Extended Three-Dimensional Rotation Invariant Local Binary Patterns

Leonardo Citraro®*, Sasan Mahmoodi?, Angela Darekar®, Brigitte Vollmer®

4School of Electronics and Computer Science, Building 1, Southampton University, Southampton SO17 1BJ, UK
b Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
¢Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; University Hospital Southampton NHS Foundation
Trust, Southampton, SO16 6YD, UK

Abstract

This paper presents a new set of three-dimensional rotation invariant texture descriptors based on the well-known local binary
patterns (LBP). In the approach proposed here, we extend an existing three-dimensional LBP based on the region growing algorithm
using existing features developed exquisitely for two-dimensional LBPs (pixel intensities and differences). We have conducted
experiments on a synthetic dataset of three-dimensional randomly rotated texture images in order to evaluate the discriminatory
power and the rotation invariant properties of our descriptors as well as those of other two-dimensional and three-dimensional
texture descriptors. Our results demonstrate the effectiveness of the extended LBPs and improvements against other state-of-the-art
hand-crafted three-dimensional texture descriptors on this dataset. Furthermore, we prove that the extended LBPs can be used in

medical datasets to discriminate between MR images of oxygenated and non-oxygenated brain tissues of newborn babies.
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1. Introduction

1.1. Context

Texture analysis is a key topic in image processing and
computer vision, playing an important role in medical and
industrial applications. Texture is a fundamental property of
physical objects that, when captured on image, may suffer from
noise, illumination changes, occlusions, viewpoints or scale
variations. Producing high discriminant descriptors invariant
with respect to grey-scale changes as well as to rotation
is essential in order to solve many real-world problems.
With the advent of three-dimensional images, textures have
become more complex and full of information leading to
extremely interesting applications. Although two-dimensional
texture analysis methods have become very powerful, in
three-dimension, these approaches may result in the loss of
important information with consequent non-optimal results.
An appropriate characterisation of textures in three-dimensions
is therefore crucial for the development of state-of-the-art
systems as for cases such as the analysis of MR images
(Kovalev et al., 2001) or modelling and recognition of 3D
biomedical textures (Depeursinge et al., 2014; Majtner and
Svoboda, 2014). Among the most popular two-dimensional
texture methods, the local binary patterns (LBP) have gained
a great deal of attention in many applications and research
studies in the last decade (Ahonen et al., 2006; Liu et al.,
2012; QOjala et al., 2002; Sorensen et al., 2010). In contrast,
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the three-dimensional implementations of local binary patterns
are very few and often do not fully match the necessary
requirements. Zhao and Pietikédinen (2006, 2007b,a) introduce
for the first time the concept of three-dimensional local binary
pattern by proposing two novel approaches to analyse dynamic
textures. The first method (VLBP) consists of stacking multiple
classic LBP operators on top of each other forming a spiral
whereas the second method (LBP - TOP) consists in placing
three descriptors in an orthogonal fashion. Paulhac et al.
(2008) propose a three-dimensional fully rotation invariant
LBP descriptor based on a region growing algorithm and
the so called uniform patterns. Fehr and Burkhardt (2008)
attempted to classify 3D volume data exploiting the LBP
method and the spherical harmonics (SH). In a similar way,
Banerjee et al. (2013) propose a descriptor by exploiting the
spherical harmonics but unlike Fehr and Burkhardt (2008)
the rotation invariance is obtained without searching for the
minimum correlation over all angles. Another interesting
method is proposed by Liu et al. (2011) who developed a novel
three-dimensional fully rotation invariant LBP based on unique
rotation, reflection and translation invariant patterns. This
method is based on the extraction in advance of all possible
congruent patterns which are then clustered in order to identify
all the unique shapes defining a texture.

In addition to these papers, there is a considerable number
of publications related to local binary patterns and the work
we present here. Majtner and Svoboda (2014) present a
comparison of 2D and 3D texture descriptors on biological
data. The volume LBP vLBP and the LBP — TOP, as well as
four variants of non-rotation invariant 3D LBP built from four
Platonic solids frames are investigated in their paper. The
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results obtained in Majtner and Svoboda (2014) demonstrate
good classification accuracy for all methods investigated in
their paper on a dataset of fluorescence microscopy images.
Surface descriptors are also becoming beneficial in many
applications such as face-based recognition and multi-view
stereo systems as well as 3D scanning and photometric data
(Bayramoglu et al., 2013; Werghi et al., 2013, 2015a,b; Biasotti
et al., 2016). Bayramoglu et al. (2013) propose oriented based
local binary pattern descriptors to address the task of detecting
facial action units in 3D face data. In a similar way, Werghi
et al. (2013, 2015a,b) present a novel approach for computing
local binary pattern on triangular mesh manifolds addressing a
face recognition problem on three-dimension scans instead of
3D depth images (Li et al., 2005; Huang et al., 2006; Huynh
et al., 2012). Also, Biasotti et al. (2016) present a remarkable
comparative study of several different state-of-the-art methods
for the classification of three-dimensional texture models.

In this paper our contribution is to propose a new set of three-
dimensional rotation invariant descriptors based on the local bi-
nary patterns. We make use of the concepts of intensity-based
(cr and NI1) and difference-based (RD) features proposed by Liu
et al. (2012) in order to improve the existing three-dimensional
LBP descriptors proposed by Paulhac et al. (2008). We con-
duct extensive experiments on the proposed descriptor in or-
der to compare their performance with existing state-of-the-art
two-dimensional and three-dimensional methods. The dataset
employed here is a set of three-dimensional synthetic images
constructed by interpolation (Paulhac et al., 2009).

1.2. Local binary patterns

The local binary pattern (LBP), first introduced by Harwood
et al. (1995) and Ojala et al. (1996), is a method that encodes
the local texture information in a binary fashion by simply
sampling and weighting the neighbouring pixels. In their
later work, Ojala et al. (2002) propose a circular and rotation
invariant LBP composed of P equally spaced grey-scale pixels
(gwr.p)) arranged on a circle of radius R. These values gxp
try to replicate the local texture at some point of the image,
therefore, their values depend upon the neighbouring pixels.
In details, each pixel value g p) is assigned a grey-scale value
based on the bilinear interpolation of the four closest image
pixels. Successively, the LBP pixels are sampled (threshold-ing
process) and concatenated starting (arbitrarily) from the least
significant g p-g, to the most significant ggp-1) in order to
form a binary number. The resulting value, also called LBP
code, characterizes the local texture. Formally, the circular
non-rotation invariant LBP is defined as:

s = FXZ8 M

P-1
LBPgp = Z s(8w.p) — 800)2" (@)

p=0
where s(x) is the sampling (threshold) function over x. Ojala
et al. (2002) also propose a method to achieve the rotation
invariance which allows to obtain consistent results even with
rotated images. This property is obtained by applying a simple
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Figure 1: Example of “uniform” and “nonuniform” geometrical representation
of the circular LBP presented in (Ojala et al., 2002). A “uniform” LBP is de-
fined by two or fewer bitwise 0/1 transitions. The pattern on the left produces
an LBP code of four whereas the pattern on the right is assigned the value nine.

