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Abstract

This paper presents a novel structure-aware method for visual tracking. The

proposed tracker relies on keypoint regions as salient and stable elements that

encode the object structure efficiently. In addition to the object structural

properties, the appearance model also includes global color features that we

first use in a probabilistic approach to reduce the search space. The second

step of our tracking procedure is based on keypoint matching to provide a

preliminary prediction of the target state. Final prediction is then achieved

by exploiting object structural constraints, where target keypoints vote for

the corrected object location. Once the object location is obtained, we update

the appearance model and structural properties, allowing to track targets

with changing appearance and non-rigid structures. Extensive experiments

demonstrate that the proposed Structure-Aware Tracker (SAT) outperforms

recent state-of-the-art trackers in challenging scenarios, especially when the
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target is partly occluded and in moderately crowded scenes.

Keywords: Object tracking, Structure-aware tracker, keypoint, SIFT,

keypoint layout.

1. Introduction1

Model-free visual tracking is one of the most active research areas in2

computer vision [1, 2, 3]. With a model-free tracker, the only available input3

is the target state annotated in the first video frame. Tracking an object4

is thus a challenging task due to (1) the lack of sufficient information on5

object appearance, (2) the inaccuracy in distinguishing the target from the6

background (which is generally done using a geometric shape), and (3) the7

object appearance change caused by various perturbation factors (e.g. noise,8

occlusion, motion, illumination, etc.).9

This work aims to develop a novel visual tracking method to handle real10

life difficulties, particularly when tracking an object in a moderately crowded11

scene in the presence of distracting objects similar to the target, and in the12

case of severe partial occlusion. The robustness of a tracking algorithm in13

handling these situations is determined by two major aspects: the target14

representation and the search strategy. The target representation refers to15

the appearance model that represents the object characteristics while the16

search strategy deals with how the search of the target is performed on every17

processed frame. The main contributions and differences of our work from18

previous works are on both aspects. In the proposed tracker, the target rep-19

resentation includes color features for coarse localization of the target, and20

keypoints for encoding the object structure while adding distinctiveness and21
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robustness to occlusions. In our search strategy, probabilistic tracking and22

deterministic keypoint matching are used sequentially to provide a prelimi-23

nary estimate of the target state. Object internal structural constraints are24

then applied in a correction step to find an accurate prediction. Our ap-25

proach for representing the object structure is related to previous works on26

context tracking [4, 5, 6, 7, 8]. The main idea of context tracking is to con-27

sider the spatial context of the target including neighboring elements whose28

motion is correlated with the target. While the proposed approach is inspired29

by the idea of context tracking, in our work we exploit the spatial layout of30

keypoints to encode the internal structure of the target. More specifically,31

our contributions are:32

1. A novel target representation model where local features are stored in33

a reservoir encoding recent and old structural properties of the target;34

2. A new threefold search strategy that reduces the search space, tracks35

keypoints, and corrects prediction sequentially;36

3. A discriminative approach that evaluates tracking quality online to37

determine if potential new target properties should be learned.38

Extensive experiments on challenging video sequences show the validity39

of the proposed Structure-Aware Tracker (SAT) and its competitiveness with40

state-of-the-art trackers. A previous version of this work was presented at a41

conference [9]. This paper extends this previous work with a more complete42

review of related works, more details and depth in the explanation of the43

method, and additional experiments analyzing the tracker behavior in several44

situations.45
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This paper is organized as follows. In the next section, we review recent46

works on keypoint tracking and context tracking which are related to our47

algorithm. The proposed SAT algorithm is presented in section 3. Experi-48

mental results are given and discussed in section 4. Section 5 concludes the49

paper.50

2. Related works51

2.1. Keypoint tracking: from object context to object structure52

Many tracking algorithms achieved good performances at a low complex-53

ity by using a geometric shape to contain the target, and global features for54

modeling [10, 11, 12]. Nevertheless, this approach is not designed to han-55

dle occlusions, unless representing the target by multiple fragments to be56

matched. Keypoint methods can handle the occlusion problem by establish-57

ing partial correspondences that allow locating the occluded target. Unlike58

fragment-based methods (where the target image region is divided randomly59

or according to a regular grid), keypoint locations correspond to salient and60

stable patches that can be invariantly detected under various perturbation61

factors. Moreover, their spatial layout naturally encodes structural proper-62

ties that can enhance the target model.63

Due to these characteristics, keypoint-based methods have attracted much64

attention during the last decade. In this approach, objects are modeled as a65

set of keypoints detected by an external mechanism (i.e. a keypoint detec-66

tor) [13, 14, 15]. After computing their descriptors, the object localization67

can be achieved according to two possible approaches: matching in the case68

of a generative approach, and classification in the case of a discriminative69
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approach. Generative trackers use a database where keypoint descriptors are70

