
Computer Vision in Automated Parking Systems: Design, Implementation and Challenges

Markus Heimbergera, Jonathan Horganb, Ciaran Hughesb, John McDonaldb, Senthil Yogamanib,∗

aAutomated Parking Product Segment, Valeo Schalter Und Sensoren, Bietigheim, Germany
bAutomated Parking Product Segment, Valeo Vision Systems, Tuam, Ireland

Abstract

Automated driving is an active area of research in both industry and academia. Automated Parking, which is automated driving
in a restricted scenario of parking with low speed manoeuvring, is a key enabling product for fully autonomous driving systems.
It is also an important milestone from the perspective of a higher end system built from the previous generation driver assistance
systems comprising of collision warning, pedestrian detection, etc. In this paper, we discuss the design and implementation of
an automated parking system from the perspective of computer vision algorithms. Designing a low-cost system with functional
safety is challenging and leads to a large gap between the prototype and the end product, in order to handle all the corner cases.
We demonstrate how camera systems are crucial for addressing a range of automated parking use cases and also, to add robustness
to systems based on active distance measuring sensors, such as ultrasonics and radar. The key vision modules which realize the
parking use cases are 3D reconstruction, parking slot marking recognition, freespace and vehicle/pedestrian detection. We detail
the important parking use cases and demonstrate how to combine the vision modules to form a robust parking system. To the best
of the authors’ knowledge, this is the first detailed discussion of a systemic view of a commercial automated parking system.

Keywords: Automated Parking, Automotive Vision, Autonomous Driving, ADAS, Machine Learning, Computer Vision,
Embedded Vision, Safety critical systems

1. Introduction

Cameras have become ubiquitous in cars, with a rear-view
camera being the minimum and full surround view camera sys-
tems at the top-end. Automotive camera usage began with sin-
gle viewing camera systems for the driver. However, both the
number of cameras and the number of ADAS applications made
possible with automotive cameras have increased rapidly in the
last five years, mainly due to the fact that the processing power
has increased during this time period to enable the high levels of
real-time processing for computer vision functions. Some ex-
amples include applications such as back-over protection, lane
departure warning, front-collision warning, or stereo cameras
for more complete depth estimation of the environment ahead
of the vehicle. The next level of advanced systems require
driving automation in certain scenarios like highway or park-
ing situations. There are many levels of autonomous 1 driving
as defined by Society of Automotive Engineers [1]. Fully au-
tonomous driving (Level 5) is an ambitious goal. The current
systems are, at best, Level 3 and the commercial deployment is
mainly for highway driving. In this paper, we focus on Level 2
or Level 3 type automated parking systems.

∗Authors are listed in alphabetical order. Corresponding author’s contact is
Email address: senthil.yogamani@valeo.com (Senthil

Yogamani)
1The words autonomous and automated are used interchangeably by re-

searchers in both industry and academia. In this paper, we use the term au-
tomated instead of autonomous implying that the system is not completely in-
dependent and there is a driver trigger.

 

CMS

CMS

SV

ACC
PD

FCW

CTA

CTA

BSD
LD

LD
BSD

TSR 
LD

RCW

PA

BOP
PD

CTA

CTA

 

ACC –  Active Cruise Control
BOP –  Back Over Protection
BSD –  Blind Spot Detection
CMS –  Camera Monitoring System
CTA –  Cross Traffic Alert
FCW –  Front Collision Warning
LD –  Lane Detection
PA –  Parking Assist
PD –  Pedestrian Detection
RCW –  Rear Collision Warning
SV –  Surround View
TSR –  Traffic Sign Recognition

Figure 1: Camera based ADAS applications and their respective field of view

Certainly there are risks involved as no algorithm is perfect,
and the sensors utilized can have limitations in certain scenar-
ios. Automated parking is a good commercial starting point
to deploy automated driving in a more restricted environment.
Firstly, it involves low speed manoeuvring with a low risk of
high impact accidents. Secondly, it is a more controlled envi-
ronment with fewer scene variations and corner cases. Stable
deployment of automated parking in the real world and analy-
sis of performance statistics is an important step towards going
to higher levels of autonomy.

The first generation parking systems were semi-automated
using ultrasonics or radar. Cameras are recently augmenting
them to provide a more robust and versatile solution. In this
paper, we consider cameras as an important component of a
parking system, extending the capabilities of or providing inex-
pensive alternatives to other sensors. Figure 1 shows the var-
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ious field of views of common ADAS applications [2], some
of which is needed for parking systems. Typically, surround
view camera systems consist of four sensors forming a network
with small overlap regions, sufficient to cover the near field area
around the car. Figure 2 shows the four views of a typical cam-
era network such as this. It is important to note that the cameras
are designed and positioned on the vehicle to maximise perfor-
mance in near field sensing (which is important for automated
parking). As part of this near field sensing design, they use
wide-angle lenses to cover a large field of view (easily exceed-
ing 180◦horizontally). Thus, algorithm design must contend
with fisheye distortion, which is not an insignificant challenge
as most of the academic literature in computer vision is focused
on rectilinear cameras or, at most, cameras with only slight ra-
dial distortion.

Designing a Parking system has a multitude of challenges.
There are high accuracy requirements because of functional
safety aspects, risk of accident and consumer comfort (for ex-
ample, the car cannot park such that a driver cannot open their
door). The infrastructure is relatively unknown with possibility
of dynamic interacting objects like vehicles, pedestrians, ani-
mals, etc. Varying environmental conditions could play a mas-
sive role as well. For instance, low light conditions and adverse
weather like rain, fog can inhibit the accuracy and detection
range significantly. There is also the commercial aspect that
can bound the computational power available on a low power
embedded system. On the other hand, the parking scenario is
much more restricted in terms of the set of possibilities com-
pared to full autonomous driving. Vehicle speeds are low, giv-
ing enough processing time for decisions. The camera motion is
restricted with well-defined region of interest. There is possible
assistance from infrastructure to ease this problem, especially
to find and navigate to a empty parking slot [3]. While in this
work, we don’t discuss any infrastructure support, the authors
feel that this will be an important part of the automated parking
solution.

The term automated parking can refer to a smart infrastruc-
ture which manage the placement of cars in a mechanical park-
ing lot, typically multi-tiered or a smart electronic system em-
bedded in a car. A simple literature search shows that majority
of the results correspond to this meaning and not the meaning
we use. [4] and [5] are the closest to a full vision based auto-
mated parking system. These papers focus only on the com-
puter vision algorithm. In contrast, in this paper, we aim to
provide a more complete review of the use of computer vision
in parking, in terms of detailing the use cases and expanding
upon basic computer vision modules needed.

1.1. Structure of this paper
Figure 3 gives a high level overview of the decision flow

when designing automated parking systems (and indeed, with
adaptation, most ADAS functions), with some of the design de-
cisions that need to be considered at each stage. The biggest
limiting factor in design is the hardware choice, as automo-
tive systems have harder constraints (such as cost, safety fac-
tors, standards adherence, thermal concerns and many others)
than commercial electronic systems. For these reasons, we treat

Figure 2: Sample images from the surround view camera network demonstrat-
ing near field sensing and wide field of view

hardware first in Section 2, where we consider practical system
considerations of ECU, cameras and processing components.
Given the defined hardware limitations, the next step is to un-
derstand the use cases; i.e., what is the goal of the system, in
terms of the end user functionality? Thus, Section 3 details the
various important parking use cases and how each scenario can
be handled by a vision system. Finally, with hardware limi-
tations known and end user goals defined, the designer must
select the appropriate algorithms to implement to achieve the
system requirements. Section 4 discusses the various build-
ing block vision algorithms needed to realize a high level au-
tomated parking system. In Section 5, we return to system level
topics, discussing how it all fits together, the various challenges
with the limitations and take a glimpse into the next generation
of vision functions for parking.

