patterns from the data, it does not matter if these patterns are

refining a previous concept or they are related to a completely new one.

The standard pLSA model does not have the capability to take into account

knowledge of previous stages, however IpLSA takes advantage of incremental

scenarios to reduce the number of parameters of the model and to extract

only new patterns.

The incremental IpLSA model tries to reduce the over-fitting problem of

the global pLSA usage in two ways: (1) using only the new documents d to

extract the new set of topics z and (2) avoiding learning topics which have

been extracted in the previous stage. The standard pLSA uses the documents

of the collection as parameters of the model, as a result the model may over-

fit when too many parameters are considered. Assuming an incremental

scenario, IpLSA extract the new topics only using the set of new documents,

therefore the incremental IpLSA uses less parameters than the global pLSA

and then it is avoiding part of the over-fitting produced in the global pLSA

approach.

4. Experiments

This section presents the experimental part of the work. First (Section

4.1), we use a synthetic dataset in order to highlight how the proposed

method works. Subsequently, Section 4.2 shows the performances of the

IpLSA, pLSA, LDA and FSTM models specially applied to CBVR using two

different video databases and several configurations.
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4.1. Toy Dataset

The toy dataset [40] consists of 1000 gray level images with a size of 5×5

pixels. The samples have been generated synthetically according to the LDA

model from a set of 10 topics (Figure 3a) which are distributed over each row

and column. The vocabulary is a collection of 25 pixels in the images and

the value of a pixel is the number of occurrences of a word in the document.

Figure 3b shows some examples of the generated images. Note that words

tend to co-occur along the same row or column.

(a) True topics used to generate the dataset.

(b) Some random images.

Figure 3: Toy Dataset.

Let us start by showing the behavioural differences between pLSA and

IpLSA by means of Figure 4. We have used the following notation: TD1000

for the whole toy dataset made up of 1000 images and STD500 for a random

subset of 500 samples. Extracting 10 topics over TD1000 by pLSA, we can

obtain the topics which have generated the data (true topics). Note that these

topics are completely precise and clean patterns. However, if we extract 5

topics by pLSA over STD500 we can observe that the obtained topics are a

kind of combination of the true topics because the number of extracted topics

is not adapted to the real number of patterns of the data. The idea with
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Figure 4: IpLSA vs pLSA.

IpLSA is to avoid extracting topics which have been extracted in a previous

stage. For example, if we think in an incremental scenario in which we have

the initial topics z0 and the set of new documents STD500, IpLSA is able to

extract only those new patterns which are not contained in z0 (see Figure 4).

Another practical consideration is the difference between pLSA-based

models and LDA. In figure 5, we can see the result of extracting 10 top-

ics by pLSA and LDA over six subsets of the toy dataset. Each subset

contains a different number of random images, from 25 samples to 1000. As

we use more samples to extract the topics, we can see how pLSA is obtaining

more precise topics, in particular with 250 documents pLSA obtains quite

clearly the true topics. However, with LDA we can see that 250 samples are

not enough to obtain a clear topics because with this number of samples the

Dirichlet parameters are not well estimated yet. In this case, LDA requires

1000 documents to fit the parameters of the Dirichlet distributions. This fact

has been reported in some previous works such as in [29, 30, 31]. Therefore,

despite the fact that LDA provides a more general framework than pLSA,

in some applications in which we do not have too much information about
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Figure 5: pLSA vs LDA.

the structure of the data, pLSA is able to extract the topics more accurately

than LDA because it does not need any parameter estimation. In CBVR,

we usually have to deal with complex query concepts having a few examples

of this concept, therefore we think it makes sense to base our extension on

pLSA rather than LDA for this kind of application.

4.2. Content-Based Video Retrieval

This section contains the experimental settings and the obtained results

of IpLSA, pLSA, LDA and FSTM specially applied to the video retrieval

problem using two different video databases.

4.2.1. Relevance Feedback simulations

In order to evaluate the effectiveness of the considered topic models for

CBVR, we use the Relevance Feedback scheme proposed in [20] with two

different ranking functions: the probabilistic ranking function presented in

[20] and the cosine similarity function used in [32]. In that RF scheme,

a simulation has four main parameters: Q the number of samples of the

initial query, S the number of top examined items in each feedback iteration,
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I the number of total iterations and R the number of times which is the

repeated random initialization of the query. According to these parameters,

we propose the retrieval scenarios shown in Table 1.

