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Multiple Structure Recovery via Robust Preference Analysis1
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Abstract

This paper address the extraction of multiple models from outlier-contaminated data by exploiting preference analysis and
low rank approximation. First points are represented in the preference space, then Robust PCA (Principal Component
Analysis) and Symmetric NMF (Non negative Matrix Factorization) are used to break the multi-model fitting problem
into many single-model problems, which in turn are tackled with an approach inspired to MSAC (M-estimator SAmple
Consensus) coupled with a model-specific scale estimate. Experimental validation on public, real data-sets demonstrates
that our method compares favorably with the state of the art.
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1. Introduction

Geometric multi-model fitting aims at extracting para-
metric models from unstructured data in order to organize
and aggregate visual content in suitable higher-level geo-
metric structures2. This ubiquitous task can be encoun-
tered in many Computer Vision applications, for example
in 3D reconstruction, where it is employed to estimate mul-
tiple rigid moving objects in order to initialize multi-body
structure from motion (e.g ., [1]), or in the processing of 3D
point clouds, where planar patches are fitted to produce
intermediate geometric interpretations (e.g ., [2]).

Several challenges are afoot. First, segmentation and
estimation tasks exhibit a chicken-and-egg pattern, for they
are two closely entangled aspects of the same problem:
data should be segmented based on their geometric prox-
imity to structures whose unknown parameters must be
estimated at the very same time. In other words, in order
to estimate models one needs to first segment the data, but
conversely, in order to segment the data it is necessary to
know the structures associated with each data point.

In addition, the presence of multiple structures hin-
ders robust estimation. Not only visual data are typi-
cally affected by arbitrarily large measurement errors –
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2The ”structure” pertains to the arrangement and relations

among the data, and it is intrinsic to the data itself, whereas the
”model” is the mathematical description of the data that an ob-
server fit onto them. Notwithstanding, we will use the two words
interchangeably.

and require the adoption of robust estimators – but the
multi-modality of the data makes the problem even more
demanding, as it is necessary to cope also with pseudo-
outliers, a concept introduced by Stewart [3] for describing
those measurements that do not match a model of interest
because they are inliers of a different structure.

Moreover, the problem is inherently ill-posed, since
many different interpretations of the same data are pos-
sible. Making the problem tractable requires a regular-
ization strategy that constrains the solution using prior
information, usually in the form of one or more parame-
ter, such as the number κ of sought structures. Following
the Occam’s razor principle – that one should not pre-
sume more things than the required minimum – κ should
be kept as low as possible, but finding a correct trade-off
between data fidelity and model complexity (a.k.a. bias-
variance dilemma) is an intricate task, related to the model
selection problem. Unfortunately estimating this quantity
turns to be a thorny problem, and, for this reason, in many
scenarios is assumed known.

Outline. In this article we present an original method hence-
forth dubbed RPA (Robust Preference Analysis) which at-
tempts to disentangle the chicken-and-egg nature of mul-
tiple structure recovery reducing it to many single ro-
bust model estimation problems. In particular, three main
steps can be singled out: First, we employ M-estimator
to shift the problem into a conceptual space where data
points are depicted by the preference they have granted
to a pool of tentative structures, instantiated via ran-
dom sampling. Second, a robust version of spectral clus-
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tering is presented: Robust Principal Component Anal-
ysis and Symmetric Non negative Matrix Factorization
are employed to explicitly model the low rank nature of
inlier preferences, in order to produce an accurate soft-
segmentation of data. Third, this provisional segmen-
tation is profitably combined with the initial preference
representation in a MSAC-like framework to recover the
sought structures. A noise scale estimate is computed for
each model, with the help of robust statistic.

