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Abstract 
In this paper, we propose a robust local descriptor for face 

recognition. It consists of two components, one based on a 

shearlet-decomposition and the other on local binary pattern 

(LBP). Shearlets can completely analyze the singular 

structures of piecewise smooth images, which is useful since 

singularities and irregular structures carry useful 

information in an underlying image. Furthermore, LBP is 

effective for describing the edges extracted by shearlets even 

when the images contain high level of noise. Experimental 

results using the Face Recognition Grand Challenge 

(FRGC) dataset show that the proposed local descriptor 

significantly outperforms many widely used features (e.g., 

Gabor and deep learning based features) when the images 

are corrupted by random noise, demonstrating the strong 

noise robustness of our approach. In addition, experimental 

results show promising results for two challenging datasets 

which have poor image quality, i.e., a remote face dataset 

and the Point and Shoot Face Recognition Challenge (PaSC) 

dataset. 

 
Index Terms—robust local feature, remote face recognition 

1. Introduction 

Feature descriptor is a key factor in the performance of 
many computer vision and pattern recognition applications. 
A plethora of feature descriptors has been developed to 
improve the performance for these applications. There are 
several studies that evaluate the performance of these 
methods, such as [41, 42]. These methods can be divided into 
two classes: one is learning-based deep features in 
supervised, weakly supervised or unsupervised way, 
attempting to model high-level abstractions in data by using 
architectures composed of multiple non-linear 
transformations [24]. The other one is traditional local 
features, nowadays often called hand-crafted features 
inspired by neuroscience studies, e.g., Weber local descriptor 
(WLD) [8], Gabor [12], scale-invariant feature transform 
(SIFT) [38], and local binary pattern (LBP) [43].  

For learning-based deep features, a typical approach is 
deep learning (DL), introduced by Hinton [24]. It performs 

very well for hand-written digit recognition [25], face 
recognition [47, 48], human pose estimation [50] and object 
recognition [30]. The main criticism of deep learning comes 
from the observation that it requires tons of annotated 
training data. Despite the power of deep learning methods, 
they still lack much of the functionality needed for realizing 
this goal entirely [40]. 

For the class of hand-crafted local features, typical 
examples are LBP [43], Gabor [12], and SIFT [38]. These 
local features achieved very good performance for texture 
classification, face recognition and object recognition. 
Specifically, Ojala et al. proposed a simple but very powerful 
local descriptor, i.e., local binary pattern (LBP). It is one of 
the best performing texture descriptors and has been widely 
used in various applications, such as textures classification 
and face recognition [43]. Chen et al. developed a robust 
local binary pattern [9]. Zhang et al. proposed to use Gabor and 
LBP for face recognition [56]. Lowe introduced SIFT, which 
performs well for matching and recognition tasks [38].  

However, one issue of feature descriptors (learning-based 
deep features and hand-crafted local features) is that they are 
not robust to the noise present in images. Vincent proposed 
the denoising Autoencoders (dA) to improve deep learning-
based methods [51], which showed good results when the 
input data to the autoencoders was contaminated with noise. 
In this paper, we propose a local descriptor robust to noise. 
It is a hand-crafted local feature, which achieves good 
performance when the scale of the training set is not 
sufficient for deep learning (see Section 3 for details.). The 
proposed local descriptor consists of two components. One 
is based on the shearlet decomposition and the other on local 
binary patterns (LBP). Shearlets can detect the edges in 
images even when they have high level of noise. 
Furthermore, LBP is effective in describing the edges 
extracted by shearlets. The proposed descriptor is called LSF 
since it combines LBP and shearlet and the shearlet 
transformation is performed in the Fourier domain. 
Experimental results on the Face Recognition Grand 
Challenge (FRGC) dataset show that the proposed local 
descriptor significantly outperforms many widely used 
features (e.g., Gabor and deep learning based features) when 
noise is present in the images. In addition, experimental 
results show promising results for two challenging datasets 
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which have poor image quality, i.e., a remote face dataset [5] 
and the Point and Shoot Face Recognition Challenge (PaSC) 
dataset [2]. 

1.1 Related works 

In this section, we introduce some related works and 
discuss the difference between these works and the proposed 
method.  

Lim developed the discrete shearlet transform (DST) 
which provides efficient multiscale directional 
representation and showed how to implement the shearlet 
transform by multiresolution analysis (MRA). He assessed 
the performance of DST in image denoising and 
approximation applications [35]. Dong et al., [14] and He et 
al., [23] used shearlets for texture classification. Different 
from them, we use shearlets and LBP for face recognition. In 
addition, we tested different thresholds and different filters 
for the shearlet transformation (see Table 2). We found that 
only the real part of the shearlet transformation in the Fourier 
domain is good for face recognition. We also tested the 
robustness of shearlets and LBP over high level of noise and 
compared to state-of-the-art methods, such as the deep 
learning-based method [24]. Furthermore, we tested the 
proposed method for two challenging datasets, i.e., a remote 
face dataset [5] and PaSC [2], and obtained promising 
results. 

Face recognition, as one of the most typical applications 
of image analysis and understanding, has attracted 
significant attention in many areas such as entertainment, 
information security, law enforcement, and surveillance [26, 
32, 58]. There are quite a lot of methods presented recently, 
e.g., [1, 3, 4, 7, 11, 13, 27, 45, 54, 56]. Specifically, Danti 
and Zeng used shearlets for face recognition and achieved 
promising results for some face datasets, i.e., ORL and 
FERET [11, 54]. In contrast, we use shearlet transform for 
face recognition in a different setting, that is, a remote face 
dataset [5] and PaSC [2]. Zhang et al. [56] used Gabor plus 
LBP for face recognition. Zhang et al. [33] used the phase 
patterns for face recognition. Vu and Caplier [52] enhanced 
patterns of oriented edges magnitude for face recognition and 
image matching. Tan and Triggs [49] proposed local texture 
feature sets for face recognition under difficult lighting 
conditions.  