Table 1: Scenarios for the retrieval simulations.

Scenario R Q I S

1 100 1 5 20

2 100 2 5 20

3 100 1 5 40

4 100 2 5 40

Starting from a specific labelled retrieving set, the target of each simula-

tion is directed to retrieve samples of a specific class but without using any

class label information. The initial query is initialized with Q samples of a

single class c and then the simulation process has to retrieve samples of that

class through I feedback iterations using the Latent Topic Ranking (LTR)

function proposed in [20] and the cosine similarity function used in [32]. At

each iteration, the S top ranked items are inspected by a simulated user who

marks the samples of the class c (positive samples). These positive samples

are computed as correctly retrieved samples and they are used to expand the

query. Finally, this expanded query is triggered as a new query with more

examples for the next iteration.

Our objective is to compare the retrieval performance and the computa-

tional time among pLSA, LDA, FSTM and IpLSA in an incremental environ-
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Figure 6: Stages used for the experiments.

ment. The database starts from a previous stage when it has a set of initial

documents p(w|d0), a initial set of topics p(w|z0) and the representation of

the initial documents in the initial topics p(z0|d0). Then a set of new doc-

uments p(w|d) arrives into the database and topics have to be recomputed

in order to retrieve these new samples. In this incremental scheme, we are

going to compare the global approach using pLSA, LDA and FSTM with the

incremental one using IpLSA.

Figure 6 shows the two tested alternatives. On the one hand, the global

approach uses the union of previous and new samples to extract a new set of

topics and to represent the new samples in these topics. On the other hand,

the incremental approach takes advantage of the initial topics in order not

to process the previous documents.

4.2.2. Parameters of the models

Number of topics: In this work, we have set the number of topics to a

percentage of the number of samples used to extract them. In particular, we

have considered 10% of samples as the number of topics, except for collections
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bigger than 6,000 documents where we have taken 100 topics for each 3,000

samples. This may not be the best scenario but it allows us to perform

the topic extraction task in an affordable time and space and besides that,

it allows us to compare all the topic models in the same conditions in this

incremental scenario. Choosing the right number of topics is an open ended

question in the literature, especially for the visual domain. Despite the fact

there are some approaches which try to tackle this problem [37, 38], all of

them require performing the topic extraction process several times which

eventually makes it impractical to use them in an interactive video retrieval

system with a relatively large database.

Corvengence parameters: For all the tested models, we have used the

original implementation of the authors with a threshold of 10−6 in the differ-

ence of the log-likelihood between two consecutive iterations and a maximum

of 1,000 EM iterations. For the rest of the parameters, we have used the de-

fault settings with automatic estimation of the Dirichlet hyper-parameters

for LDA and FSTM. The default settings are not always the optimal config-

uration for a particular dataset, but there are several reasons to use those

configurations. First of all, the topic model algorithms are too costly to per-

form the extracting process multiple times using several settings. Second,

the CBVR problem is not a classical classification problem in which we can

use a partition of the training set to validate those parameters. In this case,

the query itself defines the target and the test of the retrieval process. Fi-

nally, using the same convergence configuration makes the result comparable

although it may be not optimal.
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4.2.3. Consumer Columbia Video (CCV) database

The Columbia Consumer Video (CCV) database [33] contains 9,317 YouTube

videos over 20 semantic categories, most of which are complex events, along

with several objects and scenes. The authors of the database provide three

different characterizations for the videos of the collection: (1) based on SIFT

descriptors (static info); (2) STIP (dynamic info); (3) and MFCC (audio).

According to the classification accuracy reported by the authors, the SIFT

descriptor achieves the best accuracy and a combination of all of them does

not improve the performance in a significant way. Besides, the concatenation

of all the descriptors produces a remarkable dimensionality increase which

leads to an increase of the computational burden of the topic extraction

task. Taking these reasons into account, we have decided to use the charac-

terization based on the SIFT descriptors in order to simplify the testing of

the proposed approach. However, further improvements could be aimed at

considering multiple information channels. The vocabulary of the SIFT char-

acterization was defined as a Bag of Words (BoW) model from 500 clusters

on SIFT descriptors over Hessian-Affine and DoG feature points extracted

over the entire and 2× 2 image blocks, which makes a total of 5,000 words.