stored. The descriptors are designed to be stable and invariant, and can be71

matched in a nearest-neighbor fashion. Discriminative approaches consider72

matching as a binary classification problem. Every feature is thus classified73

as belonging to the background, or to the tracked object. The classifier is74

built either via online learning, or offline, considering the background and75

the target observed under various transformations.76

Some recent works on object tracking rely on target context to predict its77

state, which is often referred as context tracking [4, 5, 16, 7, 17]. According to78

this approach, it is necessary to consider target context to ensure the tracker79

robustness in most real life video surveillance applications. Following this80

principle, the authors in [4] use a compagnion to improve object tracking.81

This corresponds to image regions around the tracked object with the same82

movements as those of the target. In [5] the spatial context that can help83

the tracker includes multiple auxiliary objects. These objects have consis-84

tent motion correlation with the tracked target and thus help to avoid the85

drifting problem. In [16], Gu and Tomasi consider the spatial relationship86

between the target and similar objects and track all of them simultaneously87

to eliminate target confusion. In a more general approach, Grabner et al.88

introduced the notion of supporters defined as ”useful features for predicting89

the target object position” [7]. These features do not belong to the target, but90

they move in a way that is statistically related to the motion of the target.91

They developed a method for discovering these local image features around92

the target, and demonstrated that motion coupling of supporters may allow93

locating the target even if it is completely occluded. In a later work, Dinh et94
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al. [17] used supporters for context tracking, and added the concept of dis-95

tracters which are regions co-occuring with the target while having a similar96

appearance. Their tracker explicitly handles situations where several objects97

similar to the target are present.98

Context tracking methods expanded the target model by exploiting the99

motion correlation information in the scene. However, finding motion cor-100

relation between objects is a costly task that often requires detecting and101

analyzing features on the whole image, as in [18] where the authors detect102

and analyze all local features in the scene, to keep only features which move103

along with the target object. Furthermore, most of the proposed track-104

ers were tested only on specific scenarios and in constrained environments,105

where almost all the experiments were limited to proofs of concept. Our idea106

of using structural constraints in the target appearance model is inspired107

by context tracking methods. However, our motivations differ in an impor-108

tant aspect since our model incorporates the internal structural information109

of the target, and not the structural layout of different scene elements. In110

our work, we show that the structural information of the target, encoded by111

the keypoint spatial layout, allows achieving accurate tracking and handling112

partial occlusion by inferring the position of the target using the unoccluded113

features.114

2.2. Tracking objects by structure115

The idea of exploiting object structure for tracking was present, more116

or less explicitly, in recent works. This is the so called part-based tracking117

that relies on local components for target representation. The most common118

way to encode object structure is the sparse representation such as in [19]119
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and [20]. In [19], the authors propose to use a histogram-based model that120

encodes the spatial information of the object patches. In a similar manner,121

Jia et al. sample a set of overlapped patches on the tracked object [20]. Their122

strategy includes an occlusion handling module allowing target localization123

by using only visible image patches.124

Another approach for encoding structure consists in using keypoints, since125

they are more significant than random overlapped patches. In this direction,126

the authors in [21] model the target by a set of keypoint manifolds organized127

as a graph to explicitly represent the target structure. Each featuremanifolds128

includes, in addition to the keypoint descriptor, a set of synthetic descriptors129

simulating possible variations of the original feature (under viewpoint and130

scale change). The target location is found by detecting keypoints on the131

current frame, matching them with those of the target model, and computing132

a homography for the correspondences. In [22], the authors include both133

random patches and keypoints in the target model. The random patches are134

described by their RGB color histograms and LBP (Local Binary Patterns)135

descriptors to form an appearance model. Keypoints are characterized by136

their spatial histograms to be considered as a structural model. Tracking137

then implies matching detected keypoints in the current frame with those of138

the object in the previous frame. Matched keypoints are utilized to construct139

a spatial histogram, which is used jointly with LBP and RGB histograms140

to locate the target. This approach exploits multiple object characteristics141

(LBP, color, Keypoints), but the object structural model captures only recent142

structural properties, as the spatial histogram considers only the keypoints143

that are matched with those of the target in the last frame.144
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In our work, we argue and demonstrate through our experiments that145

keypoint regions are more efficient than random patches in encoding the146

structure, as they correspond to salient and stable patches invariably de-147

tectable under several perturbation factors. Unlike in [22] where random148

regions are analyzed to extract local features, and [21] where keypoints are149

extracted from a region with a fixed size (with the assumption of small dis-150

placements), we use a probabilistic method to reduce the search space to the151

most likely image regions, based on the target’s global color features. Con-152

cerning the target structure, our structural model is not limited, like in [22]153

to recent properties, which would make it strongly related to the last predic-154

tion (and thus may be completely contaminated if the tracker drifts from the155

target). Instead, our representation includes both recent and old structural156

constraints in a reservoir of features. The local features and their structural157

constraints are learned online during tracking. The deletion of a given fea-158

ture is related to its persistence (not to its moment of occurrence), while the159

impact of its constraint depends on the persistence as well as the consistence160

of the feature. Every local feature expresses its structural constraint individ-161

ually by voting to possible target locations. Thus, our voting-based method162

preserves the object structure without requiring building and updating com-163

plex keypoint graphs, neither calculating homographies such as in [21]. Our164

method takes into consideration the temporal information of all the target’s165

model components. The target model is thus updated to reflect the object166

appearance changes including structure changes, which allows tracking ob-167

jects with non-rigid structures.168

8



(a) (b) (c) (d)

Figure 1: Illustration of the SAT algorithm steps when tracking a partly occluded face.