In this paper, we employ shearlets and LBP for dealing 
with heavy noise in face recognition because the shearlets 
form robust features and can detect edges elegantly even in 
the presence of high level of noise. Technically, we divide 
each face into blocks and use an individual classifier for each 
block and then combine the similarity scores from all the 
blocks for better performance. 

2. Method 

In this section, we first introduce the shearlet 
transformation and LBP. We then discuss methods for 

combining them to represent face images. 

2.1 Shearlet transform 

The continuous wavelet transform provides a 
decomposition of a signal over dilated and translated 
versions of a fixed waveform ψ. Specifically, for a fixed ψ∈
L2(R2), this is defined as the mapping Wψ with domain L2(R2) 
such that for g ∈L2(R2) 
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the complex conjugate. If the function ψ satisfies the 

admissibility or Calderὸn condition 
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a.e. ω∈  R2 (where Ψ  denotes the Fourier transform of ψ), 
then ψ is referred to as a wavelet, and any g ∈  L2(R2) can be 
recovered via the reproducing formula: 
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Despite the success of wavelets in signal and image 
processing applications, it is known mathematically that 
traditional wavelets are not very effective in dealing with 
multidimensional signals containing discontinuities such as 
edges. This is due to the fact that this transform is isotropic 
(the analyzing elements ψa,t are obtained by applying the 
same dilation factor for all coordinate directions) and, as a 
result, it has a very limited ability to resolve edges and other 
distributed discontinuities which usually occur in 
multidimensional data. 

In this section, we briefly describe a multi-scale and multi-
directional representation called the shearlet transform [16]. 
The shearlet transform combines the power of multi-scale 
methods with the ability to capture the geometry of 
multidimensional signals and is essentially optimal in 
representing images containing edges. 

The shearlet construction can be considered as a natural 
extension of wavelets into two-dimensions [16]. Its 
representative elements are defined by the two-dimensional 
affine system 
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is a product of a shearing and anisotropic dilation matrix for 

(a, s) ∈ R+ × R. The generating function ψ%  is such that 
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where 1Ψ%  is a continuous wavelet for which 1 ( )C R
∞Ψ ∈%  

with supp
1Ψ% ⊂  [−2, 1/2] ∪ [1/2, 2], and 

2Ψ% is chosen so 

that 2 ( )C R
∞Ψ ∈% , supp 2Ψ% ⊂ [−1, 1], with 2Ψ% > 0 on (-1, 

1), and 2 2
1Ψ =% . Under these assumptions, a function f ∈ 

L2(R2) can be represented as 
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for a ∈  R+, s ∈  R, and t ∈  R2. The operator SH defined by  

( ); , , , astSH f a s t f ψ= %  (6) 

is referred to as the continuous shearlet transform of f ∈  

L2(R). It is dependent on the scale variable a, the shear s, and 
the location t. Frequency support of the shearlets for different 
values of a and s is shown in Fig. 1. In addition, the shearlets 
are defined on the Cartesian domain and the various 
directions are obtained from the action of shearing 
transformations. 

 
Fig. 1. Frequency support of the shearlets for different values 
of a and s. 

 
Fig. 2. A few atoms from a shearlet dictionary. Each block 

represents the result of the shearlet transform for a particular scale 
and orientation after applying it to a centered impulse response. 
 

The collection of discrete shearlets is given by [16, 35] 
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Note that the discrete shearlet transform is complex. Please 
refer to [16, 35] for details. 

The matrices Aj (i.e., anisotropic scaling matrices) and Bl 
(i.e., shear matrices) lead to windows that can be elongated 
along arbitrary directions and the geometric structures of 
singularities in images (Fig. 1). In fact, one can approximate 
2-D piecewise smooth functions with singularities with 
nearly optimal approximation rate using shearlets. In 

addition, shearlets can completely analyze the singular 
structures of piecewise smooth images. These properties of 
shearlets are useful in image processing especially since 
singularities and irregular structures carry essential 
information in an underlying image. For example, 
discontinuities in the intensity of an image indicate the 
presence of edges [35]. For more details about the discrete 
shearlets and how to implement the shearlet transformation 
in frequency domain, please refer to [16]. 

Shearlets form a Parseval frame (tight frame with bounds 
equal to 1) for L2(R2) given the appropriate choice of the 

generating function ψ%  [16]. An M-channel filter bank 

implementation can be done by using the techniques given in 
[17]. As a consequence, its implementation has a complexity 
of O(N2 log2(N)) for an N × N image. Fig. 2 shows some basis 
elements from a shearlet dictionary. 

2.2 Local binary pattern 

The basic form of LBP is illustrated in Fig. 3 (a) and (b) 
[43]. The operator takes as input a local neighborhood 
around each pixel and thresholds the neighborhood pixels at 
the value of the central pixel. The resulting binary-valued 
string is then weighted as follows: 

1

0

( ) 2 ( )
P

i

c i c

i

LBP I s I I
−

=
= − , (8) 

where the parameter P means the number of the neighbors 
(e.g., P =8 in Fig. 3), and Ic is the central pixel. Ic and Ii are 
the gray-level values at c and i, and s(A) is 1 if A ≥ 0 and 0 
otherwise.  

   

              (a)                                   (b) 

Fig. 3. LBP. (a) A pixel and its eight neighbors; (b) the basic LBP 

2.3 Combining shearlets and LBP 

We use the shearlet coefficients and LBP to represent 
faces. For a given image, we perform the shearlet transform 
and then compute the LBP features of images resulting from 
the shearlet transform. Specifically, as shown in Fig. 4, given 
an image or a patch, we have two steps. For the first step, we 
perform the shearlet transform. In this step, we perform the 
fast Fourier transform (FFT) first and then carry out the 
shearlet transformation as discussed in Section 2.1. We keep 
the real part of the resulting images after taking the shearlet 
transformation. We then employ a filter derived from 1-D 
using maximally flat mapping function with two vanishing 
moments for denoising, better frequency selectivity and 
regularity [10]. The second step is to compute the LBP 
feature as discussed in Section 2.2. 