From this corpus, we have eliminated samples with null descriptor informa-

tion or with no annotation. For the remaining ones, samples labelled with

more than one category have been replicated one for each class. Eventually,

we have considered a total of 7,846 video samples annotated in 20 classes

(Figure 7). We have used the same training and test partitions provided by

the authors of the dataset which makes a total of 3,914 samples for training

and 3,932 for test. Regarding the incremental scheme, the training partition
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Figure 7: Samples per class of the CCV database.

has been considered the initial set of samples d0 and the test partition the

new set of samples d to be retrieved.

In addition to the entire dataset, we have considered four additional par-

titions with 1,000 samples to allow us to analyse slight differences between

the considered models. The goal is to test the performance of the models

depending on the topology of the data with an affordable cost of the topic

extraction process.

For the first partition (C16C12C10), we have selected the class NonMu-

sicPerformance (C16) and its two nearest classes, WeddingReception (C12)

and Graduation (C10). That is, C12 and C10 are those classes whose cen-

troids have less euclidean distance to the centroid of C16 in the initial BoW

representation using SIFT descriptors. For the incremental scheme, we have

considered the class C16 as the initial set of samples d0 and the rest of the

two classes as the new set of samples d. With this partition, we pretend to

simulate a situation when the new samples are similar to the initial ones but
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belonging to utterly different query concepts.

In the second partition (C16C1C5), we have selected class C16 and its

two furthest classes, Baseball (C1) and Swimming (C5). In this case, we have

considered class C16 as the initial set of samples (d0) and classes C1 and C5

as the set of new samples (d). This partition tries to simulate a case where

the new samples are quite different with respect to the initial ones and they

are related to different query concepts as well.

In the case of the third (C5C17C4) and fourth (C5C1C19) partitions,

we have considered class Swimming (C5) as the initial set of samples d0

and the two nearest classes (C17 Parade and C4 Skiing) as the set of new

samples d and two further ones (Baseball (C1) and Playground (C19)). With

these partitions, we want to test the same configuration as before but using

a different initial class. Figure 8 shows a schematic representation of the

distance among the centroid of the considered classes.

(a) Class C16. (b) Class C5.

Figure 8: Scheme of the distance among the considered class centroids.
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4.2.4. Video collection TRECVID 2007

The TRECVID 2007 dataset [34] is made up of 47,548 video shots which

are annotated according to 36 semantic concepts. These categories were se-

lected in TRECVID 2007 evaluation and they include several objects as well

as complex events and scenes. Regarding the description of the database, we

have used a characterization similar to that in the case of CCV. In particular,

we have followed the suggestions of van de Sande et al. of using opponent

SIFT histograms [41] when choosing a single descriptor and no prior knowl-

edge about the dataset is considered. The software provided by van de Sande

has been applied to the middle frame of each shot and each sample has been

encoded using a 3-level spatial pyramid codebook (1 × 1, 2 × 2 and 4 × 4)

that makes a total of 2,688 words per shot. In order to make affordable the

computational cost of the topic extraction task, we have reduced the original

database by selecting 12 of the 36 classes of the collection. Specifically, we

have chosen those classes with a number of samples between 200 and 1,000

which makes a total of 6,906. Besides, these samples have been divided into

two balanced partitions, one for training with 3,451 shots and another for

testing with 3,455 (Figure 9). For the incremental scheme, the training par-

tition has been considered the initial set of samples d0 and the test partition

the new set of samples d to be retrieved.

4.2.5. Visual information of topics for CBVR

Different from the text domain, the standard visual description methods

generate a vocabulary so complex that their words are not easily interpretable

in a visual way. As a result, the direct visualization of topics is not helpful

to understand the advantages of latent topics in the video retrieval domain.
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Figure 9: Subset of TRECVID 2007.

However, given the representation of documents in topics p(z|d) those doc-

uments which are more probable to belong to a specific topic are somehow

describing the kind of information that this topic is encapsulating and may

help us to understand why topics can be useful for CBVR.

Considering the complete CCV database, we have used pLSA to extract

200 topics and to represent the whole collection in those topics. Using the

representation p(z|d), we have selected the six most probable documents per

topic and five examples of these topics are shown in Figure 10. According

to this figure, topic 21 tends to appear in videos related to the concept of

ceremony, topic 48 refers to people riding a bike, topic 63 clearly shows videos

of basketball games, topic 116 seems to represent videos of children playing

with adults and topic 193 contains videos related to beach scene.