(a): Reducing the search space with a probabilistic method, based on color. Local features

(red dots) are computed only on the obtained areas. (b): Predicting a preliminary target

state based on feature matching. (c): Visible features vote for a new position (yellow star)

by applying their structural constraints. (d): The target state is corrected based on the

new location

3. Proposed algorithm169

3.1. Motivation and overview170

The proposed method is illustrated in figure 1 where we aim to track a171

partly occluded face. First, we apply a color-based particle filtering. This172

allows to reduce the search space and provides a coarse estimation by con-173

sidering only the best particles. Keypoints are then detected by analyzing174

the reduced search space as shown in figure 1a. The detected keypoints175

are matched with those of the target model, which leads to a preliminary176

estimate of the target location (see figure 1b).177

Note that the preliminary prediction considers only the matching scores178

of the particles and thus does not guarantee an accurate localization. This is179

illustrated in figure 1b, where the circular shape representing the best particle180

includes pixels from the background and from the occluding object. Knowing181
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the internal structure of the target, our idea is to perform a correction step182

by applying internal structural constraints to improve target prediction. In183

practice, this is carried out by a voting mechanism where available features184

(unoccluded) determine the exact position of the target (figure 1c and 1d).185

Once the target is predicted, the appearance model including keypoints and186

their structural constraints is updated according to an evaluation criterion187

(that we define in section 3.5). The newly detected keypoints are added188

to the model while existing keypoints are re-evaluated based on two proper-189

ties. First, we consider the individual keypoint persistence represented by its190

weight value. The second property is the spatial consistency of the keypoint191

that depends on the motion correlation with the target center. If a keypoint192

of the background is erroneously included in the target model, these two193

voting parameters will reduce the effect of its vote until its removal from the194

model when its persistence decreases significantly. Our algorithm steps are195

explained in details in the following.196

3.2. Appearance Model197

Our appearance model describes the image region delimited by the circle198

that circumscribes the target. This is a multi-features model including (1)199

the color probability distribution represented by a weighted histogram, (2)200

a set of local descriptors computed for the detected keypoints within the201

target region, and (3) the target structural properties encoded by the voting202

parameters of keypoints. By constructing a m-bin histogram q̂ = {q̂}u=1...m,203

with
∑m

u=1 q̂u = 1, some parts of the background may lie inside the circular204

kernel. As discussed in [23], these pixels will affect the color distribution and205

may cause tracking drift. To reduce the effect of these pixels, we use a kernel206
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function k(x) that assigns smaller weights to pixels farther from the center.207

The color histogram is thus computed for the h pixels inside the target region208

according to the equation:209

q̂u =
1∑h

i=1 k(di)

h∑
i=1

k(di)δ[ci − u] (1)

where di ∈ [0, 1] is the normalized distance from the pixel xi to the kernel210

center, ci is the bin index for xi in the quantized space, δ is the Kronecker211

delta function, and k(di) is the tricube kernel profile defined by:212

k(di) =
70

81
(1− d3i )

3. (2)

Note that the tricube function was selected among various kernel func-213

tions, as it allows the best experimental result. We also note that any other214

color space could be used instead of RGB.215

The proposed system should be able to handle many difficult scenarios,216

such as occlusions and the presence of distracting objects. For, example, it217

has been shown that even for individuals of different races, the skin color218

distributions are very similar [24]. To ensure a more robust and distinctive219

feature set, the target reference model also includes SIFT keypoints [25] de-220

tected in the target region and stored in a Reservoir of Features (RF ). SIFT221

features increase the distinctiveness of the tracking algorithm to distinguish222

the target from other similar objects that may enter the field of view. In fact,223

SIFT was successfully used for distinguishing between multiple instances of224

the same object such as in the face recognition problem[26, 27, 28]. In this225

way, we implicitly handle situations where objects of the same category as226

the target co-occur (e.g. tracking a face in the presence of several faces), and227
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Algorithm 1 Reducing the search space at frame t

Input: frame t, particle states after processing frame t− 1

Output: reduced search space, new particle states

Assumption: processing frame t with t > 2

1: for i = 1 to N do

2: - generate a random number ri ∈ [0, 1]

3: - find the particle s
(j)
t−1 with the smallest j verifying c

(j)
t−1 ≥ ri

4: - generate a new particle s
(i)
t for the selected particle s

(j)
t−1, with s

(i)
t =

f(s
(j)
t−1)