For the filter in our framework, we use the nonsubsampled 
contourlet transform (NSCT) developed by [10]. NSCT is 
based on a nonsubsampled pyramid structure and 
nonsubsampled directional filter banks. The resulting 
decomposition by NSCT is a flexible multiscale, 
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Input image/patch FFT
Shearlet 

transformation
Filter LBP Output

Shearlet

 
Fig. 4. Flowchart of combining shearlet and LBP for faces 

 

(a1) (c1) (e1) 

(b1) (d1) (f1) 
 

 

(a2) (c2) (e2) 

(b2) (d2) (f2) 
 

(a3) (c3) (e3) 

(b3) (d3) (f3) 

Fig. 5 Multi-resolution transformation for one image from FRGC. (a1) is noise free; (a2) and (a3) are with high level of noise; (b1), (c1) (d1), 
(e1) and (f1) are the real parts after the shearlet transformation for (a1); (b2), (c2) (d2), (e2) and (f2) are the real parts after the shearlet 
transformation for (a2); (b3), (c3) (d3), (e3) and (f3) are the imaginary parts after the shearlet transformation for (a3). Note that (a2) and (a3) are 
the same image. 
 
 
 

multidirection, and shift invariant image decomposition [10]. 
The core of NSCT is the nonseparable two-channel 
nonsubsampled filter bank. NSCT is designed to be with 
better frequency selectivity and regularity. There are two 
kind of filters used in our method, i.e., ‘pyr’ and ‘pyrexc’. 
Meanwhile, ‘pyr’ means that we use a nonsubsampled 
pyramid structure to compute the shearlet transform. 'pyrexc' 
means that we use nonsubsampled pyramid structure but 
exchanging the two highpass filters. The highpass at higher 
scales is filtered by the portion of the directional highpass 
filter that has “bad” response. Please see [10] for more details 
about these two kind of filters.   

2.4 Representation for faces 

In Fig. 5, we show the resulting images of applying the 

multi-resolution shearlet transform for an input image in its 
original form (row a1) and under high level of additive 
Gaussian noise (a2, a3), respectively. The resulting images 
in Fig. 5 (b1-f1 and b2-f2) are the real part of the transform, 
and the transformation is constructed in the Fourier domain. 
In addition, Fig. 5, (b1-f1) correspond to the different scales, 
i.e., a in Eq (6). The six images in Fig. 5 (c1) correspond to 
the different directions, i.e., s in Eq (6). The same is for the 
other images in Figs. 5 and 6. For more details about how to 
set up the number of shear orientations, please refer to [36, 
22]. 

Shearlet transform and LBP are complementary, and 
combining them will improve the performance of the 
classifier. Firstly, from Figs. 5 and 6, we can find that the 
multi-resolution shearlet transformation provides good 
frequency localization and directional selectivity  
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(a1) (c1) (e1) 

(b1) (d1) (f1) 
 

 

(a2) (c2) (e2) 

(b2) (d2) (f2) 
 

(a3) (c3) (e3) 

(b3) (d3) (f3) 

Fig. 6 Multi-resolution transformation for face images from remote face dataset by the shearlet transform to provide good frequency localization 
and directional selectivity. All these multi-resolution transformation of face images are the real parts after the shearlet transformation.  

(i.e., edges). Accordingly, LBP is good at describing edges 
extracted by the shearlet transform. Secondly, LBP is not so 
robust to noise [43]. However, the shearlet transformation 
detects the edges very well although the image is 
contaminated by high level of Gaussian noise. For example, 
for the image with Gaussian noise as shown in Fig. 5 (a2, b2, 
c2 and d2), we can find that shearlet is able to completely 
analyze the singular structures of piecewise smooth images 
(i.e., edges). For more discussions on the robustness of 
shearlet to noise, please refer to [19, 35]. Note that images in 
Fig.5 (b1-f1, b2-f2) are the real parts of the shearlet 
transform since we find that the imaginary part is not useful 
for classification. Specifically, Fig. 5 (b3)-(f3) shows the 
imaginary parts of shearlet transformation in different levels 
for an image with high level of noise (i.e., Fig. 5, a3). From 
these images, we find that these imaginary parts contain few 
discriminative features for face recognition. Later in Section 
3, experimental results also confirm it. 

We use the shearlet plus LBP to represent faces in low 
quality images/videos. Given a face image, I, we compute its 

real part of the shearlet transform 
, ,j l k

ψ%  as shown in Eq. (7), 

and some resulting example images are shown in Fig 6. After 
that we use LBP to compute the texture features of the 

resulting faces from the shearlet transformation
, ,j l k

ψ% , and 

then concatenate them into one long histogram, i.e., the 
multi-resolution transformation as shown in Fig. 5 (b1-f1 and 
b2-f2) and Fig 6. 

In addition, as shown in Fig. 6, we find that this 

transformation also completely captures the singular 
structures of face images with poor image quality. From Fig. 
5 (f1), we can find that the residual has very little 
information. In our case we do not use this part of shearlet 
transformation for face recognition. 

When we use the shearlet plus LBP for face recognition, 
we divide each face into patches as done in [1, 56]. One 
example is shown in Fig. 7. Unlike [1, 56], we build one 

classifier for each patch. Specifically, for each patch 
ip , 

where i=1, 2….20, we compute its shearlet transformation 

, ,j l k
ψ%  as in Eq. (7) and then LBP feature as in Eq. (8), i.e., 

fLBP(
, ,j l k

ψ% ). The window to compute LBP is 3×3 neighbors 

as in Fig. 3 and we then build the histogram for each patch. 