2. Hardware components

In this section, we provide an overview of the system compo-
nents which make up an parking system. We highlight the role
of safety aspects and computational limitations due to commer-
cial aspects.

2.1. ECU System and Interfacing electronics

At high level, there are two type of camera system. Stan-
dalone camera with a small embedded system tightly integrated
in the camera housing. This is sufficient for smaller applica-
tions like a Rear View camera. But for more complex applica-
tions, the camera is typically connected to a powerful external
SOC via additional interfacing electronics. As illustrated in the
Figure 2, for a typical surround view system with 4 camera in-
puts, the spatially separated cameras have to be connected to
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Figure 3: Decision flow for design of camera parking system

a central ECU. The data bandwidth requirements for video is
high compared to other systems, which brings in a lot of chal-
lenges and limitations in SOC. The raw digital output from a
sensor is typically 10/12-bit but the video input port of the SOC
might support just 8-bit. This mandates an external ISP to com-
press the depth to 8-bit. Other simple factors like resolution and
frame-rate could double the system requirements. The connec-
tivity between SOC and camera is typically wired via twisted
pair or coaxial cable.

Figure 5 illustrates the two alternate methodologies used.
Use of serializer and deserializer (together known as SerDes)
and signaling via co-axial cable is more common because of
its high bandwidth of 1 Gbps/lane. Coaxial cable interfaces
employ Fakra connectors as it is commonly used by European
OEMs. Ethernet interface and twisted pair cable is a cheaper
alternative but it has has a relatively limited bandwidth of 100
Mbps. To compensate for it, Motion JPEG is performed before
transmission which causes a limitation of having the complete
ISP separately and a conversion chip for MJPEG. The other
alternative can leverage the SOC ISP. Ethernet cameras also re-
quire more complex electronic circuitry on both ends. Gigabit
Ethernet could be used to achieve higher bandwidth but it is
more expensive and defeats the purpose of lower cost.

Most of the modern SOC interfaces are digital and serial.
MIPI (Mobile Industry Processor Interface) standardized the
serial interfaces for camera input CSI (Camera serial interface)
and DSI (Display serial interface). These interfaces are imple-

mented as LVDS (Low-Voltage Differential Signalling) connec-
tors underneath. CSI2 is the current generation with a band-
width of 1 Gbps/lane. OLDI (Open LVDS Display Interface)
is the open LVDS interface which works on bare-metal LVDS.
Some SOCs provide parallel interfaces in addition to the serial
interfaces. Although parallel interfaces provide a larger band-
width, they require larger wiring and more complex circuitry
which is not scalable.

Vehicle interfaces, such as CAN (Controller Area Network)
or FlexRay, carry the signals from the car to the SOC. With
respect to ADAS systems, odometry related signals like wheel
speed, yaw rate, etc. are useful for algorithms requiring some
knowledge of odometry. It could also provide signals like am-
bient light levels, fog/rain sensor, etc. which could be helpful
to adapt the algorithm according to external conditions. The
common communication protocols used are CAN and Flexray
as they are low payload data. For, high payload signals, some-
times Ethernet protocol is used. Flexray is an improved version
of CAN (faster and more robust) and hence more expensive as
well. CAN FD (flexible data-rate) is an improved second gen-
eration of CAN. Many of the automotive SOCs have direct in-
terface to CAN, while some additionally support FlexRay.

As mentioned before, memory is a critical factor in vision
systems. There are several types of memory involved, the main
memory is usually DDR (Double Data Rate) which typically
starts at 256MB and could go to several GBs. The image and
the intermediate processing data resides here. The high end
current generation systems use DDR3 and will eventually move
towards DDR4. There is also Flash/EEPROM memory for stor-
ing persistent data, like bootup code, configuration parameters
and sometimes statistics of the algorithm outputs. On the SOC,
there is on-chip memory (L3) in the order of few MBs which is
shared across the different cores on the chip, which can be used
as a high speed buffer to stream from DDR. There is also cache
or internal memory inside the processors (L1 and L2) which
has access rates close to the clock frequency of the processor.
DMAs (Direct Memory Access) are common in vision systems
for ping-pong buffering of data from DDR to L2/L3 memories.
It is important to appreciate the hierarchies of memory, which
have opposite gradation in size and speed. They are arbitrated
via a memory interface MEMIF in the SOC. Memory often be-
comes a serious bottleneck in such systems, a fact that is often
not understood or overlooked. A detailed bandwidth analysis
of the algorithms is necessary to decide the speed of memories
and the bandwidth of MEMIF.

Debugging is typically done via JTAG and an IDE and this
is usually not supported in the native ECU and a breakout
board is necessary during development stage. For Ethernet sys-
tems, there is direct exposure of ECU memory via file systems.
Sometimes debugging is also done through logging via UART.
The other peripherals like SPI (for serial comm), I2C (master-
slave electronics sync), GPIO (general purpose pins),etc are
standard as in other electronic systems.

2.2. Camera
The camera package typically consists of the imaging sensor,

optical system and an optional ISP HW.
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Figure 4: ECU and camera housing

Optics: The optical system consists of lens, aperture and
shutter. These components are captured in the camera matrix
via focal length (f), aperture diameter (d), field of view (FOV)
and Optical transfer function (OTF).

Role of MTF: Modulation Transfer Function (MTF) corre-
sponds to the number of pixels that are exposed for capture by
the camera. Many cameras have the option to select a subset
of the available active pixels via setting appropriate registers on
the image sensor. A higher number of active pixels can directly
mean an improvement for computer vision algorithms in terms
of range and accuracy of detection. However, it is important to
remember that the resolution of the captured image is limited
by both the number of available pixels and the optical resolu-
tion of the lens (as determined by the overall lens quality of the
attached camera lens which is limited by diffraction of the ele-
ments in the lens). Additionally, the spatial resolution of a cam-
era is impacted by increasing physical pixel size of the sensor
[6]. The overall resolution of the camera and lens combination
can be measured using by MTF [7].

Fisheye lenses: Fisheye lenses are commonly used in auto-
motive to obtain a larger FOV. This produces non-linear dis-
tortion in the images which is typically corrected for viewing
functions. For the processing part, due to the noise incurred
by un-distortion of low resolution areas (towards the periph-
ery) to higher resolution in linear image, sometimes it is more
suitable to run the algorithm directly on the fisheye image. Typ-
ical, forward ADAS functions, such as front collision warning,
lane departure warning, and head light detection, will use lenses
with narrow fields of view (such as 40◦to 60◦). However, short
range viewing, such as top-view and rear-view, and detection
application, such as back over protection and pedestrian detec-
tion, require cameras that provide a much wider field of view
(Figure 2). The use of wide-angle lenses, however, introduces
complications in lens design which leads to the mathematics
that describe the camera projections being significantly more
complex. Basically, a straight line in the world is no longer im-
aged as a straight line by the camera – geometric distortion is
introduced to the image. A detailed overview of the applica-
tion wide-angle lenses in the automotive environment is given
in [8].