In general, it seems that topics tend to represent related patterns such us

those in the text domain, but the issue that makes topic modelling suitable

for CBVR is the capability to connect different kinds of samples through the

concepts defined by topics. As we can see in Figure 10, both videos 48.d
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Figure 10: The six most probable documents of five topics from CCV.

and 48.e have a high proportion of topic 48 because they are strongly related

through the concept of ”riding a bike”, but at the same time those videos

have a high proportion of topics 116 ”children playing” and 193 ”beach”

respectively. This fact allows the video retrieval system to connect 48.d

and 48.e with other videos through two different topics depending on the

feedback provided by the user. In CBVR, these kinds of connections are

very important because the query concept is completely unconstrained and

videos can be related to several semantic concepts simultaneously.

4.2.6. Results

Table 2 shows the abbreviation used for each partition as well as the

details for the global approach, the incremental approach and the retrieval
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Table 2: Partitions used for the video retrieval simulations.

Global Scenario Incremental Scenario Retrieval Set

Name Partition Name Previous Stage New Samples Name Partition

C
C
V

A
C16C12C13

d0 ∪ d = 1239
A′

C16

d0 = 692

z0 = 70 (pLSA)

C12C13

d = 547
RA

C12C13

d = 547

B
C16C1C5

d0 ∪ d = 1394
B′

C16

d0 = 692

z0 = 70 (pLSA)

C1C5

d = 702
RB

C1C5

d = 702

C
C5C17C4

d0 ∪ d = 1180
C ′

C5

d0 = 401

z0 = 40 (pLSA)

C17C4

d = 779
RC

C17C4

d = 779

D
C5C19C1

d0 ∪ d = 1036
D′

C5

d0 = 401

z0 = 40 (pLSA)

C19C1

d = 635
RD

C19C1

d = 635

E
TRA-TST

d0 ∪ d = 7846
E ′

TRA

d0 = 3914

z0 = 100 (pLSA)

TST

d = 3932
RE

TST

d = 3923

T
R
E
C
V
ID

F
TRA-TST

d0 ∪ d = 6906
F ′

TRA

d0 = 3451

z0 = 100 (pLSA)

TST

d = 3455
RF

TST

d = 3455

set used in each case.

Using these partitions, we have compared the global use of pLSA, LDA

and FSTM with the incremental IpLSA in terms of average precision, F1 score

and computational cost of the topic extraction algorithm. In all the cases, the

retrieval simulation intends to retrieve the new set of samples d, that is, given

a random query from d the simulation pretends to retrieve the rest of the

samples of d which belong to the same class than the query. The parameters
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Table 3: Computational cost of the topic extraction process (Intel Xeon E5-2640).

A A′ B B′ C C′

Model pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA

NumTopics 130 130 130 60 140 140 140 70 120 120 120 80

Time (h) 20 43 3 8 24 49 4 12 20 34 3 12

Mem (MB) 3,101 182 81 1,374 3,754 196 88 1,896 2,728 148 73 1,805

D D′ E E′ F F′

Model pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA

NumTopics 110 110 110 70 200 200 200 100 200 200 200 100

Time (h) 16 29 2 9 259 518 18 128 113 309 10 52

Mem (MB) 2,198 135 65 1,351 30,092 697 434 15,090 14,243 398 210 7,132

of the models have been discussed in section 4.2.2. Note that the number of

topics has been fixed depending on the number of samples used to extract the

topics, that is, d0∪d for the global approach and d for the incremental one. In

the incremental approach, it has been assumed that the pLSA model is used

to obtain the topics of the previous stage (documents d0) but any other model

could be considered. Taking into account these previous topics, the IpLSA

model only needs the new documents d to extract the topics, as a result the

number of topics for the IpLSA is substantially lower than that in the global

approach. Table 3 shows the computational efficiency of the topic extraction

process for the considered models (temporal complexity in hours running in

an Intel Xeon E5-2640 processor and spatial complexity in MB of RAM).

Table 4 contains the average precision of the experiments and Table 5 shows

the F1 measure calculated as 2(Precision ∗Recall)/(Precision+Recall).
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Table 4: Video retrieval results: Average Precision. For each simulation of each parti-

tion the best result is highlighted in bold.