Thus we have 256 bins for each 
, ,j l k

ψ% . We then use the PCA 

to reduce the dimensionality of the feature fLBP(
, ,j l k

ψ% ). We 

keep 98% energy following [4] and the typical PCA reduced 
dimensions are around 150. After that, we get Φ=fPCA(fLBP(

, ,j l k
ψ% )). For the resulting features Φ, we use Linear 

Discriminant Analysis (LDA) [18] to perform face 
recognition. Note that we did not concatenate the LBP 
features of each patch into one long histogram and both PCA 
and LDA are applied to per patch histogram here. 

During recognition, given two face images S1 and S2, we 

first divide them into patches, 
,j i

p  where j=1, 2 and i=1, 

2….20. We compute the similarities between two 
corresponding patches in these two faces, φi and i=1, 2….20. 
The final similarity between these two face images is 
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ϕ∆ =  .  

 
Fig. 7 Face patches 

3. Experiments 

In this section, we present the experimental results for face 
recognition using the proposed features discussed in Section 
2.  

     
(a) 

Original

log(1/SNR) 

0.020 0.030 0.050 0.067 0.100 0.200 

white Gaussian 
noise 

DWT 

Gaussian 

Wiener 

Median 

(b) 

Fig. 8 (a) Example images from the FRGC dataset. (b) The first row 
is faces with white Gaussian noise; the following rows are filtered 
by DWT, Gaussian, Wiener and Median filters, respectively. 

3.1 Dataset 

We use three datasets for face recognition, i.e., FRGC 
version 2.0 and add noise to the face images, a recently 
published remote face dataset [5] and PaSC dataset [2]. 
FRGC 2.0 is designed to promote face recognition in general 
with emphasis on 3D and high resolution still imaginary. 
Meanwhile, there are six experimental protocols in FRGC 
and Experiments 1, 2 and 4 are designed for still images. 
There are 222 subjects showing 12,776 still images in the 
training set. In our case, we adopt experiment 1 for 

evaluations. Experiment 1 measures performance on 16,028 
frontal facial images. These images are taken under 
controlled illumination and both target and query set have the 
same number of samples (i.e., 16,028). The performance is 
reported as Verification Rates (VR) at 0.1% False 
Acceptance Rate (FAR). Here, we only consider the still 
images; some example faces in FRGC data set are presented 
in Fig.8 (a). As shown in Fig. 8 (b), we add white Gaussian 
noise to face images in FRGC data set. Here, the level of the 
noise is log(1/SNR), i.e., the logarithm of the inverse of the 
signal-to-noise ratio (SNR). The SNR is computed as: SNR 
=f(I)/f(N), where f(I) and f(N) are the power of the input 

image I and the noise image N: 
1

2

0

1
( )

n

i

i

f I I
n

−

=

=  , 

1
2

0

1
( )

n

i

i

f N N
n

−

=
=  , where n is the dimensionality of the input 

image and noise image.  
 

  
Blur Illum 

  
illum_blur low_reso 

  
pose_frontal pose_non_frontal 

Fig. 9.  Some example faces from the remote face dataset [5]. 
 

For the remote face recognition problem, we use the 
dataset from [5]. Some face examples are shown in Fig. 9. 
All the images were taken in an unconstrained outdoor 
environment, at a distance varying from 10m to 250m. The 
face images are manually labeled with five points for each 
face, including the left pupil, right pupil, nose tip, left mouth 
corner and right mouth corner. The face images are cropped 
based on the fiducial points and kept in their original 
resolution. The resulting database for still color face images 
contains 17 subjects and 2,102 cropped face images in total. 
The number of faces per subject falls between 29 to 306. The 
captured images can be of very low resolution, with a typical 
resolution of 20 by 30 pixels. Moreover, low resolution 
images are often coupled with blurring effects. Also, large 
out-of-plane pose variations are observed. Since the distance 
between the camera and subjects is large, high magnification 
blur can be seen. Furthermore, due to the motion between 
camera and subjects, some of the images also suffer from 
motion blur. Finally, in some of the images, we see the 
presence of both blur and poor illumination condition. 

This dataset consists of 6 subsets. The first one is blur, 
which shows the variations of blur and has 75 face images. 
The second one is Illum, which shows the variations of 
illuminations and has 561 face images. The third one is 
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Illum_blur, which shows both variations of illuminations and 
blur and has 128 face images. The fourth one is low_reso, 
which shows the variations of low resolutions and has 90 
face images. The fifth one is pose_frontal, which shows the 
faces close to frontal pose and has 1,166 face images. The 
last one is pose_non_frontal, which shows the variations of 
poses and has 846 face images.  

For the PaSC dataset, it includes 9,376 still images of 293 
people balanced with respect to distance to the camera, 
alternative sensors, frontal versus not-frontal views, and 
varying location. There are also 2,802 videos for 265 people: 
a subset of the 293 people. Some examples for the videos and 
still images are shown in Fig. 10. 

 
  

  
(a) (b) 

Fig. 10. Some example faces from the PaSC. (a) Examples taken 
during four sessions. Locations were changed between sessions, 
and sensor, distance to camera and pose were changed within 
sessions. (b) Cropped face images extracted from still images, 
showing lighting, motion blur and poor focus variations. 

2LL 2HL

2HH2LH 1HL

1HH1LH  
(a)                                                 (b) 

Fig. 11. (a) Original Image, (b) Multi-resolution transformation by 
DWT for one image 

All these face images are cropped using the landmarks of 
two eyes, and are normalized to 64×80. Each face is divided 
into patches as in Fig. 7. Each patch is of 16×16. We perform 
the shearlet transform for each patch 

, ,j l k
ψ%  as shown in 

Section 2.1. We have three levels, i.e., j=0, 1, 2. The first 0-
level is the low frequency part. The 1- and 2-levels of 
shearlet transformation capture the different texture 
structures in different frequency parts. 