Sensor: Omnivision and Aptina are the commonly used sen-
sor vendors, though other manufacturers are available. Visual
quality of cameras has been improving significantly. The main
factors that influence the systems design from the camera se-

lection are resolution (1 MP to 2 MP, and higher), frame rate
(30 to 60 fps) and bit depth (8 to 12 bit). There is clear benefit
in improving these, but they come with significant overheads of
memory bandwidth.

Dynamic Range: Dynamic range of an image sensor de-
scribes the ratio between the lower and upper limits of the lu-
minance range that the sensor can capture. Parts of the scene
that are captured by the image sensor below the lower limit will
be clipped to black or will be below the noise floor of the sen-
sor, and conversely, those parts above the higher limit will be
saturated to white by the image sensor. There is no specific
threshold for dynamic range at which a sensor become High
Dynamic Range (HDR), rather the term is usually applied to an
image sensor type that employs a specific mechanism to achieve
a higher dynamic range than conventional sensors. Note that
the upper and lower luminance limits for an image sensor is not
fixed. Indeed, many sensors can dynamically adapt the limits
by altering the exposure time (also called shutter speed) of the
pixels based on the content of the scene – a bright scene will
typically have a short exposure time, and a dark scene will have
a long exposure time. As a basic ratio, the dynamic range of a
sensor is typically given in dB. Dynamic range is important in
automotive vision, as due to the unconstrained nature of auto-
motive scenes, often there will be a scenario with high dynamic
range. Obvious examples of high dynamic range scenes are
when the host vehicle is entering or exiting a tunnel, or during
dusk and dawn when the sun is low in the sky.

Sensitivity: The sensitivity of a pixel measures the response
of the pixel to illuminance over a unit period of time. Many
things can impact the sensitivity of a pixel, such as silicon pu-
rity, pixel architecture design, microlens design, etc. However,
one of the biggest factors is simply the physical size of the pixel.
A pixel with a higher area will have the ability to gather more
photons, and thus will have a greater response to lower illumi-
nance. However, increasing sensitivity by increasing pixel size
will have the impact of reducing the spatial resolution [6].

Signal to Noise Ratio: Signal to noise ratio is probably the
most intuitive property for an engineer coming from a signal
processing background. It is the ratio of the strength (or level)
of the signal compared to sources of noise in the imager. The
primary issue is that the methods that image sensor manufac-
turers use to measure noise is non-standard, so drawing com-
parisons between different image sensor types based on SNR is
difficult. Additionally, the SNR advertised will be based on a
fixed scene, whereas the actual SNR of the image received will
be scene dependent, and influenced by the pixel exposure time
and gain factors applied to the signal, among other factors. For
example, a dark scene in which the camera has longer exposure
time and higher gain factors applied to the output will result in
an image with a low SNR. Temperature typically plays a major
role in the level of noise in an image and thermal management
of a camera device plays a critical role in reducing the amount
of noise present in an output image. This can be aided by de-
signing a camera system that keeps the image sensor isolated as
much as possible from sources of heat. The level of noise in an
image has a deteriorating effect on the performance of vision
algorithms.
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Figure 5: Block diagram of a Vision System

Frame Rate: The maximum frame rate of a sensor has a di-
rect influence on the time response of an algorithm. For al-
gorithms designed to work at higher vehicle velocities, higher
frame rate is important as the necessary response times of the
system will be lower. However, there are system considerations
that need to be taken into account. For example, a higher frame
rate means that you will have a shorter time period in which
to apply any algorithms to the image for your application. But
this will require a more powerful and expensive image process-
ing hardware. Additionally, an increased frame rate will result
in a lower maximum exposure time for the image sensor pix-
els (33.3ms at 30 fps versus 16.6ms at 60fps), which will have
a direct impact on the performance of the image sensor in low
light scenarios.

ISP: Converting the raw signal from sensor to viewable for-
mat includes various steps like debayering, denoising and High
Dynamic Range processing. These steps are collectively re-
ferred to as Image Signal Processing (ISP). Most of the ISP is
typically done in HW either in the sensor itself, as a companion
chip ISP or in the main SOC (System on Chip). ISP is, fun-
damentally, the steps that are required to convert the captured
image to its usable format by the application. For example,
most colour image sensors employ the Bayer colour filter, in
which alternate pixels in the imager have a red, green or blue
filter to capture the corresponding light colour. To get a us-
able/viewable image (e.g. full RGB or YUV), debayering is
necessary. Other typical ISP steps include, for example, de-
noising, edge enhancement, gamma control and white balanc-
ing. Additionally, HDR image sensors will need a method to
combine two or more images of different exposure time to a
single, HDR image. Most ISP is typically done in HW, ei-
ther in the sensor chip itself as an SOC (such as the OV10635
or MT9V128), within a companion chip ISP (such as the Om-
niVision OV490 or the Aptina AP0101AT), or in SOC with the
main processing unit (such as the Nvidia Tegra). Of course,
additional or custom image post-processing can be done in a
generic/reconfigurable processor, such as GPU, DSP or FPGA.
The level of required ISP is completely application dependent.
For example, many typical ADAS applications require only
grey scale images, in which case a sensor without the Bayer
filter array could be employed, which would subsequently not
require the debayering ISP step. Additionally, several of the
ISP steps are designed to provide visual brilliance to the end
user for viewing applications. This may be unnecessary or even
counter-productive for ADAS applications. For example, edge

enhancement is employed to give sharper, more defined edges
when the image is viewed, but can have the result that edge
detection and feature extraction in ADAS applications is less
accurate.

2.3. SOC
The following discussion is based on our experience work-

ing with various SOCs (System on Chip) targeted for ADAS
high-end market. This is by no means an exhaustive compari-
son; we have left out big SOC players like Intel and Qualcomm
who are not popular in ADAS and the generations could be dif-
ferent. We have summarized the different types of processing
units which are relevant for vision algorithms below.

GPP (General Purpose Processor) is typically the master
control processor of an SOC. Some flavour of ARM Cortex Ap-
plication processors is commonly used as the GPP. The flavours
vary from A9, A15 to A53 and A57. The former two are the
popular GPP in the current generation devices and the latter two
are 64-bit roadmap processors. NEON is a SIMD engine which
can accelerate image processing. Because of the ubiquitous na-
ture of multimedia, importance of NEON has grown and it is
becoming more tightly integrated. The only major exception
of an SOC not using ARM is Mobileye EyeQ which uses MIPS
cores instead. Toshiba’s TMPV7600 uses their proprietary MeP
low power RISC cores but they use A9 in some of the TMPV75
processors.

GPU (Graphics Processing Unit) was traditionally designed
for graphics acceleration. It can be used for view render-
ing/remapping and for drawing output overlays using OpenGL.
Some of the GPUs can perform only 2D graphics via OpenVG.
They are slowly being re-targeted to be used as additional re-
source for vision algorithms through OpenCL. Nvidia is lead-
ing this way providing a General Purpose GPU processor for
vision. With respect to Vision algorithms, CUDA (Compute
Unified Device Architecture) of Nvidia is significantly more
powerful than other GPUs provided by ARM (Mali), PowerVR
(SGX) and Vivante. The performance power of Nvidia GPUs
are growing at a significantly faster rate compared to other pro-
cessors to suit the growth in the field of automotive vision appli-
cations. CUDA uses SIMT (single instruction multiple threads)
with threading done in hardware. It has a limitation of dealing
with load/store intensive operations which is improved by high
data-bandwidth provided to it.