circular bit-wise right shifts until the minimum possible binary
value is reached:

LBP} , = min{ROR(LBPg p, )i = 0,1,....P - 1} @)

where ROR(x,i) is the circular bit-wise right shifts operator and

the superscript ri indicates the rotation invariance capability. In
addition to the rotation invariant LBP, Ojala et al. (2002) have
discovered that many LBP codes represent fundamental proper-
ties of textures as lines, end of lines, flat regions or edges. These
particular codes share the same specific pattern, the number of
spatial transitions (bitwise 0/1 changes of the LBP pixels after
sampling) on the circular frame. This pattern, also called uni-
formity measure, is defined as:

U(LBPR.p) = |s(gr.p-1) — £0.0) — 5(&®,0) — £0,0)
P-1
+ Z Is(8r.p) = 80.0) = (8 p-1) = 80.0)I 4
p=1
where U(LBPrp) < 2 is the definition of a "uniform” LBP and
U(LBPgp) > 2 “non-uniform”. Thus, Ojala et al. (2002) have
proposed a new descriptor LBPy' that encodes the local texture
information using only P + 1 values:

LBP 2 — { Z,’,)Z(]) s(grp) — 800) if ULBPRp) <2 5)
RP P+1 otherwise

Figure 1 shows an example of “uniform” LBP (left) that pro-
duces a code of four whereas the "nonuniform” LBP (right) is
assigned the value P + 1.

1.3. Extended local binary patterns

Liu et al. (2012) present a new set of improved LBP de-
scriptors exploiting two types of features (pixel intensities and
differences). The first intensity-based LBP proposed by Liu
et al. (2012) is the c1 - LBP which encodes the local contrast
information using the mean of the whole image:

CI~ LBP = 5(800) — 1) ©)

where y, is the grey scale mean of the whole image. The second
intensity-based feature proposed in Liu et al. (2012) is the NI -
LBpg«:. It encodes the texture by sampling the neighbouring
pixels at the mean of the interpolated pixels.

if UNI-LBPRp) <2 (7

NI - LBP2 = { Z,’:;(l) S(gR.p) — 1)
’ P+1 otherwise



where u = § 377 g.»- This descriptor has many merits such as
the increased encoding capacity and the robustness. It is able
to preserve weak edges, to discriminate between different ho-
mogeneous regions and it is less affected by the noise in the
images compared to the classic LBPy. Finally, the difference-
based descriptor proposed in Liu et al. (2012) is the RD - LBP".
In this descriptor the radial difference between two circular pat-
terns with different radius is computed.

P-1 .
) s(ARady if URD - LBPgps) <2 )

RD — LBP["2, = {
RPg P+1 otherwise

where AR = g ) — gr-s,» and ¢ is an integer defining the ra-
dial displacement between the external circle and the internal
circle. For instance, RD—LBP;’};}‘Y1 computes the radial difference
between an LBP with R = 3 and P = 24 and another LBP with

R=2and P = 24.

1.4. Three-dimensional local binary patterns

Paulhac et al. (2008) propose a three-dimensional rotation
invariant local binary pattern exploiting the concept of “uni-
form” LBP without passing through a binary representation of
the voxels composing the LBP frame. The choice of devel-
oping a rotation invariant descriptor was inevitable due to the
intractable number of possible unique codes a spherical LBP
can have. In two dimensions, a non-rotation invariant LBP with
P = 8 has 2% possible resulting codes. In three dimensions, this
number increases dramatically. The descriptor is composed
of a series of concentric circles at different heights forming a
sphere. As with the classic circular LBP, this three-dimensional
descriptor is defined as:

LBP; = { Z;:BI $(&R.p) — 800.00))
’ +1

if ULBPRp) <V ©)
P

otherwise

where P’ = (S — 1) - P + 2 defines the number of voxels on the
spherical frame, s defines the number of circles, P defines
the number of equally spaced voxels per circle and V is the
threshold that determines if the LBP is “uniform” or not. Their
method cleverly searches for the uniform conglomerates on the
surface of the sphere without passing from a binary representa-
tion of the texture. A region growing algorithm groups similar
binary voxels to form regions. If the number of regions is less
than or equal to v, the LBP is defined as “uniform” otherwise
it is defined as nonuniform”. Furthermore, they have decided
to increase the number of regions Vv from two to three due to
the small number of “uniform” LBP produced. Nevertheless,
due to the relaxed constraint (V = 3), some local binary patterns
can have the same code despite the different texture. Figure 2
shows two different textures having the same LBP code.

2. Our proposed three-dimensional descriptors

2.1. Uniform spherical structure

An optimal rotation invariant LBP should have the same
identical geometrical structure under all points of view. Such

Figure 2: Example of two three-dimensional local binary patterns (S = 7, P =
16) proposed by Paulhac et al. (2008) having the same LBP code of eight.
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Figure 3: Geodesic spheres derived from the icosahedron. From left to right:
42,92 and 252 vertices

a geometry on a sphere is hard to obtain, however, there
are structures that accomplish our requirements. A geodesic
grid (Kenner, 2003) is a technique that subdivides a sphere
in uniform flat polygonal faces starting from one of the
Platonic solids as the icosahedron or the dodecahedron. One
simple technique that increases the number of faces and
vertexes by maintaining the same characteristic of the original
solid consists in bisecting each face of the icosahedron and
projecting the resulting intersection points. The number of
vertexes are clearly limited to specific values as 12, 42, 162
or even 252. Intermediate number of points can be obtained
using truncated versions in which their surface is composed of
multiple different flat regular polygons created by cutting off
the vertices of the solid. As an example, by cutting off all the
edges of an icosahedron one can raise the number of vertexes
from 12 to 60. Successively, by applying the method described
above it is possible to create a new geodesic sphere with 92
vertexes known as geodesic truncated icosahedron.

Choosing the optimal number of vertexes for a LBP is not
a trivial task because different factors are involved as the type
of texture, the size of the images and the computational power
available. An LBP with many vertexes is able to capture all the
details of the texture, however, it also captures the noise and
it requires a great deal of computation. Instead, with too few
vertexes the LBP fails to capture enough details, and hence to
reproduce the local texture. Ojala et al. (2002) propose a set of
local binary patterns with 8, 16 and 24 pixels which (following
the framework proposed by Paulhac et al. (2008)) correspond to
26, 114 and 266 voxels in three dimensions respectively. There-
fore, in the remainder of this paper, we use geodesic spheres
(derived from the icosahedron) with 42, 92 and 252 vertexes for
our LBPs since these values are the closest options available in
order to have comparable results.

2.2. Extended three-dimensional local binary patterns

Our three-dimensional rotation invariant local binary
patterns are a combination of the existing intensity-based



features, difference-based features (Liu et al., 2012) and the
three-dimensional descriptor proposed by Paulhac et al. (2008)
based on the region-growing algorithm.