The next section offers a perspective on the literature
that is most relevant to our work. Next (Section 2) our ro-
bust preference analysis method is detailed. In Section 2.1
we present the preference representation, devoting Section
2.2 to address the problem of sampling model hypotheses.
In Section 2.3 we concentrate on the clustering problem
and in Section 2.3.1 we explain how Low Rank matrix fac-
torization techniques can be tailored to our preference em-
bedding, paving the way to Section 2.4 where the robust
structure-recovery strategy is described. Finally, in Sec-
tion 3 we explore the performance of our method on pub-
lic real datasets. Appendix A reviews some ideas, firstly
emerged in the context of subspace clustering, that are
extended to our general multi-model fitting problem.

1.1. Related work

The analysis of consensus and its dual counterpart,
the analysis of preferences, can be traced as a fil rouge
linking the vast literature on multi model geometric fitting.
The consensus of a model is defined as the set of data
points that fit the model within a certain inlier threshold
ε; likewise, the preference set of a point is the set of models
to which that point is closer than ε.

Most of the multi-model fitting techniques proposed
in the literature can be ascribed to one of these two con-
cepts, according to which horn of the chicken-egg-dilemma
is addressed first. Consensus-based algorithms put the em-
phasis on the estimation part and the focus is on models
that have to describe as many points as possible. On the
other hand, preference approaches concentrate on the seg-
mentation side of the problem, for they are aimed at find-
ing a proper partition of the data, from which estimation
follows. In this section we attempt to retrace the path
that, starting from consensus throughout preference anal-
ysis, have been followed in the literature to address the
challenging issues presented by multiple structures recov-
ery.

Consensus analysis. Consensus-oriented methods start with
a pool of provisional model hypotheses, that are randomly
instantiated on minimal sample sets (MSS), i.e., samples
composed by the minimum number of data points neces-
sary to define a structure. Then the consensus sets of the
models are inspected, and the models that better explain
the data are kept. This idea is at the core of the well-
known RANSAC (Random Sample Consensus) algorithm
and derivations, e.g ., MSAC (M-estimator Sample Con-
sensus) and MLESAC (Maximum Likelihood Estimation

Sample Consensus) [4]. Many ameliorations of RANSAC
have been proposed in the literature, e.g . [5, 6, 7, 8],
most of which have been surveyed in [9]. In the case of
multiple models, Multi-RANSAC [10] and its modifica-
tions [11, 12] rely on the same principle; also the usual
Hough transform and its randomized version [13] can be
regarded as consensus-based algorithms, where models are
detected as consensus maxima in a quantized hypothesis
space. The approach presented in [14] combines random
sampling, scale estimation and Mean Shift to determine
the consensus set when models are multiple linear sub-
spaces. More in general, maximizing the consensus of mod-
els is the foundation of many optimization-based geometric
fitting algorithms [15].

Preference analysis. Preference analysis, introduced by [16],
also start with a pool of provisional model hypotheses, but
it swaps the role of data and models: rather than consid-
ering models and examining which points match them, the
preference sets of individual data points are inspected. In
particular, [17] build a conceptual space in which points are
portrayed by the preferences they have accorded to pro-
visional models. Within this category, J-Linkage [17] and
T-Linkage [18] share the same first-represent-then-segment
scheme: at first data are represented, respectively, either
as characteristic functions or as continuous ones taking
values on the hypothesized models, then the preference
representations are segmented by greedy bottom-up clus-
tering, exploiting either the Jaccard [19] or the Tanimoto
[20] distances in order to measure the agreement between
preferences, and using the fact that preferences of inliers
from the same structure are correlated. This “preference
trick” is a very flexible mechanism that can be applied to
a wide varieties of scenarios requiring few assumptions on
the desired structures. It is sufficient to have at disposal
an error function, aimed at measuring residuals and then
the structure recovery problem is shifted in the preference
space where it can be addressed using cluster analysis.

Also RCMSA (Random Cluster Model Simulated An-
nealing) [21] exploits this idea by representing data points
as permutations on a set of tentative models constructed
iteratively, using subsets larger than minimal. Point pref-
erences are organized in a weighted graph and the multi-
model fitting task is stated as a graph cut problem which
is solved efficiently in an annealing framework.