Latent Topics Rank Cosine Similarity

Partition TM Retr. Set Sim1 Sim2 Sim3 Sim4 Sim1 Sim2 Sim3 Sim4

A

pLSA

RA

0.67 0.69 0.59 0.59 0.48 0.48 0.40 0.39

LDA 0.63 0.66 0.56 0.58 0.48 0.49 0.41 0.41

FSTM 0.47 0.45 0.47 0.47 0.47 0.50 0.46 0.46

A′ IpLSA 0.66 0.67 0.59 0.61 0.51 0.52 0.44 0.45

B

pLSA

RB

0.70 0.73 0.67 0.69 0.63 0.65 0.56 0.57

LDA 0.72 0.74 0.67 0.69 0.63 0.66 0.56 0.58

FSTM 0.60 0.65 0.60 0.62 0.58 0.61 0.53 0.53

B′ IpLSA 0.74 0.76 0.70 0.72 0.65 0.68 0.61 0.62

C

pLSA

RC

0.93 0.94 0.93 0.94 0.94 0.97 0.92 0.94

LDA 0.92 0.93 0.93 0.94 0.94 0.96 0.92 0.94

FSTM 0.87 0.88 0.88 0.88 0.91 0.92 0.91 0.92

C ′ IpLSA 0.92 0.94 0.93 0.94 0.95 0.97 0.94 0.96

D

pLSA

RD

0.62 0.65 0.57 0.59 0.54 0.55 0.48 0.48

LDA 0.62 0.65 0.57 0.59 0.56 0.59 0.50 0.52

FSTM 0.54 0.56 0.54 0.56 0.58 0.62 0.56 0.58

D′ IpLSA 0.62 0.67 0.58 0.61 0.56 0.59 0.50 0.52

E

pLSA

RE

0.10 0.12 0.10 0.11 0.14 0.15 0.11 0.12

LDA 0.09 0.11 0.09 0.10 0.12 0.13 0.10 0.11

FSTM 0.08 0.10 0.08 0.10 0.07 0.10 0.07 0.08

E ′ IpLSA 0.11 0.13 0.11 0.12 0.14 0.17 0.12 0.14

F

pLSA

RF

0.39 0.39 0.35 0.34 0.36 0.37 0.29 0.29

LDA 0.35 0.35 0.31 0.31 0.29 0.30 0.26 0.27

FSTM 0.26 0.27 0.28 0.27 0.30 0.30 0.30 0.29

F ′ IpLSA 0.34 0.36 0.35 0.35 0.35 0.35 0.30 0.31
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Table 5: Video retrieval results: F1 Score. For each simulation of each partition the best

result is highlighted in bold.