Extending the circular local binary pattern developed by

Ojala et al. (2002) from two to three dimensions by using
the same approach is far from being a simple task. In the
classic 2D non-rotation invariant LBP, the texture is simply
encoded in a binary number by sampling a geometrical shape
such as a circle and by weighting the resulting pixels. In
three-dimensions, even if the sampling rate is comparable,
the number of points/voxels involved increases dramatically
leading us to cope with large integer numbers. Thus, the
development of a rotation invariant descriptor is inevitable
in three-dimensions due to the intractable number of pos-
sible combinations a non-rotation invariant descriptor has
(2#2,2%2,22°2) (Paulhac et al., 2008).
After the sampling procedure of the 2D LBP, the rotation
invariance is achieved by applying a circular bit shift. In
three dimensions, this sequence of operation is hard to obtain,
however, Paulhac et al. (2008) have proposed to bypass this
problem by searching directly the uniform conglomerates on
the surface of the sphere instead of encoding the texture. A
region growing algorithm groups adjacent sampled voxels in
order to form regions. If the number of regions is greater than
v, the LBP is defined as “nonuniform” otherwise uniform”.
This spherical LBP is intrinsically rotation invariant since
the positions of the conglomerates w.r.t the sphere coordinate
system does not affect the final result; only the number of
regions and the sum of the active sampled voxels determines
the LBP code.

Liu et al. (2012) propose a novel set of highly discriminant
features based on the LBP method. The combination of the
intensity-based and difference-based descriptors proposed in
their paper demonstrate superiority in all the experiments
against the classic LBP and VAR operator proposed by Ojala
et al. (2002). The intensity-based feature NI - LBP, was primar-
ily created to address the deficiencies of the pair LBP/VAR in
distinguishing particular texture patterns and to increase the
overall noise rejection rate. In their theoretical contribution, the
NI-LBP is claimed to be more discriminant then the classic LBP
due its higher discriminatory abilities for textures, however, it
is important to note that the classic LBP in their experiments
achieve better results than the single nN7 - LBP. The crucial
point in the method proposed by Liu et al. (2012) is in the
combination of non-redundant and complementary features as
the joint combination of NI - LBP and RD - LBP descriptors.
The combination of these two descriptors outperformed the
pair LBP/VAR proposed by Ojala et al. (2002) significantly.
Ultimately, producing highly discriminant, uncorrelated and
complementary descriptors is the key to solve complex prob-
lems rather than employing a single method for the solution.

By combining the valuable approaches presented in (Liu
et al., 2012) and Paulhac et al. (2008) we define the contrast
information CI - LBP in three dimensions as:
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Figure 4: Graphical representation of our extended three-dimensional local bi-
nary patterns.

CI — LBP = 5(8(0,0,0) — Hr) (10)

where y, is the grey scale mean of the whole image and g,
is the grey scale of the central voxel. This descriptor aims to
highlight intensity variations by considering the image as a
whole.

~ In the same manner we define the three-dimensional
intensity-based descriptor NI - LBP%/¢ as:

NI - LBP4Y¢ ={ g,’ié s@wrp =) if UNI=LBPRp)<V ()

otherwise
where 1 = %77 g ) is the grey scale mean of the interpolated
neighbouring voxels, the superscript g indicates the use of
a geodesic structure and P defines the number of voxels in
the neighbourhood set. This descriptor takes advantage of
the mean operator of the neighbouring voxels to maintain
the intensity invariance, to mitigate the effects of intensity
variations and therefore to improve the overall noise rejection
rate. "LBP thresholding at the value of the central pixel g,
tends to be sensitive to noise, particularly in near-uniform
image regions, and smooths weak illumination gradients” (Liu
et al., 2012).

Analogously, we define the three-dimensional radial differ-
ence descriptor RD — LBP;’,L;,Vg as:

RD - LBP[™Y8 = { Spo SO if URD ~ LBPgps) <V 12)
o P+1 otherwise
where AR = g ) — g(r_s ). 0 1S an integer defining the radial dis-
placement between the external sphere and the internal sphere
and the superscript g indicates the use of a geodesic structure.
For instance, RD — LBP}5.% | (or RD - LBP}4% for brevity) com-
putes the radial difference between a sphere of (R = 3,P = 252)
and (R = 2, P = 252). Although this descriptor appears to be differ-
ent from the LBP methodology we have seen so far, it becomes
in fact equivalent to the LBP proposed by Paulhac et al. (2008)
when the radial displacement § approaches the radius of the
sphere (RD - LBP}';, = LBPR'). The response to texture varia-
tions of an RD-LBP whose inner sphere has a radius greater than
one will be different from LBP descriptors with one single cen-
tral voxel. The value of the descriptor RD — LBP varies as soon
as a change in the texture approaches the outer sphere. This is
different from LBPs such as the LBP;{?,?, (Paulhac et al., 2008)
whose value changes only if the central voxel varies. Figure 4
shows a representation of our extended local binary patterns at

R =2 and P = 92 in three-dimensions.



Table 1: Table of abbreviations

Complete name

Abbreviation

Comment

riuV iuV
NI - LBP}“Y |RD - LBP/™Y /CI - LBP

NI - LBPy'*|RD — LBP}" ¢ /CI — LBP

NI - LBP}'Y® +RD - LBP'y¢ + CI — LBP

3
LBP}3
3D
KLBP3!
rLBP,,

2
VLBP, ,

VLBP}42,

LBP - TOPPXY Pxr.Pyr.Rx.Ry Rt

VCLBPRf

v
NI/RD/CI - LBP}YY,
NI/RD/CI - LBPy*

NI+RD +CI - LBP$

LBP - TOPgp

Our proposed method: Joint combination of three extended 3D LBPs at (R,P’) spa-
tial resolution where the structure is a series of concentric circles at different heights.
Our proposed method: Joint combination of three extended 3D LBPs at (R,P) spatial
resolution where the frame is a geodesic sphere.

Our proposed method: Concatenation of three extended 3D LBPs at (R,P) spatial
resolution where the frame is a geodesic sphere.

(Paulhac et al., 2008): Three-dimensional fully rotation invariant LBP based on the
region growing algorithm.

(Banerjee et al., 2013): Three-dimensional fully rotation invariant LBP based on the
norm of the spherical harmonics frequency components and the kurtosis.

(Fehr and Burkhardt, 2008): Three-dimensional fully rotation invariant LBP based
on the spherical harmonics and the search of the minimum correlation over all angles.
(Zhao and Pietikéinen, 2007a): Three-dimensional single axe rotation invariant LBP
in the form of spiral. The LBP employed is the 2D uniform not rotation invariant LBP.
(Zhao and Pietikéinen, 2007a): Three-dimensional single axe rotation invariant LBP
in the form of spiral. The LBP employed is the 2D uniform and rotation invariant LBP.
(Zhao and Pietikéinen, 2007a): Three-dimensional rotation invariant LBP composed
of 3 classic 2D LBP arranged in an orthogonal fashion.