In addition, SCface is a very challenging database with 
daytime and nighttime protocols [21]. Collected faces in 
infrared spectrum is a good way for illumination invariant 
face recognition. We also exploited how to use near infrared 
for illumination invariant face recognition [7]. 

For face images in the FRGC dataset, they are manually 
landmarked by us and then cropped. All the methods in 
Section 3.2 which are tested over this dataset are re-
implemented by us, and we use the same setups for these 
methods for fair comparison. For the remote face dataset and 
PaSC, these two datasets provide face landmarks. All the 
methods in sub-Sections 3.3 and 3.4 which are tested over 
these two datasets use the exactly same setups. 

3.2 Experimental Results for FRGC 

As shown in Table 1, we test several combinations between 
the shearlet and LBP. Here, LBP is the method we described 
in Section 2.2. DWT is the Discrete Wavelet Transform, and 
the wavelet used in experiments is the shearlet as mentioned 
in Section 2.1. In other words, shearlet transformation is 
equal to performing DWT for an input image plus image 
reconstruction plus NSCT filtering [35]. One example of 
performing DWT for one image is shown in Fig. 11. In our 
case, we perform two levels of transformation and create 
seven subimages, i.e., HH, LH, HL, and LL subbands for 
levels 1 and 2.  

LBP+DWT means LBP feature computed over the multi-
resolution decomposition resulting from DWT (e.g., the 
seven subbands in Fig. 11(b)). LBP+DWT_coef_T means 
that we perform the multi-resolution decomposition for each 
image using DWT (see Fig. 11) and then denoise the multi-
resolution decomposition by the threshold T. After that we 
compute the LBP feature for the wavelet-denoised images. 
Here we have two kind of thresholds (T), i.e., soft 
thresholding and hard thresholding [15]. In brief, to suppress 
the noise, the hard thresholding applies the following 
nonlinear transform to the empirical wavelet coefficients: 
F(x) =x·I(|x|>t), where t is a certain threshold; I(x) is the input 
signal and F(x) is output. The choice of the threshold is a 
very delicate and important statistical problem. For soft 
thresholding the following nonlinear transform is used: S(x) 
=sign(x)· ( |x|-t)I(|x|>t), where t is a threshold.  

We compute the shearlet plus LBP feature for faces as 
shown in Section 2.4. Experimental results are shown in 
Tables 2, 3, 4 and 5.  

In Table 2, we test the performance of the methods using 
shearlet to remove the noise in the images. We perform this 
group of experiments since shearlet can be used to denoise 
the images very well [35, 17]. Here, LSF means 
LBP+shearlet+FFT and we compute the feature as shown in 
Section 2.3 and using Fourier based shearlet transform to 
improve the efficiency, where FFT is the fast Fourier 
transform. ‘pyr’ means that we use a  
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Table 1  LBP+DWT feature computation 
 LBP Feature computation Threshold band of DWT 

LBP+DWT over DWT reconstructed images soft  

LBP+DWT+coef_hard over DWT coefficients hard level_2*(LL+ HH+ LH)+level_1*(HL+HH+HL+LH) 

LBP+DWT+coef_soft over DWT coefficients soft level_2*(LL+ HH+ LH)+level_1*(HL+HH+HL+LH) 

Table 2  Performance comparison (%) of the components of shearlet plus LBP over FRGC by adding white Gaussian noise  
( LSF = LBP+shearlet+FFT and real = real part of shearlet) 

Methods 
log(1/SNR) 

0 0.020 0.022 0.025 0.028 0.033 0.040 0.050 0.067 0.100 0.200 

LBP 95.53 93.64 91.54 91.86 91.46 90.37 89.67 86.42 78.64 56.48 25.68 

LBP+DWT 96.34 96.15 96.23 96.37 96.78 95.43 94.82 91.76 86.42 76.18 58.94 

LBP+DWT+coef_hard 97.86 97.98 97.43 97.57 97.66 98.21 97.32 97.16 94.21 85.49 71.48 

LBP+DWT+coef_soft 97.86 97.84 97.65 97.42 97.81 98.24 97.93 97.87 94.69 85.76 72.45 

LSF +'pyr'-real 98.13 98.16 98.27 98.31 98.34 97.56 97.38 97.24 97.16 92.18 86.18 

 
Table 3  Performance comparison (%) using different filters and real/imaginary part for shearlet  

over FRGC by adding white Gaussian noise 

methods 
log(1/SNR) 

0 0.020 0.022 0.025 0.028 0.033 0.040 0.050 0.067 0.100 0.200 

LBP 95.53 93.64 91.54 91.86 91.46 90.37 89.67 86.42 78.64 56.48 25.68 

LSF +'pyr'-real 98.13 98.16 98.27 98.31 98.34 97.56 97.38 97.24 97.16 92.18 86.18 

LSF + 'pyrexc '-real 98.32 98.25 98.31 98.45 98.47 97.93 97.65 97.04 97.13 92.08 85.43 

LSF+'pyr'-real+imag 98.27 98.05 98.13 98.24 98.17 97.21 97.06 96.87 96.76 91.56 83.74 

LSF+'pyr '-imag 78.64 78.42 77.96 76.58 76.42 76.85 75.86 74.86 72.68 68.45 55.37 

 
non-subsampled pyramid structure [10] to compute the 
shearlet transform. ‘real’ means that we only use the real part 
of shearlet transform. 