Latent Topics Rank Cosine Similarity

Partition TM Retr. Set Sim1 Sim2 Sim3 Sim4 Sim1 Sim2 Sim3 Sim4

A

pLSA

RA

0.36 0.37 0.50 0.50 0.26 0.26 0.34 0.33

LDA 0.34 0.35 0.47 0.49 0.26 0.26 0.35 0.34

FSTM 0.25 0.24 0.40 0.40 0.25 0.27 0.39 0.39

A′ IpLSA 0.35 0.36 0.50 0.51 0.27 0.28 0.37 0.38

B

pLSA

RB

0.31 0.32 0.49 0.50 0.27 0.27 0.39 0.40

LDA 0.32 0.33 0.49 0.51 0.27 0.28 0.39 0.41

FSTM 0.27 0.29 0.43 0.44 0.25 0.26 0.37 0.38

B′ IpLSA 0.33 0.34 0.51 0.53 0.28 0.29 0.43 0.44

C

pLSA

RC

0.38 0.38 0.63 0.64 0.38 0.39 0.62 0.64

LDA 0.37 0.38 0.63 0.63 0.38 0.39 0.62 0.64

FSTM 0.35 0.35 0.59 0.60 0.37 0.37 0.62 0.63

C ′ IpLSA 0.37 0.38 0.63 0.64 0.39 0.40 0.64 0.65

D

pLSA

RD

0.30 0.31 0.44 0.45 0.25 0.26 0.36 0.36

LDA 0.29 0.31 0.44 0.45 0.26 0.28 0.38 0.39

FSTM 0.26 0.26 0.41 0.43 0.27 0.29 0.43 0.44

D′ IpLSA 0.29 0.32 0.44 0.47 0.26 0.28 0.38 0.39

E

pLSA

RE

0.07 0.08 0.10 0.11 0.09 0.09 0.11 0.11

LDA 0.06 0.07 0.09 0.10 0.09 0.10 0.12 0.13

FSTM 0.05 0.07 0.08 0.10 0.05 0.07 0.07 0.09

E ′ IpLSA 0.07 0.08 0.11 0.12 0.10 0.11 0.12 0.14

F

pLSA

RF

0.18 0.18 0.26 0.25 0.16 0.17 0.22 0.22

LDA 0.16 0.16 0.23 0.23 0.13 0.14 0.20 0.20

FSTM 0.12 0.12 0.21 0.20 0.14 0.14 0.23 0.22

F ′ IpLSA 0.16 0.16 0.26 0.26 0.16 0.16 0.23 0.23
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4.2.7. Statistical tests

In order to ease the comparison, Wilcoxon’s signed rank test has been ap-

plied to show whether statistical differences exist among the video retrieval

performances of the considered topic models. Despite some previous works

advocated for the discontinuation of this statistical test, other recent papers

like [42] conclude that Wilcoxon’s test is able to provide more robust signif-

icance levels in information retrieval and for that reason we have decided to

use it.

Wilcoxon’s signed rank test provides pairwise comparisons, so statistical

differences between each pair of topic models can be found. This statistical

test is based on a null hypothesis which assumes statistical equality. In

this case, it is assumed certain that all topic models perform equally for

the video retrieval task and evidence is searched for in the data to reject

it. Table 6 shows the statistical differences among the used topic models

with the LTR ranking function and Table 7 the differences using the cosine

similarity function. In both tables, a summary of Wilcoxon’s statistic test

applied over the video retrieval precision values for all pairs of topic models

is shown. Above the main diagonal with a 90% confidence level and below

it with 95%. The symbol • indicates that the model in the row significantly

outperforms the model in the column, and the symbol ◦ indicates that the

model in the column significantly surpasses the model in the row.

5. Discussion

This section contains a discussion about the obtained results. Initially,

we discuss the results focused on each kind of partition and later a global
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Table 6: Summary of Wilcoxon’s statistic test applied over video retrieval precision values

for all pairs of topic models using the LTR ranking function.

Simulation 1 Simulation 2 Simulation 3 Simulation 4

pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA

A

pLSA - • • - • - • • - • ◦

LDA - • ◦ - • - • ◦ - • ◦

FSTM ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦ - ◦

A′ IpLSA • • - • - • • - • • -

B

pLSA - • ◦ - • ◦ - • ◦ - • ◦

LDA - • ◦ - • - • ◦ - • ◦

FSTM ◦ ◦ - ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦ - ◦

B′ IpLSA • • • - • • - • • - • • -

C

pLSA - • • • - • • • - • - • •

LDA - • ◦ - • - • ◦ - •

FSTM ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦ - ◦

C ′ IpLSA ◦ • - • - • - • -

D

pLSA - • - • ◦ - - ◦

LDA - - • ◦ - - ◦

FSTM - - ◦ - ◦ - ◦

D′ IpLSA - - - -

E

pLSA - • • • - • • • - • • - • •

LDA ◦ - • ◦ - • ◦ - • ◦ ◦ - • ◦

FSTM ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ - ◦ ◦ ◦ - ◦

E ′ IpLSA ◦ • - ◦ • - • • - • -

F

pLSA - • - • - • • - •

LDA - ◦ - ◦ - ◦ ◦ - ◦

FSTM - - - ◦ -

F ′ IpLSA - - • - • -
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Table 7: Summary of Wilcoxon’s statistic test applied over video retrieval precision values

for all pairs of topic models using the cosine ranking.