(Liu et al., 2011): Three-dimensional fully rotation invariant LBP based on unique
rotation, reflection and translation invariant patterns (congruent patterns).

NI - LBP}“2/RD — LBP}2, /CI - LBP NI/RD/CI - LBP}.

(Liu et al., 2012): Joint combination of three 2D rotation invariant extended LBPs.

3. Results and discussion

In this section, we evaluate the performance of our proposed
descriptors by using a single and multiple spatial resolutions
with different number of regions v. We perform classifica-
tion tasks against state-of-the-art two-dimensional and three-
dimensional LBP descriptors on a dataset of synthetic textures
in order to firstly demonstrate the utility of the third dimen-
sion and secondly to demonstrate the discriminatory power
of our improved descriptors. The first descriptor considered
here is the 2D joint LBP N1/RD/CI - LBP}; proposed by Liu
et al. (2012) which produce excellent results in classifying two-
dimensional datasets. The first 3D descriptors under consid-
eration are the volume LBP VLBP, ,, the vLBP/'2, and the
LBP —~TOPY ,  p. g ryx, Proposed by Zhao and Pietikdinen
(2007a). The first 3D fully rotation invariant LBP employed
here is the LBPRY, proposed by Paulhac et al. (2008) followed
by a couple of variations of the 3D rLBP" % p (Fehr and Burkhardt,
2008) based on the spherical harmonics and the kLBP}} pro-
posed by Banerjee et al. (2013) based as well on the spherlcal
harmonics. Another interesting method we examine here is the
3D fully rotation invariant volumetric congruent LBP vcLBPg p
proposed by Liu et al. (2011).

3.1. Dataset

The dataset employed here is a set of three-dimensional
synthetic greyscale texture images constructed from two-
dimensional textures like Brodatz, fractal textures and etc. This
dataset has been created by Paulhac et al. (2009) and is freely
available !. The full database offers 92 classes composed of ten

"http://www.rfai.li.univ-tours.fr/PublicData/3D_
Textures/3Dsynthetic_images_database.html (12.02.2017)

images constructed by using different synthesis methods such
as interpolation, Fourier Transform, geometrical shape inser-
tion and a combination of these methods. For each method,
various manipulations have been applied as the rotation, addi-
tion of noise, sub-sampling and smoothing. The rotation has
been randomly applied on the three axes. For all of our tests,
we use the interpolated dataset (30 classes) composed of im-
ages of 64 x 64 x 64 voxels and in particular the rotated version
in order to evaluate the rotation invariance property of our al-
gorithm. Figure 5 shows some examples of 3D textures from
the 30 texture classes composing the interpolated dataset (not
rotated).

3.2. Comparing textures

Defining the local binary pattern structure and how to calcu-
late the resulting LBP code are the first steps toward the com-
parison of two textures. We define here the term “converting an
image” as the process that extracts an LBP code for each pixel
in an image; the result is also an image where each pixel/voxel
ranges from 0 to P - 1. Hence, a simple method to compare
two textures consists in comparing the fixed size histograms
derived from the converted images. In addition, joint combina-
tion and/or concatenation of histograms of different LBPs are
proven to be effective (Liu et al. (2012)).

3.3. Variable selection

An important task in the implementation of an algorithm is
the selection of its coefficients. The number of voxels P on the
LBP sphere is an aspect to consider, but it is not crucial. Too
few points could lead to the loss of information, on the other
hand, too many points increase the complexity and the length
of the resulting histograms. The number of regions V is one



R B

Blobs Blocks Bois Caustics complex
0 | g b
| , w”/,
5 3 P&
Horns Life Marble PerlinAmp

]

Turbulence

ue

SinusSynthesis StarField Stone

Stream

0

damier Exagone Flagstone Gravel Grid
} I ]
“» \\'\“%/
PerlinNoise Plasma Rectangles  RidgedPerlin Scratch
N )
h
Uwari Veins Water Waves

Figure 5: Example images from the three-dimensional dataset of synthetic textures (Paulhac et al., 2009): 30 classes, interpolated and not rotated.

of the parameters whose effects on the algorithm need to be
considered.

e For the volume local binary pattern VLBP, x p, we decide to
stack five 2D LBP composed of 16 voxels each by forming
a spiral. The resulting descriptor is ended up being formed
by 82 voxels.

e For the descriptor LBP — TOPgp, we employ three classic

2D LBPy; arranged orthogonally.

e Concerning the 3D descriptor kLBPy3? exploiting the
spherical harmonics, the number of bands », the number
of bins and the range for each histogram must be selected.
We choose the number of bands » equal to six as advised
in Banerjee et al. (2013) whereas for the number of bins
we perform several experiment to select the appropriate
one. The results are shown in Table 2 where the number
of bins refers to the concatenation of » + 1 variables. Re-
garding the radius and the sampling rate, Banerjee et al.
(2013) state that “the increase in sampling rate, improves
the spherical function approximation, which translates to
improved discriminative ability of the descriptor”. To ver-
ify this statement, we perform experiments at different spa-
tial resolutions. The range of the » + 1 histograms has been
empirically estimated.

e For the second descriptor based on the spherical harmon-
ics rLBP}, , (Fehr and Burkhardt, 2008), we perform several
experiments at different spatial resolutions and with two
different spherical harmonics expansion bands, six (rn = 6)
and eleven (n = 11) to verify if increasing the SH resolution
helps improving its discriminatory power. Experiments at
the spatial resolution of (2,252) and (3,252) are not con-
ducted due to numeric instability. Also here, for the num-
ber of bins we perform several experiments to select the
appropriate one. The results are shown in Table 2. The
range of the histogram has been empirically estimated.

e Concerning the volumetric congruent veLBPgp (Liu et al.,
2011) , the number of voxels forming the sphere and the
radius must be selected. To implement this method, an
eigendecomposition of a symmetric distance-preserving

matrix is required to be performed for each pattern (2f) in
order to identify all possible congruent geometries. There-
fore, admitting a roughly constant amount of time to per-
form the eigendecomposition, with the increase of the
number of voxels in the spherical frame the time required
to pre-compute all the patterns increases exponentially be-
coming an intractable method for a regular desktop ma-
chine. This therefore makes us use a geodesic (octahe-
dron) sphere composed of only 18 vertexes. Due to the
small number of vertexes, we also decide to perform two
distinct experiments using a radius of two (R = 2) and a
radius of one (R = 1). In our implementation, after the
clustering process, we identify 6’391 different groups of
congruent shapes.

3.4. Evaluation method

We aim to compare the classification accuracies of our de-
scriptors using 30 different texture classes where each class is
composed of ten randomly rotated images. We convert the im-
ages in the dataset using the LBP algorithm, successively, we
extract LBP histograms by considering the entire image. The
K-nearest—neighbours (k = 1) classifier was used with the L1
metric to emphasize the discriminatory power of each descrip-
tor. The resulting accuracy is an average over 100 runs where
we randomly take four out of ten texture images in each class
for training and the remaining six for testing. We have not per-
formed any normalization of the features.