SIMD engines are quite popular in the application areas
of image processing. This is because the input data is 8-bit
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fixed point and the initial stages of image processing are typ-
ically embarrassingly parallel. These processors are typically
designed to be power-efficient by avoiding floating-point and
having a simplified processing pipeline. For instance, per-
formance/watt of TI’s Embedded Vision Engine (EVE) [9] is
∼8X than that of A15. On the other hand, it lacks flexibil-
ity and it is typically used for the pixel-level initial stages of
the pipeline. TI and Renesas have small width (8/16) SIMD
processors where Mobileye and Freescale make use of a large
SIMD width (76/128) processor.

DSPs (Digital Signal Processors) are traditional processors
designed for low-power acceleration of signal processing al-
gorithms. Most of them including TI’s C66x and Toshiba’s
MPE are VLIW (Very Large Instruction Word) based super-
scalar processors. VLIW is an efficient architecture scheme to
provide flexibility compared to SIMD. They also exhibit a form
of SIMD using packed arithmetic i.e. aliasing 4 byte instruc-
tions in a word instruction. The gap of performance normalized
to cost of DSP is becoming closer because of lowered cost and
performance improvements of NEON and its ubiquity.

ASIC (Application-specific Integrated Circuit) implements
the entire algorithm in hardware with minimal flexibility like
modification of parameters coded via register settings. If the
algorithm is standardized, ASIC provides the best performance
for the given silicon. But it requires a lot of initial investment
which impacts time to market and there is a risk of being re-
dundant particularly for the area of computer Vision where the
algorithms are not standardized and could change drastically.
Mobileye is one company who primarily uses ASIC. But mov-
ing from EyeQ3 to EyeQ4, they have shifted to flexible pro-
cessors. Toshiba’s TMP device has HW acceleration for object
detection feature (HOG) and 3D reconstruction (SFM) and Re-
nesas provides an IMR HW module to perform distortion cor-
rection.

FPGA (Field Programmable Gate Array) is closely related to
ASICs but has a key advantage of being re-configurable at run-
time. From the application perspective, this means the HW can
adaptively transform to an accelerator needed for that particu-
lar scenario. For instance, if the algorithm has to be drastically
different for low and high speeds, the FPGA can transform into
one of these as required. But because ASIC is hard-coded to be
optimized for one algorithm, FPGA will be lagging in perfor-
mance. Due to recent progress in FPGA technology, the gap is
closing. Xilinx and Altera are the major FPGA suppliers who
offer very similar performance FPGAs.

Others: Many of the SOCs provide video codecs (H.264),
JPEG and ISP as ASICs. The video codec provide Motion Esti-
mation (Block-matching Optical Flow) which is very useful for
the vision algorithms. Some SOCs provide a safety compliant
micro-processor like Cortex-M4 or R4 for AUTOSAR (AUTo-
motive Open System ARchitecture) and improved ASIL.

Summary: Typical design constraints for SOC selection for
embedded systems are performance (MIPS, utilisation, band-
width), cost, power consumption, heat dissipation, high to low
end scalability and programmability. Unlike hand-held devices,
power consumption is not a major criterion as it is powered by
car battery. Heat dissipation matters only up to a threshold and

Figure 6: Accurate vehicle parking based on slots, not other vehicles

might add to costs through better heat sinks. Programmabil-
ity is becoming abstracted via SW frameworks like OpenCL
and is not a major factor in cost. Hence for ADAS, the main
factors finally boil to cost and performance. Because of the
diverse nature of the processors, this is typically a difficult de-
cision to make. Usually comparing the processor via MIPS is
not useful as the utilization is heavily dependent on the nature
of the algorithm. Hence a benchmark analysis for the given
list of applications based on vendor libraries and estimates is
critical for choosing an appropriate SOC. A hybrid architecture
which combines fully programmable, semi programmable and
hard-coded processors could be a good amortized risk option.
Examples of commercial automotive grade SOCs are Texas In-
struments TDA2x, Nvidia Tegra X1, Renesas R-car H3, etc.

3. Automated Parking Use Cases

3.1. Overview of parking manoeuvres

Automated parking systems have been on the mass market
for some time, starting with automated parallel parking and
then advancing in more recent years to include perpendicular
parking. Parking systems have evolved beyond driver assis-
tance systems in which only steering is controlled (SAE Au-
tomation Level 1), to achieve partial automation of both lateral
and longitudinal control [10]. The challenge of parking assis-
tant systems is to reliably and accurately detect parking slots to
allow parking manoeuvres with a minimum amount of indepen-
dent movements. The aim of an automated parking system is to
deliver a robust, safe, comfortable and most importantly useful
function to the driver enabling time saving, accurate and col-
lision free parking. Current systems on the market rely solely
on range sensor data, typically ultrasonics, for slot detection,
remeasurement and collision avoidance during automated park-
ing. While such systems have proven to be very successful in
the field and are continuing to penetrate the market with re-
leases in the mid to low end of the market they possess some
inherent limitations that cannot be resolved without the help of
other sensor technologies. The use cases described below focus
on the benefits of camera based solutions with ultrasonic sensor
fusion in particular to try and tackle some of the restrictions of
current systems to move automated parking technology to the
next step.
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Before an automated parking manoeuvre can begin the park-
ing system must first search, identify and accurately localise
valid parking slots around the vehicle. Current systems typ-
ically rely on the driver to initiate the search mode. Parking
slots can come in different forms as described in the use cases
below. After the slots are located they are presented to the driver
in order to allow selection of the desired parking slot as well as
direction the car faces in the final parked position. After the
driver has selected a parking slot the vehicle automatically tra-
verses a calculated trajectory to the desired end location while
driving within a limited speed range typically under 10kph. In
order to maintain this function at automation level 2 to avoid the
legal implications of the jump to conditional automation, where
the system is expected to monitor the driving environment, the
driver is required to demonstrate his attentiveness through the
use of a dead man switch located in the vehicle [10]. Partially
automated systems can also allow the driver to exit the vehi-
cle and initiate the parking manoeuvre remotely through a key
fob or smart phone after the parking slot has been identified.
In this case, the driver remains responsible for monitoring the
vehicle’s surroundings at all times and the parking manoeuvre
is controlled through a dead man switch on a key fob or smart
phone. Remote control parking is applicable in scenarios where
the parking space has already been located and measured or in
controlled environments, (such as garage parking), where the
vehicle can be safely allowed to explore the environment in
front with limited distance and steering angle.

During the parking manoeuvre the system continues to re-
measure the location of both the intended parking slot and the
ego vehicle itself. Continued remeasurement during the ma-
noeuvre is required to improve the accuracy of the end position
due to slot measurement inaccuracy and ego odometry mea-
surement error as well as to avoid any collisions with static or
dynamic obstacles such as pedestrians.. The parking trajectory
is calculated in such a way that the most appropriate one to the
parking situation is chosen, i.e. trajectory is selected to finish
in the middle of the parking slot from the current position with-
out any collision and a finite amount of manoeuvres/direction
changes (i.e. drive to reverse and vice versa). An enhancement
of the automatic parking system functionality is not only to park
into the slot but also to park out from the slot.