From Table 2, we can find that LBP+DWT_coef_T works 
much better than LBP+DWT and LBP, especially for high 
level of noise. However, the different thresholding methods 
(i.e., soft and hard) change the performance marginally. One 
explanation is that shearlets detect the edges well even with 
high level of noise, and LBP describes these edges in faces 
well. Further, LSF+'pyr'-real outperforms significantly 
compared to LBP+DWT_coef_T, i.e., 86.18% vs 71.48% and 
72.45% for the high level of noise. It shows that LSF +'pyr'-
real works well for high level of noise and the ‘pyr’ (i.e., 
nonsubsampled pyramid structure) is good for the face 
recognition when the faces are with noise.  

In Table 3, we test LSF with different filter, i.e., 'pyr' and 
+ 'pyrexc'. Here ‘pyr’ means that we use a non-subsampled 
pyramid structure as mentioned before. 'pyrexc' means that 
we use nonsubsampled pyramid structure but exchanging the 
two highpass filters [10]. ‘real’ means we only use the real 
part and ‘imag’ means we only use the imaginary part. 
LSF+'pyr'-real+imag means we use both the real and 
imaginary parts. 

From Table 3, we can find that LSF+'pyr'-real works the 
best. The performances between LSF +'pyr'-real and LSF + 
'pyrexc '-real are close. It means that by exchanging the two 

highpass filters for the pyramid structure the performance 
can be improved marginally. However, if we use the 
imaginary part of shearlet transform, the performance 
changes significantly. Even when we combine both real and 
imaginary parts, the performance is not as good as that of 
only using the real part. One explanation is that the imaginary 
part cannot detect the edges well in images and is also easily 
affected by the noise in the images. In the following, we will 
use LSF to represent LSF +'pyr'-real for short. 

In Table 4, we compare our method with others for FRGC, 
e.g., LBP plus several filters for noisy faces, e.g., Wiener, 
Gaussian, and Median. Specifically, we use Matlab function 
for these filters. For the median filter, the neighborhood size 
takes the default value (3×3). For the Wiener filter, it 
automatically estimates the additive noise power before 
doing the filtering and the neighborhood size takes the 
default value (3×3). For Gaussian filter, it filters an 
image with a 2-D Gaussian smoothing kernel with standard 
deviation of 0.5. For the DWT denoising, we use the method 
NSCT proposed in [10]. 
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Table 4  Performance comparison (%) using different filters to filter out the noise over FRGC by adding white Gaussian noise 

methods 
log(1/SNR) 

0 0.020 0.022 0.025 0.028 0.033 0.040 0.050 0.067 0.100 0.200 

LBP 95.53 93.64 91.54 91.86 91.46 90.37 89.67 86.42 78.64 56.48 25.68 

LBP+Gabor 97.46 97.35 96.89 96.87 94.56 93.16 91.67 86.54 83.16 78.35 64.25 

LBP+wiener 92.46 92.17 91.97 91.93 92.06 92.04 91.82 89.16 85.07 73.82 53.57 

LBP+Gaussian 87.65 87.34 88.76 87.95 88.63 87.26 81.39 80.34 81.02 75.62 60.42 

LBP+Median 93.54 92.84 91.27 91.89 92.68 92.34 91.38 89.46 83.63 72.96 50.31 

LSF 98.13 98.16 98.27 98.31 98.34 97.56 97.38 97.24 97.16 92.18 86.18 

Table 5  Performance comparison with exiting methods over FRGC by adding white Gaussian noise 

methods 
log(1/SNR) 

0 0.020 0.022 0.025 0.028 0.033 0.040 0.050 0.067 0.100 0.200 

LBP 95.53 93.64 91.54 91.86 91.46 90.37 89.67 86.42 78.64 56.48 25.68 

LBP+Gabor 97.46 97.35 96.89 96.87 94.56 93.16 91.67 86.54 83.16 78.35 64.25 

CLBP 96.17 95.89 95.69 94.58 93.82 92.17 91.58 88.76 78.93 58.94 30.58 

DLBP 98.46 50.67 52.48 49.87 48.64 40.29 39.87 38.16 35.24 30.68 17.59 

LTP 98.13 98.11 97.89 97.78 95.64 93.15 91.59 84.28 82.49 65.26 48.28 

LQP 92.75 92.46 91.97 91.83 90.46 88.67 87.95 87.38 85.48 76.49 54.89 

DFD 98.03 98.23 98.15 97.15 97.14 96.89 95.67 92.48 72.39 58.64 26.53 

shearlet 90.26 90.35 90.63 90.36 89.56 89.37 88.56 88.47 88.67 84.61 75.39 

DL 97.32 96.95 94.68 93.29 93.57 92.64 92.46 91.56 72.36 47.26 26.18 

dA 97.43 97.09 97.12 96.34 95.67 94.38 92.65 87.17 82.63 76.52 68.35 

LSF 98.13 98.16 98.27 98.31 98.34 97.56 97.38 97.24 97.16 92.18 86.18 
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Fig. 12. Performance comparison with existing methods  

over FRGC face dataset. 

From Table 4, we can find that LSF works the best, especially 
with the high level of noise, 86.18% compared to 
LBP+Gabor (64.25%), and LBP (25.68%). In addition, LBP 
plus different filters, i.e., Wiener, Gaussian and Median are 
not as good as LSF. One explanation is that these filters blur 
the edges in the image, while these edges help face 
recognition. However, shearlets perform well in detecting 

edges with the high level of noise as show in Fig. 5. 
In addition, we also compare with other existing 

descriptors in Table 5, such as LBP+Gabor [56], Completed 

Local Binary Pattern (CLBP) [20], Dominant Local Binary 

Patterns (DLBP) [34], Local Ternary Patterns (LTP) [49], 
Local Phase Quantization (LQP) [44], Discriminant Face 

Descriptor (DFD) [31], DL [24], and denoising autoencoders 
(dA) [51]. For DL, we use Caffe. The other methods are 
implemented by us. 