3.5. Experiment #1

The first experiment aims to compare the classification
accuracies of our algorithm against state-of-the-art 2D and 3D
descriptors (Figure 6).

We compare the performance of our algorithm with those of
the two-dimensional joint LBP N1/RD/CI - LBP}'; proposed by
Liu et al. (2012), the 3D rotation invariant LBPY proposed
by Paulhac et al. (2008), the volume LBP viBP{ , and
visptt , as well as the 3D LBP - TOP, ¢ proposed by Zhao
and Pietikdinen (2007a). Moreover, we present the accuracies
of different 3D kLBPP algorithms proposed by Banerjee
et al. (2013) as well as different rLBP" algorithms. We also

present the results of the 3D volumetric congruent veLBP, ;5 and
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Table 2: Classification accuracies [%] for the methods proposed by Banerjee
et al. (2013) and Fehr and Burkhardt (2008) at different spatial resolutions
and number of bins in the final histogram. For the method rLBP}, , (Fehr and
Burkhardt, 2008) we also analyse the effect of two different number of bands in
the spherical harmonics expansion, n = 6 and n = 11.

Number of histogram bins
35 70 350 700 3500 7000 35000 70000 105000

(1,42) 86.2 879 869 854 812 792 78.0 76.8 76.7
(1,92) 875 89.8 903 895 871 864 82.7 80.4 79.2

(2,42) 91.6 935 929 917 876 857 82.8 82.7 82.6
(2,92) 91.7 942 946 946 935 924 89.4 87.2 86.9
(2,252) 91.0 93.6 948 946 946 943 92.4 91.9 92.4

(3,92) 883 925 942 945 939 933 90.7 89.5 88.9
(3,252) 87.7 922 946 949 949 944 94.0 93.0 92.4

riu3D
kLBP{',

Number of histogram bins
5 10 50 100 500 1000 5000 10000 15000

(1,42) 548 595 577 568 580 593 61.8 61.6 60.5
(1,92) 582 599 638 633 699 729 77.4 76.0 74.3

(2,42) 50.8 53.1 56.6 575 628 64.7 66.5 64.4 65.0
(2,92) 525 561 579 584 684 739 81.7 83.2 83.4
(2,252) - - N

(3,92) 494 543 583 597 669 70.0 79.3 79.7 79.3
(3,252) - - - - - - - - -

n=6
rLBP( 0

n=11
rLBP( 0

(2,42) 33 84 575 743 706 672 538 464 430
(2,92) 444 482 672 717 855 832 750 706 675
(2,252) - . - - -

Table 3: Summary of the best classification accuracies [%] reported in Table 2
and for our proposition of extended 3D geodesic LBP at different spatial reso-
lutions.

Spatial resolution

Descriptor
(1,42)  (1,92) (242) (292) (2252) (3,92) (3.252)
kLBP3D 879 903 935 948 94.6 945 94.9
rLBP"=® 618 774 665 834 - 797 -
rLBP"=! - 743 855

NI/RD/CI — LBP""3¢ 94.2 95.3 92.9 93.4 93.7 89.4 88.1

veLBP) 15 algorithms developed by Liu et al. (2011). Regarding
the 2D NI/RD/CI - LBP;’};%), the three-dimensional texture images
are converted slice by slice.

Table 2 shows an extensive comparison of results at different
spatial resolutions and number of bins for the two methods
rLBP" and kLBP"3P based on the spherical harmonics (Fehr
and Burkhardt, 2008; Banerjee et al., 2013). For these two
methods, the number of bins in the resulting histograms plays
an important role, instead, classic LBP methods are defined to
provide fixed length feature vectors.

For the descriptor proposed by Banerjee et al. (2013)
(kLBP'3P), an inaccurate selection of the number of bins could
lead to a loss in the accuracy score up to 15 % whereas for
the descriptor proposed by Fehr and Burkhardt (2008) (rLBP)
up to even 40 % on this dataset. With a radius of two and
three the descriptor kLBP™P produces very high scores of 94.8
% and 94.9 % at the spatial resolution of (2,252) and (3,252)

respectively. On the other hand, with a spherical radius of one
((1,42) and (1,92)), the method «kLBP"3P appears to be slightly
less capable of capturing high significant textural details
compared to larger radii. The spherical harmonics frequency
components forming the resulting feature vector in this case
are not discriminant enough for reasons that we are unable
to explain and that goes behind the scope of this paper. In
addition, it can be noted that the increase in sampling rate, for
example from (2,42) to (2,252), slightly improves the results
as stated in (Banerjee et al., 2013) but to the detriment of the
execution speed. Table 4 shows how the execution time for
the method «LBP3P increases dramatically with the increase of
the sampling rate. The amount of time required to convert an
image with the descriptor xLBP/3D is more than 20 times the
amount required using the descriptor kLBP73?,, regardless the
radius of the LBP sphere.

Regarding the descriptor proposed by Fehr and Burkhardt
(2008) (rLBP"), the results obtained are not as impressive as the
scores produced by its counterpart kLBP™P but it still among
the most discriminant method analysed in this paper. Opposite
to the method xLBP™3P, the descriptor »LBP" appears to be less
affected by decreases in the score due to the radius but more
conditioned by the number of voxels in the spherical frame.
The increase in the sampling rate from (2,42) to (2,92) clearly
improves the results, however, it also increases the instability
of this method due to numeric approximations and operations
on large numbers. Because of this issue, the results at the
spatial resolution of (2,252) and (3,252) are not provided here.
Focusing on the comparison of the descriptors with expansion
bands » = 6 and » = 11, the latter produces a slightly better result
of 85.5 % at the spatial resolution of (2,92) in contrast with the
83.4 % accuracy of the rLBP"=¢ at the same resolution. Thus, the
increase of the number of bands produces some improvements,
but also in this case, to the detriment of the execution time.
The time required to execute the descriptor with expansion
band eleven (rLBP™='') is seven times the amount required
by the descriptor employing a number of bands equal to six
(rLBP™%). It is important to note that the wast majority of the
delay introduced by this method is due to the size of the data to
be converted from the frequency domain to time domain using
the inverse Fourier transform (IFFT).

Table 3 summarises the classification accuracies obtained in
Table 2 and in addition with the results of our proposed joint
method NiI/RD/CI - LBP™3 at different spatial resolutions. For
the descriptor proposed by Banerjee et al. (2013) (kLBP™3P) it is
interesting to note how the accuracy scores become constants
from the spatial resolution (2,42) up to (3,252). On the other
hand, our proposition NI/RD/CI — LBP"™3 produces relatively
constant results from (1,42) to (2,252) with a peak at spatial
resolution (1,92).