Multi-model fitting has been successfully cast as higher
order clustering problems [22, 23, 24, 25], which implic-
itly adopt a preference based approach. In these works
higher order similarity tensors are defined between n-tuple
of points as the probability that these points are clustered
together. In practice, this measure is approximated ex-
ploiting the residual error of the n points with respect to
provisional models; this preference information is encoded
in a hypergraph or a multi-way order tensor, which are
properly reduced to pairwise similarity and fed to spectral
clustering-like segmentation algorithms.

For instance, Sparse Grassmann Clustering (SGC) [24],
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approximates the multi-way similarity tensor as the Gramian
matrix defined by the inner product of points in the pref-
erence space, hence, following the spirit of spectral clus-
tering, projects the Gramian to its best low rank approx-
imation in a least square sense, using Grouse [26]. At the
end, the rows of this approximated matrix, are considered
as a new representation of the data points in a proper low
dimensional space, and are consequently segmented with
k-means.

Alternatively, instead of solving a point-point cluster-
ing problem, one can formulate a point-model bi-clustering
problem directly on the preference hypergraph [27].

It goes without saying that the state-of-the-art on multi-
model fitting can be also described along other dimensions.
For example multiple structures recovery can be seen by an
optimization perspective as the minimization of a global
energy functional composed by two terms: a modelling er-
ror which can be interpreted as a likelihood term, and a
penalty term encoding model complexity mimicking classi-
cal MAP-MRF objectives. A survey of multi-model fitting
methods form this point of view can be found in [15].

2. The proposed method: Robust Preference Anal-
ysis (RPA)

In this work we present our attempt to solve the chicken-
and-egg dilemma posed by multiple model fitting by tai-
loring some ideas from sparse representation techniques to
the preference analysis, and exploiting the intrinsic inter-
play between consensus and preferences. As a matter of
fact, our approach can be considered as a preference strat-
egy complemented by consensus aspects.

The main idea of RPA, pictorially represented in Figure
1, is to build on the preference analysis and integrating de-
composition techniques, such as Robust Principal Compo-
nent Analysis (Robust PCA) and symmetric Non-negative
Matrix Factorization (symNMF). Roughly speaking, this
method can be regarded as a sort of “robust spectral clus-
tering”, for it mimics the customary two steps of spectral
clustering, which first project data on the space spanned
by the first eigenvectors of the Laplacian matrix and then
apply k-means. The shortcoming of this approach is that
it is not robust to outliers. We propose to follow the
same scheme, while enforcing robustness in every step:
the eigen-decomposition stage is replaced by Robust PCA
on a pairwise affinity matrix, and Symmetric NMF [28]
takes the place of k-means. In this way we decompose the
multi-model fitting problem into many single-fitting prob-
lems which are solved individually by inspecting – with
the help of robust statistics – the product between the
preference matrix and the output of Symmetric NMF.

The stages of RPA will be described in the next sec-
tions.

2.1. Preference embedding
The specific preference representation proposed by J-

Linkage and T-Linkage can be seen as a particular instance

of a more general framework in which points preferences
are depicted by exploiting M-estimators. In particular,
the preference granted by a point x to hj ∈ H, where H
is a set of m sampled tentative structures, are expressed
as w(r(x, hj)) where r(·, ·) measures the distance between
a datum x and a provisional model hj , and w can be any
M-estimator weighting function. If a step function w that
assigns 1 to residual smaller than the inlier threshold ε
and zero otherwise is adopted, the binary preference set
of J-Linkage is obtained. Or else, hard descenders can be
employed as in T-Linkage or MSAC. In our approach we
advocate the use of soft-descenders – such as the Cauchy
weighting function – that do not have a finite rejection
point, but force the influence of points to decrease to zero
as the residuals tends to infinity, for they are less sensi-
tive to the choice of the inlier threshold. The preference
trick, that shift the data points X = {x1, . . . , xn}, from
their ambient space to the preference one, consequently
becomes:

φ = (φ1, . . . , φm)T : X → [0, 1]m , (1)

where φ is defined component-wise as the Cauchy weight-
ing function:

φj(x) = w(r(x, hj)) =
1

1 + (r(x, hj)/θσn)
2
, j = 1, . . . ,m,

(2)
where σn is an estimate of the standard deviation of the
residuals and θ is a tuning constant (set to 5.0 in all our
experiments). In practice, φj(x) assess the fitness to x
with respect to the structure hj .

Interestingly, this construction can be ascribed to the
framework of conceptual representation settled by [29], for
it can be interpreted in statistical sense as the posterior
probabilities of the point x with respect to the m classes
determined by the consensus set of the putative structures:

[Prob (x|h1) , . . . ,Prob (x|hm)] ∈ Rm (3)

Seen in this way, this representation is linked to the stream
of research on higher-order clustering where probabilities
are used to defined higher-order affinity between points.

In summary, the map φ collects in a vector Φi = φ(xi) ∈
Rm the preferences granted by xi to the models hj (j =
1, . . . ,m) with a vote in [0, 1] that depends the residuals via
a weighting function. We indicate with Φ = [Φ1, . . . , Φn] ∈
Rm×n the matrix whose columns are the point coordinates
in the preference space. Rows corresponds to tentative
models. The agreement between the preferences of two
points reveals the multiple structures hidden in the data:
points sharing the same preferences are likely to belong to
the same structures. This notion is captured by defining
a positive semi-definite kernel matrix K ∈ [0, 1]n×n on Φ:

K(i, j) = exp
(
−dτ (Φi, Φj)2

)
, (4)

where

dτ (Φi, Φj) = 1−
〈
Φi, Φj

〉
‖Φi‖2 + ‖Φj‖2 − 〈Φi, Φj〉 . (5)
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Figure 1: RPA in a nutshell: data points are shifted in a conceptual space where they are framed as a preference matrix Φ. A similarity matrix
K is defined exploiting agreement between preferences. Robust PCA and Symmetric NMF are used to robustly decomposeK = UUT+S, where
S is a sparse matrix modelling outliers, and U is a low rank matrix representing the segmentation. Finally, models are extracted inspecting
the product of the preference matrix with thresholded U , mimicking the MSAC strategy (points are ordered by cluster for visualization
purposes).

Observe that Φ endowed with this kernel bear a re-
semblance to the representation proposed in [18], where
the notions of consensus and preference sets are relaxed
to continuous functions and the Tanimoto distance [20] dτ
is used to measure preference agreement. However some
differences can be pointed out. In fact φ is a continuous ro-
bust weighting function, whereas the embedding proposed
in T-Linkage uses the inlier threshold ε to cut off the pref-
erences of points having distance greater than ε; moreover
the kernel K replaces the direct use of the metric dτ .

Matrix Φ can also be thought as a weighted hyper-
graph: hyper-edges represent sampled models and weights
correspond to point preferences. In this interpretation the
role of the kernel matrix K is to reduce the multi-way
similarity to a pairwise affinity. Along, this line, it is worth
noting that the Tanimoto distance is defined in terms of
inner product of columns of the preference matrix Φ, as the
Gramian used, for example, in SGC [30] to encapsulate in
a strict graph the flattened similarity tensor.

2.2. Biased Random Sampling in Tanimoto space

The exploration of the parameter space of all the pos-
sible models, hereinafter denoted by Π, straddles all the
methods based on either consensus or preferences. Indeed,
the designing of the pool of tentative models H has a piv-
otal role, for the quality of the embedding φH is strictly
linked to the ability of the sampled space H to adequately
represent Π. In this section we propose a straightforward
method to enhance the generation of tentative hypotheses
leveraging on the geometric information embodied in the
Tanimoto space.