Simulation 1 Simulation 2 Simulation 3 Simulation 4

pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA pLSA LDA FSTM IpLSA

A

pLSA - - ◦ - ◦ ◦ - ◦ ◦

LDA - - ◦ - ◦ ◦ - ◦ ◦

FSTM - - - • -

A′ IpLSA - • - • - • -

B

pLSA - - - - ◦

LDA - • ◦ - ◦ - ◦ - ◦

FSTM - ◦ - - ◦ - ◦

B′ IpLSA • - - • • - • • -

C

pLSA - - • - -

LDA - • ◦ - • ◦ - ◦ - • ◦

FSTM - ◦ ◦ - ◦ - ◦ - ◦

C ′ IpLSA • • - • - • • - • • -

D

pLSA - ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦

LDA • - • - • - • -

FSTM - - - - •

D′ IpLSA - - - • -

E

pLSA - • • ◦ - • • ◦ - • • ◦ - • • ◦

LDA ◦ - • ◦ ◦ - • ◦ ◦ - • ◦ ◦ - • ◦

FSTM ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ ◦ - ◦ ◦ - ◦

E ′ IpLSA • • - • • - • • - • • • -

F

pLSA - • • - • • - • -

LDA ◦ - ◦ ◦ - ◦ - ◦ ◦ - ◦ ◦

FSTM ◦ - ◦ ◦ - ◦ • - -

F ′ IpLSA • • - • • - • - • -
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discussion is presented.

5.1. Unbalanced nearest partitions (A and C)

In the case of unbalanced nearest partitions (A and C), the set of new

samples d is very close to the initial set d0 despite the fact that d contains

two new video classes to be retrieved. Although there are slight differences

between the performance of both ranking functions, pLSA-based models tend

to obtain the best average precision. Statistical tests support these results

especially with a confidence level of 95%. In general, there are no statisti-

cal differences between pLSA and IpLSA, besides both models are able to

outperform LDA and FSTM in many cases.

In these kinds of partitions, the new classes to retrieve are rather confus-

ing what forces topics to be very adjusted to the data distribution in order to

distinguish slight differences over patterns. LDA seems to not have enough

samples to adequately estimate the Dirichlet parameters for these fuzzy con-

cepts whereas pLSA-based models are taking advantage of using their own

documents as parameters.

In terms of computational efficiency, FSTM shows an impressive perfor-

mance but its sparse assumptions seem inadequate especially for the LTR

ranking. For the rest of the models, IpLSA obtains an important time re-

duction with respect to pLSA and LDA, but in terms of space LDA is able

to obtain a high efficiency. This memory reduction is produced by the fact

that LDA uses an external Dirichlet distribution rather than using its own

documents as parameters as is in the case of pLSA-based models. However,

the parameter estimation for this external distribution is making the topic

extraction process much slower. Comparing the two pLSA-based models,
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IpLSA obtains a noticeable spatial improvement with respect to pLSA be-

cause it only uses the new documents to obtain the new topics and as a result

it stores much less documents during the topic extraction process.

5.2. Unbalanced furthest partitions (B and D)

For these partitions (B and D), the new set of documents d pretends

to be quite different from the initial set of samples d0 in order to capture

new patterns. In this case, the results show that IpLSA outperforms many

of the models. According to the statistical tests, these improvements are

particularly important for the LTR ranking with a confidence level of 90%.

Now, we can observe how LDA tends to perform better than pLSA be-

cause the classes to retrieve are quite separated and dense enough to enable

LDA to estimate the Dirichlet parameters properly whereas pLSA may pro-

duce over-fitting. Related to the incremental scheme, IpLSA is able to obtain

a better result than the global use of LDA because IpLSA is focused on de-

tecting unseen patterns and then it can take advantage of partitions where

the new set of samples contains a clearly new patterns.

Regarding the computational complexity, we can observe the same be-

haviour as that in the previous section, because the complexity of the topic

extraction process is proportional to the number of documents, words and

topics, and these variables are similar to the previous partitions. FSTM is

much more efficient than the rest of the models. IpLSA is faster than LDA

but it has a bigger spatial complexity and pLSA is quite worse than IpLSA

in terms of time and space.
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5.3. Complete collections (E and F)

These partitions (E and F) try to reproduce a situation in which the

new documents d are not introducing a very different new topics but re-

fining the previous ones. In general, the average precision has significantly

fallen because now we are trying to retrieve much more concepts than before

and besides the amount of topics is quite limited. We have extracted only

100 topics for each 3,000 samples in order to make the extraction process

affordable. However, the ranking functions may require more topics to dis-

tinguish better among all the classes because of data complexity. IpLSA has

obtained the best average precision for CCV and both pLSA and IpLSA for

TRECVID. The statistical tests show that the pLSA-based models tend to

outperform the rest of the models.