5: - evaluate similarity between p̂
(i)
t and q̂ {Eq. 3 and 4}

6: - compute the weight π
(i)
t for s

(i)
t

7: end for

8: - select the N∗ best particles

9: - normalize weights π
(n)
t to get

∑N∗

n=1 π
(n)
t = 1

10: - compute cumulative probabilities c
(n)
t

thus we avoid using an additional mechanism to track and distinguish dis-228

tracters as in [17]. Other than the keypoint descriptors, we also exploit the229

spatial layout of keypoints to encode structural properties of objects. The230

target structural constraints and the voting method that we use for predic-231

tion correction are explained later. We note that our method is not specific232

to SIFT. Even faster keypoint detector/descriptor combination may be used,233

although SIFT remains one of the most reliable methods under various image234

transformations [29].235

3.3. Reducing the search space236
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The target search is firstly guided by particle filtering [30]. Each particle237

is a circular region characterized by its color distribution as explained above.238

The possible target states at frame t are represented by N weighted particles239

{s(i)t : i = 1, ..., N} where the weight π
(i)
t reflects the importance of the240

particle. The weight of a generated particle s
(i)
t depends on the similarity241

between its color distribution p̂
(i)
t and the reference color model q̂. We define242

the distance between the two distributions as:243

d(q̂, p̂
(i)
t ) =

√
1− ρ[q̂, p̂

(i)
t ] (3)

where244

ρ[q̂, p̂
(i)
t ] =

m∑
u=1

√
q̂u.p̂

(i)
u,t (4)

is the Bhattacharyya coefficient between q̂ and p̂
(i)
t .245

After generating N particles on the current frame, the area covered by the246

N∗ best particles (i.e. the particles having the highest weights) is considered247

as a coarse estimation of the target state, and thus constitutes a reduced248

search space where keypoints will be detected and matched. Moreover, we249

use the N∗ states selected at frame t for generating N particles at frame250

t + 1. Note that to simplify computations, we assign a cumulative weight251

c(n) to each pair (s(n), π(n)) where c(N
∗) = 1. The cumulative weight c(n) for252

the nth particle is calculated as c(n) = c(n−1) + π(n), where c(1) = π(1). In this253

manner, for each particle s(n) we assign the interval [c(n−1), c(n)] ⊂ [0, 1] to254

allow a random particle selection (see steps 2 and 3 in Alg. 1). Our space255

reduction algorithm is summarized in Alg. 1.256

13



3.4. Tracking keypoints257

Keypoint detection and matching will consider only the reduced search258

space defined by the N∗ best particles. By reducing the search region to the259

most important candidate particles, we avoid detecting features, computing260

local descriptors and matching them on the entire image.261

The detected descriptors are then matched with those of the target model262

(features from the reservoir RF ) based on the Euclidian distance. Similarly263

to the criterion used in [25], we determine if a match is correct by evaluating264

the ratio of distance from the closest neighbor to the distance of the second265

closest. For our algorithm, we keep only the matches for which the distance266

ratio is less than θm = 0.7. Given the final set of matched pairs, we con-267

sider the particle having the highest matching score as a preliminary state268

of the target (see figure 1b). A more formal description of the preliminary269

prediction is provided in Alg. 2. Since the preliminary prediction considers270

only matching scores, without guaranteeing an accurate localization of the271

selected particle, the structural properties of the predicted region will be an-272

alyzed in a correction step to provide an accurate estimation of the target273

location.274

3.5. Applying structural constraints275

In this step, we aim to correct the preliminary prediction by applying a276

learned structural model of the target. The model is learned from reliable277

measurements (i.e. when a good tracking is achieved), and the internal278

structural properties are considered as a part of the object appearance model.279

Internal structural model. The target keypoints extracted on the280

target region at different times of its lifecycle are stored in the reservoir281
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Algorithm 2 Preliminary prediction at frame t

1: - detect features on the reduced search space

2: for all detected features f (i) do

3: - compute Euclidian distance with features from RF

4: - compute dist ratio = dist(f (i),closest neighbor)

dist(f (i),2nd closest neighbor)

5: if dist ratio ≤ θm then

6: - match f (i) with closest neighbor

7: - update matching scores for the particles containing f (i)