In principle, also a simple uniform sampling strategy
can capture the hidden multi-modality of a multi-model
fitting problem. However this comes at the cost of exten-
sive sampling and increased computational burden, since a
large number of trials is required for reaching a reasonable

probability of hitting at least a pure (i.e., outlier free) MSS
per model. The number of required minimal sample sets
can be significantly reduced when information about the
distribution of the data points is available. This informa-
tion can be either provided by the user, or can be extracted
from the data itself through an auxiliary estimation pro-
cess. Many strategies have been proposed along this line
in order to guide sampling towards promising models both
in the case of single-model [6, 31, 11], and in the multiple
models scenario [32]. GroupSac [11], for example, relies
on the assumption that inliers tends to be similar to each
other, therefore data points are separated into groups that
are similar according to some criterion, and intra-group
MSS are favoured. A popular choice is the use of a lo-
calized sampling [33], where neighbouring points in the
data space are selected with higher probability, thereby
reducing the number of hypotheses that have to be gener-
ated. However, depending on the application, introducing
a locality bias in the ambient space of data can be tricky,
as different structures may obey different spatial distribu-
tions of data in the ambient space. Think for example to
motion segmentation where different moving objects could
have very different shapes or very different sizes due to per-
spective effects. Moreover one of the shortcomings of these
strategies is that enforcing the spatial proximity require-
ment can make the estimation susceptible to degeneracies.
As a matter of fact, some methods in the literature [34]
enforce the opposite condition, i.e., that MSS should not
contain data points that are too close to each other.

In order to overcome this difficulty we propose to sam-
ple the hypotheses directly in the preference space. This
can be easily done in three steps: at first a preliminary
uniform sampling of hypotheses is performed, then data
are represented in the Tanimoto space according to these
putative models, finally a biased sampling in this space is
performed. In particular, if a point y has already been
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Figure 2: Comparison of guided sampling methods on the
biscuitbookbox pair (a-b), from the AdelaideRMF dataset described
in Section 4. Points are described by three fundamental matrices,
outliers are marked as black crosses. (c) reports the percentage of
pure MSS with respect to the local bias parameter λ. (d) the number
of pure MSS per structures in the data. It is worth observing that
uniform sampling struggles to find genuine MSS.

selected, then a point x such that x 6= y has the following
probability of being drawn:

Prob(x|y) =
1

Z
exp
−dτ (φ(x), φ(y))

2

λ2
, (6)

where Z is a normalization constant and λ controls the
locality bias. Tanimoto distances can be then updated on
the fly based on the hypotheses already sampled.

We illustrate the effectiveness of this sampling strat-
egy on the image pair depicted in Figure 2a-b, where the
model is a fundamental matrix. Our biased sampling in
Tanimoto space is compared with respect to uniform sam-
pling, localized sampling, and Multi-GS a method pro-
posed in [32], which exploits a kernel based on preferences
intersection. All these methods can be led back to the
conditional sampling scheme presented here, substituting
dτ in (6) with an appropriate distance function: dU = 1
for uniform sampling, dL = ‖ ·‖ for localized sampling and
the intersection kernel dGS. We run these methods with
different values of λ; in particular we set λ = λq as the q-th
quantile of all these distances, varying q ∈ [0.1, 1]. The ex-
periments demonstrate that our biased sampling provides
results comparable with localized sampling for more values
of λ (Figure 2c) and produces many pure MSS per model
(Figure 2d).