In addition to the extensive comparison presented so far on
the descriptor proposed by Banerjee et al. (2013), Fehr and
Burkhardt (2008), we present in Figure 6 an overall view of
the accuracy scores of all methods examined.
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Figure 6: Summary and comparison of accuracy scores obtained from different
state-of-the-art 2D and 3D hand-crafted texture descriptors examined in this pa-
per. The bars in red represent our accuracy results and the blue bars correspond
to the results from the other methods examined.

The first main fact to note in Figure 6 is the preeminence of
the three-dimensional fully rotation invariant descriptors. These
methods perform in general well on this dataset rather than two-
dimensional and partially rotation invariant descriptors. This
behaviour is not a surprise since we aim to highlight the dis-
criminatory power and the rotation invariant property of the
descriptors using a dataset of randomly rotated textures. The
only descriptors against the flow are the fully rotation invariant
volumetric congruent 3D LBP veLBP; 15 and veLBP, 5 Whose ac-
curacies are as low as 52.4 % and 57.3 % respectively. The low
sampling rate for this descriptor plays an important role on the
final classification results whereas the proportion between sam-
pling rate and radius does not. The choice of using such small
number of voxels in the spherical frame is inevitable because
of the computational costs of calculating all possible congruent
patterns in advance. To mitigate this constraint, we decided to
reduce the radius in order to adapt the proportion between ra-
dius and sampling rate. However, such a reduction of the radius
has not improved the final result for vcLBP; ;5.

The two-dimensional LBP NI/RD/CI - LBPZ’;% presents a
moderate 64.4 % of accuracy in classifying 30 different classes
outperforming the volume LBPs VLBP{ , and VLBP}? , which
they produce 49.4 % and 47.6 % accuracies respectively. These
two methods (VLBP and NI/RD/CI — LBP"?), share common
characteristics such as the same underlying LBP descriptor
(LBP54Z) and the rotation invariance capability along one
direction only despite the fact that one can be considered a 3D
LBP. These common characteristics bring the two descriptors
extracting the same information from the texture, however, the
2D LBP Ni/rRD/CI - LBP;{L]‘% produces better results due to the
joint combination of three complementary descriptors.

The last LBP that presents a moderate score is the 3D

LBP - TOPY; which combines three classic LBP in an orthog-
onal fashion. This descriptor reports 63.7 % accuracy similar
to the 2D N1/RD/CI - LBPS'S which as well is formed by a
combination of three classic 2D LBP descriptors.
Among the other three-dimensional fully rotation invariant
descriptors, the LBP based on the region growing algorithm
LBPy; demonstrates a good 79.3 % accuracy similar to the
results presented in their paper (Paulhac et al., 2008).

The 3D fully rotation invariant method proposed by Banerjee
et al. (2013) (kLBP'P) produces an impressive result similar
to our method, 94.9% at the spatial resolution (3,252) with a
much smaller histogram of 700 elements in contrast with the
17672 bins histogram produced by our joint 3D proposition
NI/RD/CI — LBP;f‘;zg . Moreover, the increase in sampling rate
for the method «LBP"3P improves the classification accuracy as
shown in Table 2 but with a significant increase in execution
time.

The second 3D fully rotation invariant descriptor analysed
here (Fehr and Burkhardt, 2008) with the number of bands
equal to six rLBPZS also demonstrates a good 83.4 % accuracy
using a histogram of 15000 bins. The attempt to improve the
discriminatory power by increasing the spherical approxima-
tion from six to eleven (rLBP'='') produces a slightly better
score of 85.5 % accuracy of correct classified textures at the
same spatial resolution but by employing a much smaller
histogram of 3500 elements. Thus, for rLBP"=® proposed by
Fehr and Burkhardt (2008), increasing the number of bands
from six to eleven slightly improves the final classification
accuracy however, also here, the execution time increases
dramatically from 56 seconds to 377 seconds on our machine
(Table 4).

Focusing on the results of our proposed methods, the
joint descriptor NI/RD/CI - LBP5¢} and the joint geodesic
NI/RD/CI — LBP:’;‘;?” produce interesting results of 91.0 % and
95.3 % accuracies respectively standing among the top state-
of-the-art hand-crafted three-dimensional texture descriptors.
The intensity-based features as well as the difference-based
features successfully increase the performance of the simple
3D LBPyy; proposed by Paulhac et al. (2008) by almost 12 %
and the geodesic structure also contributes by a good 2 % on
this dataset.

Besides the classification accuracies, we examine the execu-
tion times. Table 4 shows the time required to convert all the
voxels of an image of 64 x 64 x 64. It is noted that, the time
required to jointly combine or concatenate histograms is equiv-
alent. The heart of the algorithms proposed here are coded in C
and wrapped in Python. Each experiment is performed on a sin-
gle thread of a quad core (hyper-threading) i7-4700MQ 2.4GHz
64 bits Intel processor.

The number of points in the spherical frame is the main cause
for a long execution time for our descriptors due to the nu-
merous voxel interpolations and the region growing algorithm.



Table 4: Time required to convert an image composed of 64 X 64 X 64 voxels
into an LBP histogram using a single thread of a quad core (hyper-threading)
i7-4700MQ 2.4GHz 64 bits Intel processor.

Descriptor Execution time [s]
kLBP73D, 460

rLBP;';'Zl 377

rLBP™)! 370

veLBP, 13 160

NI/RD/CI - LBPS% 104

kLBP;’;g‘; 71

rLBP"S 56

rLBP"™S 44

x,42
NI/RD/CI - LBP% 48
NI/RD/CI - LBP5 21

LBPG 19
kLBP3D 19
NI/RD/CI- LBP" 8
VLBPZ, 6
VLBP? 1
LBP-TOP2, 1

A greater number of points involves a greater searching space
for the agglomeration process. For the descriptor proposed by
Fehr and Burkhardt (2008) (rLBP"), increasing the spherical har-
monic approximation is the major causes of a greater delay not
because of the complexity involved but because of the increased
number of samples involved in the inverse Fourier transform.
On the other hand, the bottleneck for the descriptor proposed
by Banerjee et al. (2013) (kLBP"*3P) is in the computation of the
frequency components norms which their computational cost
depends upon the sampling rate. Ultimately, our descriptor
NI/RD/CI - LBP?’;‘;;&' demonstrates one of the highest accuracy on
this specific dataset and a short execution time in comparison
with other methods.

3.6. Experiment #2

The second experiment aims to compare the performance of
our descriptors at different spatial resolutions and with differ-
ent number of regions v (Table 5). Jointly combining individ-
ual local binary patterns has been proven to be effective (Ojala
et al., 2002), however, the time required to process joint his-
tograms increases with the increase of the number of voxels in
the neighbourhood. A simple concatenation produces shorter
histograms that may be more beneficial in some applications.
For this reason, we perform analysis on individual LBP as well
as joint combinations (/) and concatenations (+).