8: end if

9: end for

10: - preliminary predictiont= the particle having the highest score

of features RF . Instead of automatically eliminating old keypoints, we only282

remove those that become ”non-persistent”. RF is thus formed by recent and283

old keypoints, representing both old and recent object properties. Other than284

its descriptor summarizing the local gradient information, every keypoint is285

characterized by a voting profile (µ, w, Σ) where:286

• µ = [∆x,∆y] is the average offset vector that describes the keypoint’s287

location with respect to the target region center;288

• w is the keypoint’s weight considered as a persistence indicator to reflect289

the feature co-occurence with the target, and to allow eliminating ”bad”290

keypoints;291

• Σ is the covariance matrix used as a spatial consistency indicator, de-292

pending on the motion correlation with the target center.293
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Voting. Every matched keypoint f that is located on the preliminary294

target region votes for the potential object position x by P (x|f). Note that295

we accumulate the votes for all the pixel positions inside the reduced search296

space. Given the voting profile of the feature f , we estimate the voting of f297

with the Gaussian probability density function:298

P (x|f) ∝ 1√
2π|Σ|

exp (−0.5 (xf − µ)⊤Σ−1(xf − µ)), (5)

where xf is the relative location of x with respect to the keypoint coordi-299

nates. The probability of a given pixel in the voting space is estimated by300

accumulating the votes of keypoints weighted by their persistence indicators301

w. The probability for a given pixel position x in the voting space at time t302

is estimated by:303

Pt(x) ∝
|RF |∑
i=1

w
(i)
t Pt(x|f (i))1{f (i)∈Ft}, (6)

where 1{f (i)∈Ft} is the indicator function defined on the set RF (reservoir of304

features), indicating if the considered feature f (i) is among the matched target305

features set Ft at frame t. The target position is then found by analyzing306

the voting space and selecting its peak to obtain the corrected target state307

as shown in figure 1c.308

Update. It has been previously shown that an adaptive target model,309

evolving during the tracking, is the key to good performance [31]. In our310

algorithm, the target model (including color, keypoints, and structural con-311

straints) is updated every time we achieve a good tracking using a discrimina-312

tive approach. Our definition of a good tracking is inspired by the Bayesian313

evaluation method used in [32], referred as histogram filtering. Using the314

target histogram q̂ (calculated for the target region annotated in the first315
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frame), and the background histogram q̂bg (calculated for the area outside316

the reduced search space), we compute a filtered histogram q̂filt = q̂/q̂bg in317

every iteration. The latter represents the likelihood ratios of pixels belonging318

to the target. The likelihood ratios are used to calculate a backprojection319

map on the target region. Quality evaluation is done by analyzing the back-320

projection map and thresholding it to determine the percentage of pixels321

belonging to the target. Every time the evaluation procedure shows suffi-322

cient tracking quality, the target model is updated at frame t with a learning323

factor α as follows:324

q̂t = (1− α)q̂t−1 + αq̂new (7)

q̂bg,t = (1− α)q̂bg,t−1 + αq̂bg,new (8)

w
(i)
t = (1− α)w

(i)
t−1 + α1{f (i)∈Ft} (9)

∆
(i)
x,t = (1− α)∆

(i)
x,t−1 + α∆(i)

x,new (10)

∆
(i)
y,t = (1− α)∆

(i)
y,t−1 + α∆(i)

y,new (11)

where µ
(i)
new = [∆

(i)
x,new,∆

(i)
y,new] is the current estimate of the voting vector325

for the feature f (i). After updating the feature weights, we remove from326

RF all the features whose the persistence indicators become less than the327

persistence threshold θp (i.e. w
(i)
t ≤ θp) regardless if they are recent or old,328

and we add the newly detected features with initial weight w0. Further,329
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we update the covariance matrix to determine the spatial consistency of the330

feature by applying:331

Σ
(i)
t = (1− α)Σ

(i)
t−1 + αΣ(i)

new, (12)

where the new correlation estimate is:332

Σ(i)
new = (µ(i)

new − µ
(i)
t )(µ(i)

new − µ
(i)
t )⊤, (13)

with µ
(i)
t = [∆

(i)
x,t,∆

(i)
y,t]. Note that for the newly detected features, the prelim-333

inary persistence indicator is initialized to the covariance matrix Σ = σ2
0I2,334

where I2 is a 2 x 2 identity matrix. For consistent features, Σ decreases335

during the tracking, and thus their votes become more concentrated in the336

voting space. The overall algorithm is presented in Alg. 3.337

4. Experiments338

4.1. Experimental setup339

We evaluated our SAT tracker by comparing it with four recent state-of-340

the-art methods on 11 challenging video sequences. Seven sequences of the341

dataset are publicly available and commonly used in the literature, while four342

are our own sequences1. The Tiger 1, Tiger2 and Cliff bar are provided in343

[1] and the David indoor and Sylvester are from [33]. The Girl and occluded344

face 1 video sequences are respectively from [34] and [35]. The sequences345

jp1, jp2, wdesk, and wbook (with 608, 229, 709, and 581 frames respectively)346

were captured in our laboratory using a Sony SNC-RZ50N camera. The video347

1Our sequences are available at http://www.polymtl.ca/litiv/en/vid/.
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frames are 320x240 pixels captured at a frame rate of 15 fps. For quantitative348

evaluation, we manually labeled the ground truth of our four sequences. Some349

of the sequences are available only in grayscale format (Tiger 1, Tiger2 ,350

Sylvester, and Cliff bar). For these videos, we slightly adapted our algorithm351