This behaviour can be motivated in a probabilistic set-
ting considering the lower density of outliers in the Tan-
imoto space with respect to the inlier distribution. The
number m of MSS to be drawn is related to the percent-
age of outlier and must be large enough so that a certain
number (at least) of outlier-free MSS are obtained with a

given probability for all the models. As explained in [17],
if ni is the number of inliers of the smaller structure con-
tained in the data, the probability p of drawing a MSS
of cardinality ζ composed only of inliers is given by the
product

p = Prob(E1) Prob(E2|E1) · · ·Prob(Eζ |E1, E2...Eζ−1),
(7)

where Ej is the event extract an inlier at the j-th draw-
ing. It is worth noting that this probability exponentially
decrease as ζ increases, therefore, even if in principle the
space Π can be explored by instantiating structures on
subset with cardinality larger than the minimum as pro-
posed in [35], in practice it is better to keep ζ as low as
possible and, if a consensus set can be defined, re-estimate
the structure via least square or robust technique on its
supporting points.

In the case of uniform sampling we have

Prob(Ej |E1, E2...Ej−1) =
ni−j+1

n−j+1
. (8)

In our case, we can assume that the first point is sam-
pled with uniform probability, hence Prob(E1) = ni/n,
while the others are sampled with the probability func-
tion (6), therefore, after expanding the normalization con-
stant Z, for every j = 2, . . . , ζ, the conditional probability
Prob(Ej |E1, . . . , Ej−1) can be approximated as

(ni−j+1)e−α
2/λ2

(n−ni−j+1)e−ω2/λ2 + (ni−j+1)e−α2/λ2 , (9)

where α represents the average inlier-inlier distance, and
ω is the average inlier-outlier distance. Assuming that the
cardinality of MSS is smaller with respect to the number
of inliers, ni � ζ, we have

p ≈ δ
(

δe−α
2/λ2

(1− δ)e−ω2/λ2 + δe−α2/λ2

)ζ−1
. (10)

where δ = ni/n is the inlier fraction for a given model.
Since inliers determine compact cluster with respect to
outliers (ω > α), we have shown that this sampling strat-
egy increases the probability of extracting a pure outlier-
free MSS. In order to complete the picture on hypothesis
generation, we can observe, following [16], that the proba-
bility of drawing at least k outlier-free MSS out of m with
a given level of confidence ρ is obtained as:

ρ = 1−
k−1∑
j=0

(
m

j

)
pj(1− p)m−j . (11)

The increased effectiveness of the sampling can be con-
verted into either less samples or into an increase of the
quality of the sampled structures (while preserving the
same number of MSS).

Said that, drawing of MSS should be regarded as a
computational procedure for approximating the parame-
ter space Π: any information that can be profitably intro-
duced to make the approximation more accurate can be
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easily integrated in this step. For example various model
verification tests can be adopted in order to enforce desired
properties on the sampled structures. A notable example
consists in ensuring geometrical non-degeneracy of MSS.
A configurations of points is termed degenerate with re-
spect to a model if it does not admit a unique solution
with respect to that model [36], e.g ., collinear triplet of
point in case of plane estimation. For instance, in the
case of fundamental matrix estimation, a set of correspon-
dence is deemed as degenerate if five or more points lie on
the same plane in the scene [37], therefore a specific test
aimed to identify MSS where five or more correspondences
are related by a homography can be used to prune H from
ambiguous structure estimate. Other problem-depending
constraints can be imposed, e.g ., chirality constraints [38].

2.3. Clustering

To a certain extent, the Tanimoto distance promotes
the aggregations of points lying in the low rank compo-
nent of the preference space, since it takes into account
the linear dependence of the preference representations,
and characterizes outliers as the most separate points in
that space. In the outlier-free scenario of SGC, this space
is simply recovered via least-square regression: the eigen-
decomposition of the (flattened) preference-tensor trans-
lates the multi-modality of the data in the language of the
linear algebra, where the Occam principle is converted in
a bound on the rank of the similarity matrix.

w/o outliers with outliers
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Figure 3: T-Spectral vs. T-linkage. The results are obtained with
the knowledge of the correct number of models. Both methods are
effective in dealing with pseudo outliers (left column), however T-
spectral breaks down when data are contaminated. Indeed, the out-
put of T-Spectral (top right) can hardly be interpreted for model
fitting purposes. On the contrary, the four dominant models pro-
duced by T-Linkage (bottom right) are intelligible, albeit not fully
accurate.