From Table 5, one can find that LSF works comparable to 
state-of-the-art methods for low level of noise (e.g., 
log(1/SNR) = 0.020) and outperforms them significantly for 
the high level of noise (e.g., log(1/SNR) = 0.200). 
LBP+Gabor, CLBP, DLBP, LTP and DFD work quite well 
for low level of noise but their performances drop with the 
increase in the level of noise, especially for high level of 
noise since the faces are blurred seriously (see Fig. 8). DL 
also works well for low level of noise but the performance  
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Table 6 Rank-1 analysis on the remote face dataset [5] using five face images of each subject as gallery 

Condition Descritpors Acc (%) Condition Descritpors Acc (%) Condition Descritpors Acc (%) 

Blur 

LBP 45.9 

Illum 

LBP 78.4 

Illum_blur 

LBP 73.2 
LPQ 58.1 LPQ 79.5 LPQ 75.6 
BSIF 62.2 BSIF 79.3 BSIF 74.8 
Gabor 65.3 Gabor 85.5 Gabor 75.0 
DFD 63.5 DFD 83.4 DFD 75.2 
DL 48.6 DL 80.4 DL 71.8 

shearlet 62.5 shearlet 81.6 shearlet 74.3 
LSF 67.3 LSF 92.5 LSF 76.0 

Low_reso 
 

LBP 12.4 

Pose_frontal 

LBP 67.9 

Pose_non_frontal 

LBP 49.9 
LPQ 13.5 LPQ 70.6 LPQ 47.5 
BSIF 11.2 BSIF 70.1 BSIF 49.2 
Gabor 15.9 Gabor 76.8 Gabor 50.2 
DFD 14.5 DFD 78.6 DFD 52.5 
DL 11.5 DL 80.3 DL 49.8 

shearlet 13.8 shearlet 77.8 shearlet 51.7 
LSF 19.9 LSF 83.8 LSF 57.2 
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(a) Control videos (b) Handheld videos 

Fig. 13. ROC curves for the control and handheld video evaluations. 
 

also drops with the increase of the level of noise. dA 
improves the performance since we use the noisy images as 
input and the noise free images as output to fine tune the 
neural network. However, the performance is not as good as 
LSF for high level of noise. One reason that DL and dA work 
not so well as the other descriptors for high level of noise 
might be that the training set is not large enough to train a 
well-performed network (i.e., 16,028 images for training and 
16,028 images for testing). 

DLBP works the best for noise free images but its 
performance drops quickly when white Gaussian noise is 
added. A possible reason is that noise may change the pattern 
type of a dominant pattern present in the noise-free case. 
Therefore, the noise may possibly reshape the dominant 
pattern histogram in some cases by assigning some of the 
dominant pattern's occurrence to other types of patterns. 

In addition, the performance comparison of LSF and 
existing methods for FRGC without noise is shown in Fig. 
12. Here, LBP, CLBP, LQP, DFD, LBP+Gabor [56], and 
LSF use the same setups for classification but using different 
features. The results of Ding [13], Huwang [28], Liu [37], 
and Su [46] are quoted directly from the original papers. 
From this figure, one can find that LSF gets the best results 

over this dataset. In addition, LBP, CLBP, DFD, Su, DL and 
LBP+Gabor also achieve very good results. We also use 
CLBP to replace LBP to combine with shearlet and find that 
the performance difference between CLBP+shearlet and 
LBP+shearlet is not significant. Thus, we use LBP+shearlet 
in the following experiments. 

3.3 Remote face recognition 

The performance comparison of LSF and several existing 
methods is shown in Table 6. Here, LBP, LPQ [44], BSIF 
[29], Gabor [56], and DFD [31] and LSF use the same setups 
for classification but using different features. In addition, the 
remote face dataset [5] does not provide a training set. We 
thus use the training set of FRGC 2.0 Experiment 1, i.e., 
16,028 frontal facial images and they are quite different from 
the images in the remote face dataset [5]. In other words, we 
train our classifier over the dataset in FRGC 2.0 Experiment 
1 and test over the remote face dataset.  

From Table 6, one can find that LSF gets the best results 
over this dataset, especially for the subset Illum. One reason 
is the illumination does not change the texture/edge in faces. 
In addition, for subsets, Blur, Illum_blur, Pose_frontal and 
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Pose_non_frontal, LSF achieves promising results. LBP, 
CLBP, DFD, Su, DL and LBP+Gabor also achieve very good 
results. For the subset Low_reso, all the features do not work 
very well since the face images are blurred seriously and the 
faces are of small size, e.g., with a typical resolution of 20 by 
30 pixels. Detecting textures/edges from these faces is very 
difficult. Here, DL does not work well. One explanation is 
that the test set is different from the face images for training. 
However, DL achieve comparable performance to other 
methods for the subset Pose_frontal since this subset has 
similar distribution as the training set in FRGC 2.0 
Experiment 1. 

3.4 PaSC 

For PaSC dataset, we firstly crop the facial region from the 
given video frame based on the eye coordinates provided by 
the organizers [2]. The cropped facial region is aligned and 
scaled to a size of 64×80 pixels and transformed to gray-
scale. The gray-scale images are then used as input for the 
feature extraction procedure as discussed on Section 2. 
During feature extraction, LSF feature sets are generated for 
each still image and each processed frame of a given video 
sequence.  

To ensure that our framework produces fixed size 
templates regardless of the number of frames in the video, 
we use the same procedure as that in [45]. Before extracting 
features, we partition the frames of a given video into two 
groups depending on the extent of the head rotation (yaw) of 
the person shown in the video. Here, the first group contains 
frames with yaw angles below 15º, and the second group 
contains frames with yaw angles greater than 15º. Frames 
with negative yaw angles are mirrored prior to feature 
extraction to ensure that two frame-groups are sufficient to 
cover all rotation-dependent variability of the faces.  