The concatenation or the joint combination of descriptors
produces higher classification scores than individual descrip-
tors. The intensity-based descriptor NI - LBP is the most
discriminant among the individual LBPs followed by the
difference-based RD - LBP. Unexpectedly, the concatenation
NI + RD at the spatial resolution of (1,92) produces the best
scores of 95.7 % and 95.4 % with v =3 and Vv = 4 respectively.
This result is in contrast with the assumption that jointly

combining LBP histograms produces better results as reported
in Ojala et al. (2002). Adding the contrast information CI to the
NI/RD and the NI+ RD descriptors has not improved the classifi-
cation scores as for Liu et al. (2012). This discrepancy may be
attributable to the noise or to the characteristics of the dataset
employed here. Increasing the number of regions v from
three to four produces similar results with sporadic faint im-
proved results in both sides. Therefore, according to the results,
there is no evident benefit in using a larger number of regions V.

Figure 7 shows the percentage of uniform patterns for the

intensity-based descriptors NI — LBP and the difference-based
RD - LBP with v = 3 and V = 4 for each class in the dataset. Due
to its nature, the proportion of uniform pattern for the N7 — LBP
is overall greater than the RD - LBP. In both descriptors, a very
low percentage in accuracy is reported in some classes mostly
due to the type of the texture. For instance, the classes Life
and Plasma are two vibrant textures that produce multiple re-
gions on the LBP spheres and consequently more “nonuniform”
LBPs. Increasing the radius clearly decreases the percentage of
uniform patterns. A low percentage of uniform patterns could
lead to misclassifications due to the scarcity of the information
held by the histograms, however, this is not a general rule as we
can see in Table 6. The misclassification rates for the classes
Plasma and Life are in line with the other scores whereas other
classes such as Turbulence and Uwari have a high percentage
of uniform patterns but with relatively high misclassification
rates.
At the spatial resolution of (3,252) (blue curves), the average
percentage of uniform codes is considerably lower in com-
parison with the other resolutions due to the scale of the tex-
ture/motif. The size of the LBP compared to the scale of the
texture is clearly an important factor. A very dense and vibrant
texture can be better analysed using an LBP with a small ra-
dius rather than a large one. The general reduction of uniform
pattern has the impact of decreasing the overall discriminability
of the descriptor which is probably the reason of the decrease
in the classification accuracies reported in Table 5 for the de-
scriptors with radius three. Moreover, for this specific case,
increasing the number of regions v results in a slightly greater
percentage of uniform patterns but with no relevant improve-
ments in the classification scores.

3.7. Experiment #3

In the third experiment, we perform a multi-resolution
analysis. Table 7 shows the accuracies in classifying the 30
different classes by using some combinations of descriptor at
different resolutions.

In the same way as in Experiment #2, the concatenated LBP
NI +RD at (1,42)+(2,92) with v = 4 presents the best score of
95.9 %. The joint NI/RD at (1,42)+(2,92) follows with 95.5 %
and 95.6 % accuracies with v = 3 and V = 4 respectively. Over-
all, the combination of multiple descriptors at different spatial
resolutions leads to better results but by a small amount. The
descriptors at (1,42) and (2,92) demonstrate very good classi-
fication accuracies whereas the descriptors at (3,252) tends to



Table 5: Classification accuracies [%] for different individual LBP, joint and concatenated LBP with different number of regions V

riuVg V=3 V=4
{L}-LBP";

(1,42) (1,92) (242) (2,92) (2,252) (3,92) (3,252) (1,42) (1,92) (242) (2,92) (2,252) (3,92) (3,252)
NI 89.3 91.0 89.2 90.6 91.0 84.0 84.4 87.5 89.3 86.3 88.1 89.7 82.4 84.2
RD 82.6 85.3 85.2 84.5 79.0 76.9 67.4 82.7 85.2 87.9 88.8 85.0 84.0 71.8
Cl 223 22.3 20.6 20.6 20.6 20.6 20.6 223 22.3 20.6 20.6 20.6 20.6 20.6
NI/RD 94.3 95.4 92.9 93.5 93.4 87.5 86.6 94.4 95.3 93.8 93.9 94.0 89.2 89.3
NI/CI 91.0 92.5 89.4 90.5 91.5 85.9 87.4 90.0 91.7 86.4 88.3 89.8 83.3 86.1
RD/CI 84.7 86.1 87.2 85.4 82.1 78.3 68.0 85.1 86.0 88.3 89.4 85.9 84.8 75.9
NI/RD/CI 94.2 95.3 92.9 93.4 93.7 89.4 88.1 94.2 95.2 93.2 93.7 93.8 89.3 89.5
NI +RD 94.6 95.7 92.7 92.8 92.6 87.7 86.2 94.9 95.4 93.7 93.7 93.9 89.1 87.4
NI+CI 89.3 91.1 89.0 89.8 90.5 85.2 85.4 88.0 90.0 86.2 87.5 88.6 82.6 85.2
RD +ClI 82.0 83.2 85.0 83.7 79.2 76.2 64.3 82.3 83.0 86.0 86.9 84.0 82.0 722
NI +RD+CI 94.2 95.1 92.4 93.0 92.9 86.8 87.4 94.3 95.2 92.2 92.6 92.7 88.7 87.5

I NI-LBP]Y

[ NI-LBPygY

Emm NI-LBP}3

Proportion of uniform LBP codes

0.0

0 \0‘09‘(@ BN \“ ‘\ee\

<z~\°Q

9
o

Q\&((\'o&\e \§
®

S
e

(Xf) \.\(’ ,bv@( \e*e(\

N

(1LY

v“‘ Qd\e

o
(\\
9

\0‘\
<>

s‘°

NI-LBP]'
NI-LBP,?

4,
NI-LBP}3

RD—LBP}9

RD-LBP;Y

T3,
RD-LBP;5

RD-LBP['}}

RD-LBP;

RD-LBPyY

Figure 7: Proportion of uniform LBP codes per class for different descriptors at different spatial resolution and number of region V

Table 6: Misclassification rates [%] per class for different individual LBPs at different spatial resolutions with V = 3 (cells greater than 30 % are highlighted)
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NI-LBP% 67 00 302 268 200 00 68 267 00 02 10 00 133 00 35 00 180 303 108 283 0.0 283 33 02 163 402 43 00 00 00]105
RD - LBP(nlujg) 31.0 438 328 245 88 190 230 0.0 72 48 225 00 147 00 23 30.7 3.0 455 193 05 00 192 13 358 525 47.8 17.8 0.0 17.8 03|175
NI - LBP:;uszg) 247 27 40 203 18 00 00 208 00 127 83 0.0 34.0 00 00 0.0 0.0 235 167 203 0.0 300 02 22 108 385 08 00 0.0 05| 9.1
RD - LBP:;“SZK) 552 308 1.8 36.2 207 38 26 150 75 373 1.7 00 00 00 55 192 50.5 403 268 0.0 00 33.0 57 75 237 272 0.2 0.0 127 0.0|155
NI - LBPE;“23§2) 345 142 128 322 08 02 32 285 0.0 19.8 248 0.0 255 0.0 0.0 0.0 0.0 462 505 1.2 0.0 480 48 82 44.7 583 0.7 0.0 35 00|154
RD-LBPIS, 920 573 37.7 228 307 475 192 172 62 610 410 105 350 00 40 690 590 647 460 50 0.0 37.5 345 243 378 533 125 02 505 27|326
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Table 7: Multiresolution accuracies [%] for different combinations of joint LBPs with different number of regions V