3.2. Benefits of Cameras for Parking
Current systems rely on range sensor information, typically

ultrasonics sensors to identify and localise the parking slots.
There are many inherent issues with range sensors for auto-
mated parking that can be partly or fully overcome with the
use of camera data. Camera data in this case would ideally be
from four surround view fisheye (∼190◦) cameras located in
the the front and rear as well as both mirrors in order to aid
both slot search, parking automation and also visualisation for
all parking use cases. A single rear-view fisheye camera is also
beneficial in a limited number of reverse parking use cases after
slot localisation was already been performed by other sensors.
Narrower field of view front cameras have little benefit to slot
search but similar to rear view could help in the automation of
forward parking use cases. The computer vision functions that

Figure 7: Highlighting the benefit of using computer vision in fusion with tradi-
tional ultrasonics-based parking systems. (a) Increased detection performance
and range, (b) detection of the environment not feasible with ultrasonics (lane
markings)

aid in the these use cases are discussed in more detail in the next
section.

The biggest limitation of range sensors for slot detection is
that they require other obstacles in the scene to identify the
bounds of the parking slot. Cameras can be used to detect
parking slots using the line markings on the road while taking
advantage of the line ending type to understand the intended
slot usage. It is possible to detect parking slot markings us-
ing LIDAR technology however, the sensor cost and the lim-
ited field of view are the big disadvantages. Figure 6 illus-
trates that using a camera-fusion system the vehicle is parked
with more accuracy. Based on ultrasonics/radar alone, the park-
ing system would attempt to align with the other (inaccurately)
parked vehicles while a camera/fusion allows parking against
the slot itself. While the detection range of cameras (∼10m)
in terms of point cloud data for slot detection is less than that
of radar or LIDAR (∼100m) systems, cameras do provide a
greater range than ultrasonics sensors (∼4m) while also having
an overlapping field of view. Ultrasonics naturally provide ac-
curate range data while cameras are more suited to providing
high angular resolution, these attributes make the sensing capa-
bilities of cameras and ultrasonics complementary. The extra
detection range of cameras can provide the benefit of improved
slot orientation accuracy as well as better slot validation partic-
ularly for perpendicular slots where orientation and range are
more critical factors. Fisheye camera’s large vertical field of
view (∼140◦) enables object detection and point cloud gener-
ation for obstacles above the height of the car within a close
range (<1m). This is beneficial for automated parking situa-
tions such as entering garages with roller doors where the door
has not been opened sufficiently to allow the vehicle to enter.
Most range sensors have a very restrictive vertical field of view
and therefore cannot cover this use case.

Due to camera’s significant measurement resolution advan-
tage (1-2MP), they are capable of generating point cloud data
for certain object types that active sensors may fail to detect
such as poles or chain link fences. These “blind spots” for
sensors such as ultrasonics can have a large impact on the ro-
bustness and reliability of the automated parking function. Sur-
round view cameras can generate an accurate ground topology
around the vehicle to aid in the localisation of kerbs, parking
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blocks and parking locks as well as surface changes for under-
standing of freespace. The large amount of data makes cam-
eras very suitable for machine learning techniques allowing for
object classification such as pedestrian and vehicles with an ac-
curacy not equalled by any other sensor type. Classification of
such objects generates another fusion data source resulting in a
more intelligent and reactive automated parking system. Clas-
sification allows for intelligent vehicle reaction depending on
object type, for example trajectory planning should not be made
around a pedestrian as it is a dynamic object that can move in
unrestricted and unpredictable way in the world. The accuracy
of the vehicle’s odometry information is vital for accurately de-
tecting and localising the ego vehicle and also for smoothly
traversing the parking trajectory with as few direction changes
as possible. Cameras can be used to provide a robust source
of vehicle odometry information through visual simultaneous
localisation and mapping (SLAM) techniques made popular in
robotics. This visual odometry can overcome many of the accu-
racy issues inherent in mechanical based odometry sensors and
provide the resolution required to minimise parking manoeu-
vres updates after the initial slot selection.

3.3. Classification of parking scenarios

There are various uses of autonomous parking, but in princi-
ple they can be classified in four main parking use cases:

1. Perpendicular Parking (forward and backward): The
system detects a parking slot laterally to vehicle as it passes
by detecting the objects locations and line markings in the near
field and measuring the slot size and orientation to understand
if it can be offered to the user. If selected by the user for park-
ing the systems finds a safe driving trajectory to the goal po-
sition of the parking slot while either orienting the vehicle rel-
ative to the slot bounds created by the other objects (vehicles
in this case) or line markings. Figure 8 (b) describes an exam-
ple of a backward parking manoeuvre completed in three steps,
and the second part (c) describes a forward parking manoeuvre.
Computer vision methods supports the detection of obstacles
through both classification and SFM techniques. This data en-
hances the system detection rate and range in fusion with tradi-
tional ultrasonics-based systems (Figure 7 (a)), allowing for in-
creased true positives and reduced false positives on slot offer-
ings to the user while also improving slot orientation and mea-
surement resulting in reduced parking manoeuvres. Computer
vision also enables the parking of the vehicle based on parking
slot markings, giving more accurate parking results (Figure 7
(b)), which isn’t feasible in traditional parking systems based
on ultrasonics.

2. Parallel parking: Parallel parking (Figure 8 (a)) ,
like perpendicular parking, is a well defined parking situation.
However, the manoeuvre and situation is significantly different.
Typically, entering the parking space is completed in a single
manoeuvre, with further manoeuvres used to align to the park-
ing space more accurately. Additionally, parking tolerances are
typically lower because of the desire to park close to the sur-
rounding vehicles and the kerb inside the parking slot. Fusion
with camera systems allows lower tolerances on the parking

Figure 8: Classification of Parking scenarios - (a) Parallel Backward Parking,
(b) Perpendicular Backward Parking, (c) Perpendicular Forward Parking, (d)
Ambiguous Parking and (e) Fishbone Parking with roadmarkings.

manoeuvres, and more reliable kerb detection (detecting kerbs
is possible with ultrasonics and radar, but is often unreliable).

3. Fishbone parking: Figure 8 (e) shows an example of fish-
bone parking where current ultrasonics based parking systems
are limited, as the density of detections is too low to identify
the orientation of the parking slot. In this case, using camera
systems enables increased range to view inside the slot to de-
termine the parking slot target orientation from both the objects
or the line markings. This use case cannot be covered by current
ultrasonics based systems.

4. Ambiguous parking: The final broad category of use
case is the ambiguous parking situation, i.e. where the parking
space is not well defined except by the presence of other vehi-
cles and objects (Figure 8 d) ). The use of cameras enables ad-
vanced planning of the parking manoeuvre due to the increased
detection range and more complete sensor coverage around the
vehicle (ultrasonics typically do not cover vehicle flank) and
thus enables more appropriate vehicle reaction in somewhat ill-
defined use cases.

Additionally, the use of camera systems in parking enables
or improves reliability of other functions, in comparison to ul-
trasonics/radar only parking systems, for example:

1. Emergency Braking/ Comfort Braking: Of course, with
any level of autonomy, the vehicle needs to react to the pres-
ence of vulnerable road users. Sometimes, the environment can
change quickly (e.g. a pedestrian quickly enters the area of the
automatically parking vehicle), and as such, the vehicle must
respond quickly and safely. By complementing existing park-
ing systems, low speed automatic emergency braking or com-
fort braking is made significantly more robust due to the natural
redundancy provided by camera fusion.