As a matter of fact, spectral clustering has several ad-
vantages over other methods. It is able to deal with clus-
ters of arbitrary shape, (as opposed to other partitional
methods, as k-means, where the clusters are assumed to

lie in disjoint Voronoi cells). Moreover, it is less sensitive
than T-linkage (and J-linkage) to the choice of the inlier
threshold, because the segmentation is affected to less ex-
tent by ε, being mainly controlled by the number of desired
cluster specified as input. This is not surprising since the
parameter ε in T-Linkage controls the inlier threshold but
it also implicitly governs the orthogonality between points
represented in the Tanimoto space, and in practice, decides
the number of attained models.

Unfortunately, spectral clustering suffers the presence
of outliers. In this case, the naive strategy of increasing
the number of desired segments in order to collect together
outliers is of no help. In order to better grasp these as-
pects, it might be instructive to contrast T-linkage with a
method (henceforth dubbed T-spectral) that combines the
embedding in Tanimoto space (which is part of T-Linkage)
with spectral clustering, as illustrated in Figure 3. If gross
outliers contaminate the data, the clustering produced by
T-spectral is useless, as the outliers are attached to some
of the segments composed by inliers. On the contrary, even
though the presence of outlying data hinders T-Linkage,
the result of hierarchical clustering can be easily paired
with some a-posteriori outlier rejection strategy (in this
case consisting in selecting the four largest segments).

On the other hand, the greediness of linkage clustering
is a weak spot of T-linkage that affects the segmentation
outcomes. This can be recognized, for example, in the
tendency of loosing inliers during the segmentation step,
which results in lower statistical efficiency in the estima-
tion step. During the hierarchical clustering short-sighted
decisions can possibly be made with relatively high prob-
ability that lead to suboptimal results.

In the light of these considerations, it appears sensible
to combine the preference representation of T-linkage with
a “robust” spectral clustering approach, that caters for
outliers.

Hereinafter we will see how the ideas of exploiting a low
rank representation to segment the data, which is stylized
in spectral clustering, can be ”robustified”, by leveraging
on the low-rank and sparse decomposition literature.

2.3.1. Robust Spectral Clustering

The kernel matrix K defined in Equation (4) encodes
agreement between points on the preferred models.

Consider an ideal, binary n×n affinity matrix F which
encodes point membership to the same model/segment:

Fi,j =

{
1 if xi and xj are clustered together

0 otherwise
(12)

If points belonging to the same segment are arranged con-
secutively, the matrix F exhibits a block structure and
therefore has rank κ equal to the number of clusters in the
data.

As described in [25, 39] the problem of partitioning a
set of data points in κ segments starting from a positive
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semi-definite kernel matrix K is equivalent to approximat-
ing K in a least square sense by means of an ideal affinity
matrix F . In formulae, denoting by ‖ · ‖F the Frobenius
norm of a matrix, we are interested in:

min
F
‖K − F‖2F , (13)

under conditions on F to be further specified. This prob-
lem is usually formulated by introducing a matrix U ∈
Rn×k such that F = UU T, which represents a soft segmen-
tation of the data: the element Uij measures the probabil-
ity that the i-th point belongs to the j-th segment.

According to the constraints imposed on U , the so-
lution of (13) corresponds to different classical clustering
algorithms, such as spectral clustering or k-means. More
precisely Equation (13) can be expanded as:

min ‖K − UU T‖2F ⇐⇒
min trace[(K − UU T)T(K − UU T)] ⇐⇒
min trace(KTK)− 2 trace(U TKU) + trace(I) ⇐⇒
max trace(U TKU). (14)

The last equation becomes the objective of spectral clus-
tering when K represents the opposite of the Laplacian of
a graph and the columns of U are orthogonal. Since, it
has been demonstrated [39] that the Laplacian of a simi-
larity matrix can be viewed as the closest double stochastic
approximation in relative entropy of the similarity matrix
K, balanced partition are implicitly promoted. If K is
chosen as the Gramian matrix of the data and if orthogo-
nality, double stochasticity and non negativeness of U are
enforced, the considered trace maximization problem cor-
responds to k-means. Finally, for sake of completeness, we
recall that in the case in which K = XXT is the covari-
ance matrix of the data, under orthogonality constraint,
solving Equation (13) is tantamount of doing Principal
Component Analysis.