(especially the color model) to use grayscale information instead of RGB352

color information.353

The four methods that we used for our comparison are the SuperPixel354

Tracker (SPT) [36], the Sparsity-Based Collaborative Tracker (SBCT) [19],355

the Adaptive Structural Tracker (AST) [20], and the Online Multiple Sup-356

port Instance Tracker (OMSIT) [37]. The source codes of these trackers are357

available on the authors’ respective websites. The authors also provide vari-358

ous parameter combinations. For fairness, we tuned the parameters of their359

methods so that for every video sequence, we always use the best combina-360

tion among the ones that they proposed. Most of the parameters of SAT361

were set to default values for all the sequences, and only three parameters362

were tuned to optimize the performance of the tracker:363

• N∗: the number of particles defining the reduced search space.364

• θu: the threshold on the percentage of pixels belonging to the target365

that is required to update the appearance model.366

• θp the persistence threshold used to determine if the keypoint should367

be removed from the reservoir.368

table 1 shows the optimized parameter values for 5 video sequences from our369

dataset.370
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parameters girl tiger 1
David

indoor

occluded

face 1
Wdesk

N∗ 30 100 100 40 80

θu 0.6 0.75 0.55 0.7 0.65

θp 0.3 0.4 0.2 0.2 0.3

Table 1: The optimized parameter values used in SAT with each video from the subset

including girl, tiger 1, David indoor, occluded face 1, and Wdesk.

We quantitatively evaluated the performance of the trackers using the371

success rate and the average location error. To measure the success rate, we372

calculate for each frame the Overlap Ratio OR = area(Pr∩Gr)
area(Pr∪Gr)

, where Pr is the373

predicted target region and Gr is the ground truth target region. Tracking is374

considered as a success for a given frame, if OR is larger than 0.5. The eval-375

uation of the Center Location Error (CLE) is based on the relative position376

errors between the center of the tracking result and that of the ground truth.377

Table 2 presents the success rates and the average center location errors for378

the compared methods. In order to analyze in depth the compared meth-379

ods on several video sequences, we also prepared two plots for every video380

sequence: 1) the center location error versus the frame number presented in381

figure 6, and 2) the overlap ratio versus the frame number presented in figure382

7. These plots are useful for understanding more in details the behavior of383

the trackers since the success rate and the average location error just sum-384

marize the performance of the tracker on a given sequence. Note that we385

averaged the results over five runs in all our experiments.386
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Figure 2: Tracking results for video sequences with long-term occlusions: Occluded face

1, Wbook, Wdesk. Green, magenta, yellow, cyan, and red rectangles correspond to results

from AST, OMSIT, SBCT, SPT, SAT.
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SPT SBCT AST OMSIT SAT

Sequence S E S E S E S E S E

David indoor 62 36 60 34 38 69 63 27 100 10

girl 84 9 2 201 18 53 1 66 85 10

occluded face 1 6 117 100 5 26 85 81 23 100 14

tiger 1 61 17 25 108 31 38 3 75 51 15

tiger 2 46 23 16 189 31 29 6 45 70 16

Sylvester 39 32 49 34 73 10 3 99 79 14

Cliff bar 52 22 24 77 70 35 8 74 60 25

Jp1 18 35 78 18 84 17 4 97 89 7

Jp2 39 31 55 69 55 45 17 39 94 7

Wdesk 14 80 57 34 32 81 10 123 90 11

Wbook 99 11 100 5 100 9 9 132 100 12

average 47 38 52 70 51 43 19 73 84 13

Table 2: Success rate (S) and average location error (E) results for SAT and the four other

trackers: Bold red font indicates best results, blue italics indicates second best.

22



Figure 3: Screenshots of face tracking in moderately crowded scenes under short-term

occlusions. In the Jp1 sequence (first row), the tracked face is the one that is in the center

of the scene. The same person is tracked while he is walking in the Jp2 sequence. Green,

magenta, yellow, cyan, and red rectangles correspond to results from AST, OMSIT, SBCT,

SPT, SAT.

4.2. Experimental results387

Long-time occlusion: Figure 2 demonstrates the performance of the388

compared trackers when tracking faces under long-time partial occlusions.389

In the Occluded face 1 and the wbook sequences, the target faces remain390

partially occluded for several seconds while they barely move. The corre-391

sponding plots in figures 6 and 7 show that some trackers drift away from392

the target face, to track the occluding object (e.g. between frames 200 and393

400 in Occluded face 1 ). Because it is specifically designed to handle par-394

tial occlusions via its structure-based model, our tracker was able to track395

the faces successfully in practically all the frames. SBCT has also achieved a396

good performance with a slightly lower average location error. In fact, SBCT397

is also designed to handle occlusions using a scheme that considers only the398
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Figure 4: Screenshots of tracking results for some of the sequences with illumination change