2. Overlaying of the object distance information: A very
common use to combine vision system data with traditional
parking systems is to overlay the object distance information
in the video output stream e.g. in a surround view system.
This helps the driver during manual vehicle manoeuvring to
correctly estimate distance in the 360◦video output stream for
more precise navigation within the parking slot. This is espe-
cially helpful in parallel parking slot with a kerb, where the kerb
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is not visible to the driver.

4. Vision Applications

Vision based ADAS applications first started appearing in
mass production in early 2000s with the release of systems
such as lane departure warning (LDW) [11]. Since then, there
has been rapid development in the area of vision based ADAS.
This is due to the vast improvements in processing and imaging
hardware, and the drive in the automotive industry to add more
ADAS features in order to enhance safety and improve brand
awareness in the market. As cameras are rapidly being accepted
as standard equipment for improved driver visibility (surround
view systems), it is logical that these sensors are employed for
ADAS applications in parallel. In this section, we will discuss
the use of four important ADAS functions and their relevance
in the context of automated parking systems. The focus is on
algorithms that are feasible on current ADAS systems, consid-
ering the limitations described in Section 2, leaving treatment
of state of the art algorithms (such as Deep Learning) to dis-
cussion in Section 5. Considering the functionality described in
Section 3, we need to consider the detection, localisation and
in some cases classification of 1) unmoving obstacles, such as
parked vehicles, 2) parking lines and other ground markings, 3)
pedestrians and generic moving obstacles, and 4) freespace to
support the removal of tracked obstacles from parking map, for
example. The algorithms discussed in the following sections
are based on feasibility of deployment on embedded systems
available two years ago. As the parking system has safety re-
strictions, going from a demonstration to a product takes a long
cycle of iterative validation and tuning to get robust accuracy.
We briefly discuss the current state-of-the-art in section 5.2.

4.1. 3D point cloud
Depth estimation refers to the set of algorithms aimed at

obtaining a representation of the spatial structure of the envi-
ronment within the sensor’s FOV. In the context of automated
parking, it is the primary mechanism by which computer vision
can be used to build a map. This is important for all parking
use cases: it enables better estimation of the depth of parking
spaces over the existing ultrasonic-based parking systems, and
thus better trajectory planning for both forward and backward
perpendicular and fishbone park manoeuvring; it increases the
reliability of kerb detection, improving the parallel parking ma-
noeuvre; and, it provides an additional detection of obstacles,
which, in fusion, reduces significantly the number of false pos-
itives in auto emergency braking.

Depth estimation is the primary focus of many active sen-
sor systems, such as TOF (Time of Flight) cameras, lidar and
radar, this remains a complex topic for passive sensors such as
cameras. There are two main types of depth perception tech-
niques for cameras: namely stereo and monocular [12]. The
primary advantage of stereo cameras over monocular systems
is improved ability to sense depth. It works by solving the cor-
respondence problem for each pixel, allowing for mapping of
pixel locations from the left camera image to the right cam-
era image. The map showing these distances between pixels is

Figure 9: Reprojected and top view of 3D reconstruction

called a disparity map, and these distances are proportional to
the physical distance of the corresponding world point from the
camera. Using the known camera calibrations and baseline, the
rays forming the pixel pairs between both cameras can be pro-
jected and triangulated to solve for a 3D position in the world
for each pixel. Figure 9 shows an example of sparse 3d recon-
struction.

Monocular systems are also able to sense depth, but motion
of the camera is required to create the baseline for reconstruc-
tion of the scene. This method of scene reconstruction is re-
ferred to as structure from motion (SFM). Pixels in the image
are tracked or matched from one frame to the next using either
sparse or dense techniques. The known motion of the camera
between the processed frames as well as the camera calibration,
are used to project and triangulate the world positions of the
point correspondences. Bundle adjustment is a commonly used
approach to simultaneously refine the 3D positions estimated
in the scene and the relative motion of the camera, according
to an optimality criterion, involving the corresponding image
projections of all points.

4.2. Parking Slot Marking Recognition

The detection of parking slots is, of course, critical for any
automated parking system - the system must know where it will
park ahead of completing the manoeuvre. To enable the detec-
tion of parking slots in the absence of obstacles defining the
slot, and to enable more accurate parking, the detection of the
road markings that define parking slots is critical. Consider this:
in an empty parking lot, how would an automated parking sys-
tem be able to select a valid parking slot? This is applicable for
all parking manoeuvres (perpendicular, parallel and fishbone)
in which parking against markings is required.

It is possible to complete parking slot marking recognition
using technology such as lidar, which has a spectral response on
the road markings, as exemplified in [13]. However, lidar sys-
tems are typically expensive, and suffer from limited detection
areas, typically have a very narrow vertical field of view [14]
compared with what is feasible with cameras (>140◦FOV). In
vision, lane marking detection can be achieved using image top-
view rectification, edge extraction and Hough space analysis to
detect markings and marking pairs [15]. Figure 10 gives an
example of the results from a similar approach, captured using
190◦horizontal field of view parking camera [16]. The same au-
thors also propose a different approach based on the input of a
manually determined seed point, subsequently applying struc-
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Figure 10: Example of parking slot marking recognition

tural analysis techniques to extract the parking slot [17]. Al-
ternatively, a pre-trained model-based method based on HOG
(Histogram of Oriented Gradients) and LBP (Local Binary Pat-
terns) features, with linear SVM (Support Vector Machine) ap-
plied to construct the classification models is proposed in [18].

Regardless of the specific approach taken, what is clear is that
the detection of marking slots is critical for a complete auto-
mated parking system, and that the only reasonably valid tech-
nology to complete this is parking cameras with a wide field of
view.

4.3. Vehicle and Pedestrian Detection/Tracking

Vehicle detection and tracking is often done in the context
of front camera detection [19] for applications like auto emer-
gency braking or in traffic surveillance applications [20]. How-
ever, parking manoeuvres are often done in the presence of
other vehicles, either parked or moving, and as such, the de-
tection and tracking of vehicles is important for the automa-
tion of such manoeuvres [21]. Perhaps of higher importance
in parking manoeuvres is for the system to reliably be able to
both detect and classify pedestrians [22], such that the vehicle
can take appropriate action, e.g. auto emergency braking in the
presence of pedestrians that are at potential risk [22] (Figure
11). Typically, both the problem of vehicle detection and that
of pedestrian detection are solved using some flavour of clas-
sification. No other sensor can as readily and reliably classify
detection based on object type, compared to vision systems.

Object classification generally falls under supervised classi-
fication group of machine learning algorithms. This is based
on the knowledge that a human can select sample thumbnails
in multiple images that are representative of a specific class
of object. With the use of feature extraction methods such as
histogram of oriented gradients (HOG), local binary patterns
(LBP), and wavelets applied to the human classified sample im-
ages, a predictor model is built using machine learning in order
to classify objects. Many vision based ADAS functions use
machine learning approaches for classification. As already dis-
cussed, classification is extensively used in pedestrian and vehi-
cle detection, but also in areas such as face detection and traffic
sign recognition (TSR). The quality of the final algorithm is
highly dependent on the amount and quality of the sample data
used for learning the classifiers, as well as the overall quality of
the classification technique and the appropriateness of the fea-
ture selection method for the target application. Typical clas-
sifiers include SVMs, random forest and convolutional neural
networks (CNN). Recently there has been a shift in this trend
via deep learning methods wherein the features are automati-
cally learned.