Descriptors Number of bins V=3 V=4
NI/RD - LBP" > o) 10772 (44%44)+(94*94) 955% 95.6%
NI/RD - LBP"% -, 66452 (44*44)+(254%254) 95.0%  95.4%
NI/RD - LBP:Z;/Zg)H&QSZ) 73352 (94%94)+(254%254) 92.1% 93.5%
NI/RD = LBP('\S 5 o2 3050, 75288 (44%44)+(94%94)+(254%254) 95.2%  95.1%
NI/RD/CI = LBP',3 o) 21544 (44¥44%2)+(94%94%2) 94.8% 94.7%
NI/RD/CI = LBP{'} 555, 132904 (44*44%2)+(254*254%2) 94.7%  94.7%
NI/RD/CI = LBP}y'yS 515 146704 (94%94%2)+(254*254+2) 92.9%  93.4%
riuV,
NI/RD/CI = LBP["}S . o . 3252 150576 (44+44%2)+(94+94%2)+(254*254%2)  94.8%  94.4%
NI+RD—LBP" ) 276 (44+44)+(94-+94) 953% 95.9%
NI +RD - LBP"% s, 596 (44+44)+(254+254) 94.8%  95.0%
NI +RD - LBP(’Z‘gvngMSZ) 696  (94+94)+(254+254) 91.8% 93.0%
NI+RD—LBP"% 0 55 784 (44+44)+(94+94)+(254+254) 95.0%  95.0%
NI +RD +CI - LBP}",% 280 (44+44+2)+(94+94+2) 94.2% 94.7%
NI+RD+CI—-LBP}"% .., 600  (44+44+2)+(254+254+2) 94.2%  94.7%
NI +RD +CI - LBPS s 700 (94+94+2)+(254+254+2) 91.8%  93.4%
NI +RD +CI - LBP"}$ 790 (44+44+2)+(94+94+2)+(254+254+2)  93.8%  94.4%

(1,42)+(2,92)+(3,252)

decrease the overall performance of the strongest LBPs in this
dataset. The major drawback of the multiresolution approach
is the size of the resulting histograms. Joint combinations of
histograms cause higher numerical costs, however, as we have
seen before, the simple concatenation produces satisfying re-
sults that may be more beneficial when fast calculations are re-
quired. Also here, increasing the number of regions v from
three to four have not produced evident improvements.

3.8. Experiment #4

In the fourth experiment we exploit the characteristics of our
3D local binary patterns to solve a real-world problem.

In medical environments, advanced magnetic resonance

imaging (MRI) techniques can be used to improve understand-
ing of brain injuries. Susceptibility-weighted imaging (SWI) is
an MRI technique highly sensitive to magnetic susceptibility
differences between tissues and oxygenated/deoxygenated
blood. Such imaging method is suitable for texture analysis
methods, however, one main issue of SWI is the level of
oxygen which has the effect of intensifying how veins and
tissues appear.
In this experiment we aim to distinguish the oxygenated images
(patients who are given oxygen during the MRI acquisition)
from the non-oxygenated ones using our extended 3D descrip-
tors.

Our clinical dataset collected as a part of a clinical study
(NRES Committee London - City & East; 13/L0O/1948), is
a set of three-dimensional SW images of newborns affected
by the hypoxic-ischemic encephalopathy (HIE). This dataset
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Figure 8: Susceptibility-weighted example images from our clinical dataset
(NRES Committee London - City & East; 13/LO/1948): a) patient not affected
by HIE (under oxygen during MRI acquisition), b) patient affected by the HIE
(under oxygen), c) patient affected by the HIE (not under oxygen)

is composed of 17 patients where 7 are affected by HIE, and
10 for which there was no clinical evidence for HIE. The
oxygenated samples are 10 out of 17 where the presence of
HIE is evenly distributed in both classes. We assume that the
textures in our medical data to be approximately isotropic. The
size of the images for this dataset are within 256Hx176Wx48D
and 256Hx256Wx64D voxels. Figure 8 shows some example
images from our set of three-dimensional scans.

We convert all the images in the dataset using different
extended 3D LBP and we extract a histogram of LBP codes for
each patient. These histograms are then introduced in a simple
learning machine (classifier) to emphasize the discriminatory
power of our descriptors. One can argue that a simple com-
parison of histograms derived from the grey-scale voxels are
enough to distinguish the two categories. In fact, this method
has a near zero discriminatory power because it discards the



Table 8: Classification accuracies [%] discriminating between oxygenated (pa-
tient that were under oxygen during MRI acquisition) and non-oxygenated
samples from our clinical dataset (NRES Committee London - City & East;
13/L0O/1948).

Spatial resolution

{L}y-LBP"™®

(142) (2,92) (3252
NI 899 659 495
RD 825 81.1 875
NI/RD/CI 882 615 606
NI+RD+CI 82 666 653

interaction between voxels and it is highly sensitive to uneven
intensity variations.

A K-nearest—neighbours classifier (L1 metric) is employed
here with kx = 3 in order to reduce a possible overfitting due to
the small number of samples in our dataset. The descriptors
employed here are the NI - LBP at different resolutions, the RD -
LBP, the joint NI/RD/CI - LBP and the concatenated NI +RD +CI -
LBP.

The classification accuracies presented in Table 8 demon-
strate that a difference in the texture between oxygenated and
non-oxygenated MR images exist, especially by employing our
NI — LBP"™3¢ at the spatial resolution of (1,42). This descriptor
can extract salient information from the interaction of the pix-
els/voxels in a more accurate way than what human perception
can do.

4. Conclusion

This paper proposes a new set of three-dimensional fully ro-
tation invariant texture descriptors exploiting existing features
developed for two-dimensional LBP (Liu et al., 2012) and a
three-dimensional rotation invariant LBP (Paulhac et al., 2008).
Among the descriptors proposed here, the N7 - LBP,'* demon-
strate an excellent discriminatory power on a dataset of syn-
thetic textures followed by the RD - LBP,’&,VK . In the experiments
we confirm the utility of adding a third dimension to local bi-
nary patterns as demonstrated by Paulhac et al. (2008). We
show also that a combination of local binary patterns in vari-
ous scales leads in most cases to better results. Furthermore,
in our experiments we demonstrate that joint combinations of
histograms and simple concatenations lead to nearly similar re-
sults, however, in the second case, the shorter histograms are
more efficient in applications where fast computations are re-
quired.
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