(david indoor) and background clutter (Cliff bar, Tiger1, Tiger2 ). Green, magenta, yellow,

cyan, and red rectangles correspond to results from AST, OMSIT, SBCT, SPT, SAT.
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Figure 5: Tracking results for video sequences with abrupt motion and/or out of plane

rotation: Girl and Sylvester sequences. Green, magenta, yellow, cyan, and red rectangles

correspond to results from AST, OMSIT, SBCT, SPT, SAT.

patches that are not occluded. The target face in Wdesk undergoes severe399

partial occlusions many times while moving behind structures of the back-400

ground. SAT and SBCT track the target correctly until frame 400. At this401

point the person performs large displacements, and SBCT drifts away from402

the face. Nevertheless, our tracker continues the tracking successfully while403

the tracked person is trying to hide behind structures of the background,404

achieving a success rate of 90%. The superiority of the proposed method405

in this experiment highlights the importance of using structural constraints406

defined by keypoint regions that are more invariant than the patches used in407

SBCT when such a situation occurs.408

Moderately crowded scenes: Figure 3 presents the results of face409

tracking in a moderately crowded scene (four persons). In the Jp1 video,410

we aim to track a target face in presence of other faces that may partially411

occlude the target. Although the success rates of 84% and 78% respectively412
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Figure 6: Center location error plots.
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Figure 7: Overlap ratio plots.
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for AST and SBCT indicate good performance in general, the two trackers413

drift twice, first at frame 530, and a second time at frame 570, to track other414

faces occluding or neighboring the target face. However, our tracker is not415

affected by the presence of similar objects around the target, even if partial416

occlusion occurs. This is mainly due to the distinctiveness of SIFT features417

compared to the local patches used in AST and SBCT to characterize the418

target. In this manner, SIFT features allow our tracker to handle situations419

where multiple instances of the same target object co-occur. In the jp2420

sequence, we track a walking person in a moderately crowded scene with421

four randomly moving persons. Here, we track a person’s face that crosses422

in front or behind another walking person that may completely occlude the423

target for a short time. Except the proposed method, none of the trackers424

is able to relocate the target after full occlusion by another person. For425

example, SBCT confused the target with the occluding face like in the video426

sequence Jp1. In this situation, SAT detects a total occlusion (since no427

features are matched). Our tracker continues searching the target based on428

color similarity without updating the appearance model. Tracking is finally429

recovered as soon as a small part of the target face becomes visible and430

feature matching becomes possible again.431

Illumination change: In theDavid indoor video, the illumination changes432

gradually as the person moves from a dark room to an illuminated area (see433

figure 4). While most of the trackers were able to keep track of the person in434

more than 60% of the frames, SAT was the only tracker to achieve a success435

rate of 100%. In addition, SAT had the best performance on the Sylvester436

sequence in which the target object appearance changes drastically due to437
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abrupt illumination change. These two experiments show the superiority of438

our appearance model, which is the only one among the five models, to in-439

clude keypoints that are robust against lighting variations. Note that every440

time we update the reservoir of features, we replace the descriptors of all441

matched keypoints by their latest version computed on the current frame.442

This technique helps also to reflect appearance changes of keypoint regions443

(caused by illumination, viewpoint change, etc.), which facilitates matching444

features.445

Background clutters: In the Cliff bar video, the background (the book)446

and the target have similar textures. Figure 4 shows that SBCT and OMSIT447

drift away from the target in most video frames. AST, SPT, and the pro-448

posed tracker were able to achieve a better performance despite the difficulty449

of this sequence. In fact, the target undergoes drastic appearance changes450

due to high motion blur. This caused drifts for all trackers several times451

(e.g. see the corresponding CLE and OR plots at frame 80). In the Tiger452

1 and Tiger 2 sequences, the tracked object exhibits fast movements in a453

cluttered background with frequent and various occlusion level. Owing to454

our voting mechanism that predicts the exact position of the target from the455

visible keypoints, our SAT tracker overcomes the frequent occlusion problem456

outperforming the other methods. All the other methods fail to locate the457

stuffed animal, except SPT that achieved better results due to its discrimi-458

native appearance model that facilitates the distinction between the object459

and the background based on superpixel over-segmentation. Note that our460

method also presents a discriminative aspect, since it uses information on461

the background color distribution to evaluate the tracking quality (see the462
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update subsection under section 3.5).463