Figure 11: Pedestrian classification and tracking using a parking camera

4.4. Freespace

Freespace is a feature used by most environmental sensing
maps. Freespace is the area around the vehicle within the sen-
sor’s field of view that is not occupied by objects, and is often
classed as an occupancy grid map problem [22], and is typ-
ically detected by segmenting the ground surface from other
objects [23], [24]. In an occupancy-grid map approach, the
freespace information is integrated and stored over time. In
the case of a vector-based map representation, each object’s ex-
istence probability is updated based on the freespace measure-
ments. Freespace is used to erase dynamic and static obstacles
in the environmental sensing map which are not actively being
measured or updated. That means a good freespace model will
erase dynamic obstacles from previous positions very quickly
without erasing valid static information. Freespace should also
erase previously detected static objects that have moved since
the last valid measurement, detections that have position error
in the map due to odometry update errors and false positives.
Figure 12 shows an example of image segmentation (e.g.) based
freespace from a parking camera. Furthermore freespace sup-
ports a collision free trajectory search and planning especially
in accumulated freespace grid maps.

Unlike other sensor types, vision systems can provide dif-
ferent, independent methods of estimating vehicle freespace.
For example, an alternate method to determine camera-based
freespace is to make use of 3D point cloud and its correspond-
ing obstacle information. However, it also reconstructs features
on the road surface around the vehicle. The features that are
reconstructed that are associated with the ground can be used
to provide valuable freespace information. If there is a fea-
ture reconstructed that is associated with the ground, then it is
a reasonable assumption that the area between that point and
the sensor (camera) is not obstructed by an object, and it can
be used to define a freespace region around the host vehicle.
As these methods are independent and complementary, it can
also be beneficial to fuse these techniques (with themselves, and
with freespace provided by other sensors, such as ultrasonics)
in order to increase the accuracy and robustness of the freespace
measurement.

4.5. Other vision functions

There are several other areas that computer vision techniques
can support in the automated parking space. Visual Odom-
etry is a task that is strongly linked to the depth estimation
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Figure 12: (a) shows the road segmented from the rest of the scene use image-
based segmentation, and (b) shows radial cell based freespace definition based
on the road segmentation from (a)

described in Section 4.1, via visual SLAM/bundle adjustment
techniques [25], although there are other methods for visual
odometry [26]. While vehicle odometry is available on vehi-
cle networks (CAN/FlexRay), relying solely on these signals
is inaccurate due to delays over the network, signal limitations
and inaccuracies (e.g. relying on accelerometers), and limited
degrees of freedom (typically only velocity and heading). In au-
tomated parking, the quality of the odometry is critical to user
comfort and parking accuracy - as the odometry is improved,
parking can be completed in fewer individual manoeuvres, and
the final positions is closer to the target location.

Crossing traffic alert algorithms are designed to detect traffic
that is potentially a threat to the host vehicle in certain critical
situations at junctions, such as at a T-junction (particularly if
there is limited visibility) [27]. The need for a crossing traf-
fic alert function on vehicles is obvious: according to the road
safety website of the European Commission [28], 40 to 60 % of
the total number of accidents occur at junctions. However, in
the specific context of automated parking, crossing traffic de-
tection is important to restrict the motion of the host vehicle, in
particular when exiting a parking space, as shown in first part
of Figure 13. Second picture of Figure 13 shows an example of
an algorithms for the detection of crossing vehicles, based on
optical flow with host odometry compensation.

Other than the detection of parking slot markings discussed
earlier, it is also important to be able to detect other road mark-
ings, such as arrows and disabled parking markings [28], and
road signs [29], which allows the autonomously parking vehi-
cle to follow the rules defined in the parking area.

4.6. A note on accuracy

Finally for this section, we discuss briefly the accuracy re-
quired from computer vision to support the parking functions.
There are two types of accuracy of the algorithms for a parking
system namely detection accuracy and localisation accuracy.
Computer vision benchmarks typically focus on the former but
from the parking perspective, localisation is very important as
well. Of course, accuracy requirements are driven by the de-
sired functionality; conversely, the error rate of algorithms can
define the feasibility of specific functions. For example, for cur-
rent generation parking systems, in which the system parks in
places where typically a driver could normally park, accuracy
of depth of detections in the region of 10 to 15cm is adequate,
as long as the standard deviation is low ( 5cm). However, in

Figure 13: Example of a crossing traffic situation on parking space exit, and (b)
shows a screenshot of an algorithm for the detection of crossing traffic

the future, we may envisage automated cars parking in places
dedicated to the storage of fully autonomous vehicles. In such
a case, there would be a strong desire for the vehicles to park
as closely as possible, thus maximising the vehicles parked per
area, and as such detection accuracies of 5cm or lower would
be strongly desirable.

If we discuss emergency braking in a parking scenario, the
braking must only happen at the point that collision would oth-
erwise be unavoidable, perhaps when the obstacle is only 20cm
from the vehicle. The reason is quite straightforward: in a park-
ing scenario manoeuvre is slow, and often there are many obsta-
cles, thus allowing a larger braking distance will lead to annoy-
ing and confusing vehicle behaviour for the driver. Therefore
depth accuracies of, for example, pedestrian detection should be
in the region of 10cm to allow for vehicle motion and system
latencies. Of course, the lower the braking distance the better,
as the system can brake later while maintaining safety. Park slot
marking detection requirements are stringent as the car has to
be perfectly parked, as shown in Figure 6. In such cases, locali-
sation errors of 30cm in direction of the camera optical axis and
10cm in direction laterally of the camera position are desirable.

These are discussion points. The actual accuracy require-
ment that needs to be achieved from any given algorithm must
be decided upon by taking into account the exact end user func-
tions of the parking system, the limitations in computational
power of an embedded system, and the algorithmic feasibility
of the function. Additionally, while the requirements for ac-
curacy can be very high (recalling that in computer vision we
natively detect angles, and not depth), within a fusion system
the accuracies of other sensors, such as ultrasonics, can be used
to support the camera based detection in a complementary man-
ner.

5. The Automated Parking System

5.1. Automated Parking System Considerations
As discussed in section 2, 3 & 4 as well as illustrated in Fig-

ure 14 there are many factors that influence the specification
of a vision or partly vision (fusion) based automated parking
system. Few parts of the system can be considered in isola-
tion due to the the majority of choices having a system wide
impact. A simple example is the selection of camera pixel
resolution which can impact the potential use cases achiev-
able by the system through both hardware and software; cam-
era resolution impacts ISP selection, SerDes selection, memory
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Figure 14: Application Stack for full Automated Parking system using cameras.

bandwidth requirements, memory requirements, computational
requirements of computer vision, accuracy and range perfor-
mance of system, low light performance and display require-
ments. Therefore some limitations in terms of hardware, use
cases and computer vision algorithms need to be understood
and defined as illustrated in Figure 3.