In this case, we would have expected a better performance of LDA be-

cause topics have been extracted using much more samples than those in the

previous partitions. However, LDA has obtained a worse result than both the

pLSA and IpLSA models. The semantic gap of the characterization together

with the high number of classes to retrieve may produce this low performance

of LDA. The fact of considering a relatively high amount of classes with a

huge semantic gap is generating a sort of complex space where some concepts

are not well defined, and in this circumstance pLSA-based models are able

to adapt the topic structure using documents lesser than those of LDA.

Related to the efficiency of the models, LDA is by far the worse model

in terms of time and pLSA in terms of space. The topic extraction task by

LDA takes over 2 times more computational time than pLSA, 5 times more

than IpLSA and 10 times more than FSTM. On the other hand, the memory
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usage of pLSA is over the double that of IpLSA, 10 times more space than

that of LDA and more than 20 times than that of FSTM.

5.4. General issues

According to the results, we agree with [31] to conclude that LDA is able

to outperform pLSA for the video retrieval field as well, when the partition

used to extract the topics is quite unambiguous and dense like in partitions

B and D. In these circumstances, the retrieval system needs a general fine-

granularity representation which can be provided better by LDA due to the

fact that pLSA tends to over-fit whereas LDA is able to estimate the Dirichlet

parameters properly. However, pLSA-based models have shown to be more

effective in fuzzy conditions where concepts are not described with enough

documents. As a result, we agree with [29] by saying that pLSA-based models

are able to outperform the LDA model because the use of the documents as

parameters allows the topics to fit better to a sparse data distribution.

Regarding the proposed incremental model, IpLSA has shown to be effec-

tive in both cases. On the one hand, when pLSA tends to over-fit the incre-

mental model IpLSA is able to work properly by avoiding learning repetitive

patterns and reducing the computational cost. On the other hand, IpLSA

takes advantage of considering the document parameters of the model when

LDA does not have enough documents to adequately estimate the Dirichlet

parameters. In general, pLSA has shown to be effective for CBVR although

the over-fitting problem but the proposed incremental model is able to obtain

some improvements over pLSA in terms of precision and cost.

In relation to computational complexity, FSTM has shown an impressive

computational performance but unfortunately in many cases its results are
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not good enough for unconstrained video retrieval. According to the results,

the FSTM model is clearly outperformed by the rest of the tested models

for the LTR function and in many cases for the cosine similarity function.

In unconstrained video retrieval, it is usual to have to manage very complex

concepts without having enough samples to describe them properly. In this

kind of application, a dense contribution of topics as in the case of pLSA or

LDA has proved to be more effective. For the rest of the tested methods, LDA

has obtained the best spatial performance and IpLSA the best computational

time.

6. Conclusions and Future Work

This work has presented an incremental extension of the pLSA model in

order to enable video retrieval systems based on latent topics to deal with

incremental databases in an effective way as well as an experimental study

on the performance of different topic models for the video retrieval problem.

Using the video retrieval systems presented in [20] and [32], four retrieval

scenarios have been simulated using two different databases and four topic

extraction algorithms. From the results, we can draw three main trends

in CBVR: (1) LDA is able to outperform pLSA in unambiguous and dense

conditions; (2) pLSA-based models performs better in fuzzy and sparse dis-

tributions; (3) IpLSA is able to obtain good results in both cases using an

incremental approach. In general, the IpLSA model has shown to be more

effective in dealing with incremental databases than the rest of the tested

global methods. In terms of video retrieval precision, the IpLSA model is

able to outperform pLSA and LDA when these two models obtain the lowest
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performance. Moreover, when they achieved the highest precision, IpLSA

was able to work without statistical differences. Related to the computa-

tional complexity, the results have shown that IpLSA is able to significantly

reduce the time of the LDA/pLSA models and the space of the pLSA as well.

Although the results are encouraging, much more progress is needed to

really address the efficiency problems of the topic extraction methods for

video retrieval. Thus, further work is directed to extend the work in the

following directions:

• Automatic strategies to choose the number of new topics at each iter-

ation of the incremental scheme.

• Extension of the model to allow the use of multi-modal data from

multiple channels.

• Reduction of the over-fitting in pLSA-based models by applying quan-

tization techniques over the samples used to extract the topics.
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