Abrupt motion and out of plane rotation: The target object in464

Sylvester undergoes out of plane rotation and sudden movements during465

more than 1300 frames. Most of the trackers, except AST and ours do not466

perform well. In the girl video, the tracked face undergoes both pose change467

and 360 degrees rotations abruptly. Our method had the highest success rate468

and was significantly more robust and accurate than most of the methods469

as we can see in figure 5. SAT handled efficiently pose change and partial470

occlusion and our tracking was successful as long as the girl’s face was at471

least partly visible. The target was lost only during the frames where it is472

completely turned away from the camera (see the OR plot, frames 87-116473

and 187-250), but tracking is recovered as soon as the face reappears.474

Computational cost: Our tracker was implemented using Matlab on475

a PC with a Core i7-3770 CPU running at a 3.4 GHz. SAT algorithm is476

designed to maintain a reasonable computational complexity. In fact, we477

extract local features in a limited image region determined by particle fil-478

tering, in order to reduce the computational cost of keypoint detection and479

local descriptors creation. The particle filter generates N = 400 particles,480

among which only N∗ particles are considered as a reduced search space,481

and for generating the N particles on the subsequent frame. In practice, the482

computation time of our tracker is closely related to the number of detected483

keypoints voting for the object position, which mainly depends on the object484

size and texture. As an example, the video sequences tiger 1 and tiger 2,485

with a small target size, are processed at nearly one second per frame. On486

the other hand, when the object size is larger such as in the occluded face 1,487
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SPT SBCT AST OMSIT SAT

time/video 1854.31 1990.52 259.84 1327.23 707.41

time/frame 3.95 4.24 0.55 2.82 1.51

ranking 4 5 1 3 2

Table 3: Processing time comparison on the David indoor sequence. time/video: the

total processing time (seconds), time/frame: the average processing time for one frame

(seconds).

SAT requires up to 3 seconds to find the target on certain frames. The table488

3 provides a computation time comparison for the five trackers on the face489

tracking video David indoor. All the compared trackers were implemented in490

Matlab by the authors, and run on the same described computer. According491

to the performed measures, our algorithm requires in average 1.51 s to pro-492

cess one frame, which is the second best execution time. We note that AST493

achieved the shortest time, processing one frame in 0.55 s.494

Application constraints and risk of failure: The proposed tracker495

uses SIFT algorithm as an external mechanism to detect the target keypoints.496

Generally, our method achieves high accuracy when a significant number of497

keypoints are detected on the target object. On the other hand, the tracking498

quality may decrease if the target region is not sufficiently textured, or if499

it is too far from the camera (object details not visible). As an example,500

we verified that the face tracking application requires a maximum distance501

of 10 meters between the tracked person and the camera. At this distance,502

SIFT allows detecting between two and four keypoints in most face tracking503

scenarios. Furthermore, a drastic decrease in the number of visible target504
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keypoints increases the drifting risk, regardless of the target type. In practice,505

our tracker relies on keypoint matching only if at least three keypoints from506

the reservoir are matched on the current frame. Otherwise, SAT applies the507

particle filter (that we use to reduce the search space) to track the object508

based on its global color distribution. Another limitation may result from509

the use of a small number of particles to limit the keypoint detection region.510

Indeed, the target may undergo large displacements between consecutive511

frames due to fast movements or low frame rates (e.g. real-time tracking512

using a remote IP camera). As a result, the target object may be located513

outside the keypoint detection area, causing tracking failure. If this situation514

occurs, tracking can be recovered only if the target reappears in the reduced515

search space. Note that this problem can be solved at the cost of an additional516

computation time, by increasing the number of particles (N∗) forming the517

reduced search space.518

5. Conclusion519

In this paper, we proposed a robust tracking algorithm named SAT520

(Structure Aware Tracker). Our core idea is to exploit the structural prop-521

erties of the target, in a voting-based method, to provide accurate location522

prediction. The target is described by color distribution, keypoints, and their523

geometrical constraints encoding the object internal structure. This multi-524

features appearance model is learned during tracking and thus incorporates525

new structural properties in an online manner. Numerous experiments in a526

comparison with four state-of-the-art trackers, on eleven challenging video527

sequences, demonstrate the superiority of the proposed method in handling528
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multiple tracking perturbation factors. Our results also highlight the impor-529

tance of encoding the object structure via keypoint regions, that are more530

invariant and stable than other types of patches (e.g. the local patches en-531

coding the object spatial information in AST and SBCT).532
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Algorithm 3 Predicting the target location

1: - initialize RF , q̂, q̂bg

2: for all frames do

3: - reduce the search space: Alg. 1

4: - predict a preliminary state: Alg. 2

5: for all voting space positionsx do

6: for all matched features (f (i) ∈ Ft) do

7: - estimate P (x|f (i)): (Eq. 5)

8: end for

9: - estimate location probability P (x): (Eq. 6)

10: end for

11: - target location = select peak(voting space positions) {tracker’s

output for the current frame}

12: if (update condition == true) then

13: -update q̂t and q̂bg,t: (Eq. 7 & 8)

14: for all matched features (f (i) ∈ Ft) do

15: - update µ
(i)
t (Eq. 10 & 11)

16: - update Σ
(i)
t (Eq. 12)

17: end for

18: - update w
(i)
t (Eq. 9) for the entire reservoir

19: - remove non-persistent features (i.e.w
(i)
t ≤ θp)

20: for all newly detected features f (i) do

21: - add f (i) to RF

22: - µ
(i)
t = [∆

(i)
x,new,∆

(i)
x,new]; Σ

(i)
t = σ2

0I2; w
(i)
t = w0

23: end for

24: end if

25: end for
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