In Fig. 13, we compare our methods with state-of-the-
art methods. Here, CAS was proposed by [27], which is based 
on Hybrid Euclidean-and-Riemannian Metric Learning 
combined with deeply learned features (abbr. to HERML-
DeLF). It is for image set classification with image features 
learned by a deep neural network. Uni-Lj was proposed by 
[45], which used the MODEST framework to represent facial 
images (or frames) with various texture descriptors and using 
the computed descriptors as input to a probabilistic modeling 
technique capable of deriving low-dimensional 
representations from the extracted texture representations. 
SIT was developed by [33], which use the Hierarchical - 
Probabilistic Elastic Part (PEP) model to approach the video 
face recognition problem. The Hierarchical-PEP model 
builds pose-invariant face representation by applying the 
PEP model hierarchically to decompose a face image into 
face parts at different levels of detail and thus to build pose-
invariant part-based face representations. Surrey was 
developed by [4], which tackles the PaSC video-to-video 
matching by combining a dynamic video frame selection 
method with a multiscale local phase quantization (MLPQ) 
based frame-to-frame matching algorithm and a simple 
voting strategy. LRPCA is the baseline, which uses principal 
component analysis for local region (LRPCA) [3]. Video 

person recognition evaluation for all these methods are 
presented in [3].  

From Fig. 13, we can find that our methods achieve 
promising results and CAS performs the best. Here, CAS is a 
deep learning based method, which is heavily trained. 
Firstly, it is pre-trained using “Celebrities on the Web” 
(CFW) database [57] and then fine-tuned using other two 
datasets. The first is the training portion of the PaSC [2]. The 
second is the Institute of Computing Technology, CAS-
OMRON Social Solutions Co. Ltd-Xinjiang University 
(COX) face database collected by the members of the CAS 
group [27]. 

3.5 Discussion 

In this section, we will discuss the time complexity of LSF 
and the reasons that LSF works for remote face recognition. 

As shown in Table 7, we perform a quantitative comparison 
of timing information for LSF with LBP and Gabor for an image 
128×160. We test over 1,000 face images and calculate the 
average time. All of them are implemented in C++ and tested on 
an i5-2400 CPU@ 8.0G memory. Both Gabor and LSF are 
speeded up using FFT. From this table, we can find that both 
LSF and LBP are very efficient compared to Gabor. 

Table 7 Comparison of the Average Time Consumption 
with LBP and Gabor 

Methods Times (s) 

LBP 0.0075 
Gabor 1.2 
LSF 0.0306 

 

For the remote face dataset, the usual variations which 
degrade the performance of face recognition are low 
resolution, blur and poor illumination condition. Some 
examples showing low resolution, serious illumination 
variations and blur variations and their multi-resolution 
transformation by the shearlet transform are shown in Fig. 6. 
We can see that the shearlet transform provides good 
frequency localization and directional selectivity, especially 
the low frequency part and the second level of shearlet 
transformation. In addition, the shadow in the face shown in 
Fig. 6 (a2) blurs the edges of this face. The local 
textures/edges and the global features are well extracted. 
Likewise, the face in Fig. 6 (a3) is blurred seriously and the 
local and global features are computed successfully. On the 
other hand, the small face in Fig. 6 (a1) has a clear 
appearance, so its low frequency part and the second level of 
shearlet transformation show good discriminative power. 
From Table 6, we can see the subset Pose_frontal gets very 
good performance (i.e., 83.8%) although several faces are of 
low resolution. It is the same for the subset Illum (i.e., 
92.5%). However, for the blurred faces, as shown in Fig. 6 
(a3), its third level of shearlet transformation contains small 
amount of discriminative information for face recognition. 
Thus, the performance of the subset blur reduces to 67.3%. 
However, the discriminative information in low frequency 
part and the second level of shearlet transformation still 
make the performance of LSF much better than existing 
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methods. 
LSF descriptor and Gabor get comparable performance 

for high quality faces (98.13% vs.97.46%, Table 5, without 
noise for FRGC), but LSF works better than Gabor for faces 
of poor quality (86.18% vs. 64.25%, Table 5, with high level 
of noise for FRGC, and also for remote face dataset and 
PaSC). One explanation is that the Gabor transform can 
extract local texture features (i.e., edges and their 
orientations) for faces very well when the faces are in high 
quality. As the image quality degrades, local textures in the 
faces become weak. Specifically, local edges reduce and 
their orientations also change. Thus, the performance of 
Gabor degrades. However, the shearlet is designed to extract 
the singular structures of piecewise smooth images although 
the image quality degrades, as shown in Fig. 5 and 6. Thus, 
LSF works better than Gabor for the faces in poor quality 
images. 

4. Conclusion 

In this paper, we proposed a robust descriptor LSF, which 
combines the shearlet coefficients and LBP. We performed 
the shearlet transform in the Fourier domain and tested its 
real and imaginary parts. We also tested different filters for 
the shearlet transform. We then used LBP to encode the 
textures (i.e., edges) in faces detected by the shearlet 
transform. The resulting LSF is robust to the noise in images 
and achieves very good results for face recognition. 
Specifically, the experimental results over FRGC and the 
noisy faces show promising results. For example, LSF 
achieves an accuracy of 98.13% for the dataset without noise 
and 86.18% with high levels of noise, while LBP gets the 
accuracy of 95.53% for the dataset without noise and 25.68% 
with high levels of noise. LSF also outperforms deep 
learning based method (97.32% without noise and 26.18% 
with high levels of noise) for this dataset even that we use 
the denoising autoencoders version of deep learning (97.43% 
without noise and 68.35% with high levels of noise). In 
addition, we also test LSF over two challenging datasets, 
remote face dataset [5] and PaSC. LSF also outperforms the 
state-of-the-art methods. 
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