From a hardware perspective the main variables, bearing in
mind that thermal, power, cost are within tolerance, is the se-
lection of the camera imager and ECU processing SOC. Typical
automotive imagers for surround view applications are moving
away from 1MP to 2-4MP resolutions. The challenge in in-
creasing resolution is do so while maintaining or preferably im-
proving low light sensitivity. This is critical for the availability
and thus usability of camera based automated parking system.
The extra pixel resolution improves the accuracy and range
of the system allowing for increased parking use cases, more
robust parking performance and increased speed availability.
Once an image is formed the key is to process as many com-
puter vision functions in parallel at as a high a frame rate and
high a resolution as possible. This is where the SOC selection
is critical. There are always trade-offs to reduce system load in-
cluding the deployment of intelligent state machines to ensure
only critical computer vision algorithms are running, downscal-
ing and skipping of processed images to reduce loading. These
trade-offs are becoming less restrictive as pixel level process-
ing, that is generally 60-70% of the loading of any computer
vision algorithm, traditionally performed on hardware vector
processing engines or DSPs are being superseded by specific
computer vision hardware accelerators. These computer vision
accelerators for processes such as dense optical flow, stereo dis-
parity and convolutions are capable of much higher pixel pro-
cessing throughput at lower power consumption at the expense
of flexibility.

The use cases required to be covered by the system also plays
a significant role in system specification. The automated park-
ing use cases to be covered in turn define the requirements for
the detection capability, accuracy, coverage, operating range,
operating speed and system availability amongst others. This
impacts the sensor and SOC selection but most significantly it
defines the required performance from the computer vision al-
gorithms in order to be able to achieve the functionality. For ex-
ample automated perpendicular parking between lines requires
many computer vision algorithms to be working in parallel,
with the required accuracy and robustness to achieve a reliable
and useful function. Firstly a line marking detection algorithm
is required to be performing up to a speed and detection range
that is practical for automated parking slot searching. In par-
allel an algorithm such as structure from motion is required to
ensure that there is no object (parking lock, cone, rubbish bin
etc.) in the slot while also measuring the end position of the slot
which might be in the form of a Kerb. Pedestrian detection is
also a nice addition to reduce but not remove the burden of su-
pervision on the user during the parking manoeuvre (Level 2).
These computer vision functions require support from online
calibration algorithms and soiling detection functions to both
operate and understand when they are not available so the sys-
tem and thus user can be informed. The camera information
is typically fused over time as well as with other range sensor
information such as ultrasonic or radar data to improve system
robustness, accuracy and availability. However, there are some
detections required that only cameras can achieve such as clas-
sification. The more functions that a camera can fulfil reduces
system costs as surround view cameras are becoming a stan-
dard sensor, therefore the more functions that they can achieve
the less supporting sensors are required.

5.2. A glimpse into next generation

Computer vision has witnessed tremendous progress recently
with deep learning, specifically convolutional neural networks
(CNN). CNNs has enabled a large increase in accuracy of ob-
ject detection leading to better perception for automated driving
[30]. It has also enabled dense pixel classification via semantic
segmentation which was not feasible before [31]. Additionally
there is a strong trend of CNN achieving state-of-the-art results
for geometric vision algorithms like optical flow [32], structure
from motion [33] and re-localisation [34]. The progress in CNN
has also led to the hardware manufacturers to include a custom
HW IP to provide a high throughput of over 10 Tera operations
per second (TOPS). Additionally the next generation hardware
will have dense optical flow and stereo HW accelerators to en-
able generic detection of moving and static objects.

From a use case perspective, the next step for parking sys-
tems is to make them truly autonomous, which will allow a
driver to leave a car to locate and park in an unmapped environ-
ment without any driver input. In addition to this, the vehicle
should be able to exit the parking slot and return to the driver
safely. Cameras can play a very important role in the future of
automated parking systems, providing important information
about the vehicle’s surroundings. This includes information
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Figure 15: Example of a Park4U Home Use Case where vision based systems
uses landmarks to localise the car to an already stored trajectory to navigate
autonomous into the home parking slot

like object and freespace data, parking slot marking detection,
pedestrian detection for fusion with other sensor technologies.

As discussed in this article current automated parking sys-
tems take control of the vehicle after recognition and selection
of the parking slot by the user. The state of the system during
slot search is essentially passive. The trend and challenge for
the future is the automation of slot search itself in order to al-
low for complete vehicle parking automation including search,
selection & park all in a robust, repeatable and safe way. These
automated parking scenarios can be classified as follows: 1)
Automated Parking in a known area and 2) Automated Parking
in an unknown area. Automated Parking in known areas typi-
cally involves the driver “training” the automated parking sys-
tem with a parking trajectory (see Figure 15). During this train-
ing the sensors locate the landmarks in the scene and record the
desired trajectory driven by the driver against these landmarks.
The automated parking system can recognize the scene when it
returns and uses the trained information to automatically local-
ize the vehicle to the stored trajectory allowing for automated
parking. A variant of such functionality is for example “Park4U
home ”.

Parking using a recorded trajectory poses many significant
obstacles. Objects present during the training sequence may
not exist during replay of the manoeuvre, for example cars, rub-
bish bins etc and this means that these obstacles are suitable for
localisation. Even worse, objects can move very slightly in the
scene between training and replay. If the system cannot identify
that these objects have moved and uses them for localisation, it
can result in poor trajectory replay. Objects can be moved to

obstruct the trajectory during replay and this can simply result
in an abort of the manoeuvre while more intelligent avoidance
techniques to rejoin trajectory around the obstacle require not
only extended sensor range but knowledge of drivable area and
also potentially information about the private and public road
divide. The complexity of traversing a trained trajectory can
be increased by differences between the training and replay not
only in the structure of the scene itself but also the weather
and lighting conditions. These condition changes can result in
vastly different views of the same scene, particularly from a vi-
sual sensor, making identification of and localisation within the
“home zone” very difficult.

Automated Parking in unknown areas requires the automa-
tion of the search, selection and parking of the vehicle without
the car having any prior stored trajectory. In terms of complex-
ity this is a significant step over automated parking in known
areas. Automated Parking in unknown areas was introduced by
Valeo at the Frankfurt motor show via the name Valeo Valet
Park4U [35].

The challenges to realize the jump to new automation levels
is to extend vision based automated parking systems in terms of
ego vehicle localisation (SLAM) and allow for accurate identi-
fication of stored home area. To reach the highest levels of
automation for automatic parking systems it is clear that a com-
bination of sensor technologies (Camera, Ultrasonic, Radar or
Lidar) is required to reach the maximum of accuracy, reliability
in ego localisation, detection and prediction of the environment.

6. Conclusion

Automated driving is a rapidly growing area of technology
and many high end cars have begun to ship with self-parking
features. This has led to improved sensors and massive increase
in computational power which can produce more robust and
accurate systems. Government regulating bodies like EuroN-
CAP and NHTSA are introducing progressive legislation to-
wards mandating safety systems, in spite of challenges in liabil-
ity, and are starting to legislate to allow autonomous vehicles on
the public road network. Camera sensors will continue to play
an important role because of its low cost and the rich seman-
tics it captures relative to other sensors. In this paper, we have
focussed on the benefits of camera sensors and how it enables
parking use cases. We have discussed the system implementa-
tion of an automated parking system with four fisheye cameras
which provides 360 ◦view surrounding the vehicle. We covered
various aspects of the system in detail including embedded sys-
tem components, parking use cases which need to be handled
and the vision algorithms which solve these use cases. As the
focus on computer vision aspects, we have omitted the details
of sensor fusion, trajectory control and motion planning.
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