In summary the constraints that are usually imposed
on U are: U ≥ 0, rank(U) = κ, U TU = I and UU T is
doubly stochastic. Hard-clustering assignment implies or-
thogonality; being doubly stochastic represents a balanc-
ing condition on the sizes of the clusters; the non negativity
of U ensures physical meaning of the entry of U which can
be interpreted as the probability of points to belong to a
given segment. The last constraint is the most important
according to [25, 39], where it is highlighted as the key
ingredients for solving Problem (14) are the low-rank na-
ture of both the affinity matrix and U (since since k � n),
together with the non-negativeness of U .

Symmetric NMF (SymNMF) [28], that recently stood
out in the literature of cluster analysis, enforces exactly
these two proprieties. The idea at the basis of SymNMF
is to rephrase (14) in the equivalent formulation

min
U∈Rn×κ

+

‖K − UU T‖2F (15)

and hence to find U minimizing (15) using an improved
Newton-like algorithm that exploits the second-order in-
formation efficiently.

When data are contaminated by gross outliers K has
no longer low rank. For this reason, before applying Sym-
NMF, we search robustly for the lowest-rank matrix L and
the column-sparsest matrix S such that the data matrix
can be decomposed as

K = L+ S . (16)

This Robust PCA [40] step mimics in an outlier-resilient
way the projection of data on the space of κ eigenvec-
tors of the similarity matrix performed in spectral clus-
tering. Moreover it is easy to recognize the formulation
of LRR presented in Equation A.6 when the dictionary A
is chosen as the identity matrix. The decomposition (16)
can be computed with the Augmented Lagrangian Method
(ALM) [41], which solves the problem

arg min ‖L‖∗ + µ‖S‖1 s.t K = L+ S . (17)

The parameter µ has a provable optimal value [40] at
µ = 1√

n
, where n is the dimension of the square matrix

K. In other words, following the ideas in LRR (Equation
(A.6)) we are retaining the low rank part of the similarity
matrix, rejecting the sparse part of K that corresponds
to micro-clusters of outlying preferences. Please note that
this approximation differs from the one adopted by SGC
[24] where a low rank space is fit to a Gramian matrix in
a least square sense. We turned away from this approach
because a least squares fit is reliable as long as the MSS
are pure, but this property can not be ensured in presence
of outliers.

We can now apply the SymNMF machinery to L (in-
stead of K) in order to find a completely positive rank-κ
factorization L = UU T. A segmentation is readily ob-
tained from U by considering the matrix B with the same
dimension of U that has a one in each row where U achieves
its row-maximum, and zero otherwise. B represents a seg-
mentation, namely Bi,j = 1 means that point i belongs
to segment j. This last step is similar to the customary
k-means that comes at the end of spectral clustering.

Interestingly we can interpret the clustering produced
by SymNMF as a dimensionality reduction result in which
the data are projected on the directions corresponding to
the structures that explains better the data: the columns
of U form a basis of a latent space of the data, whereas the
rows collect the coefficients that express the data as linear
combinations of the basis vectors. Since in the preference
space the basis over which the points are represented is
determined by the sampled structures, the columns of U
can be thought as the κ ideal structures that well describe
the data. Once these models have been recovered, the
chicken-and-egg dilemma is disentangled and the multi-
model fitting problem is reduced to many single-model fit-
ting problems that can be solved, with the help of robust
statistics, by maximizing consensus.
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At this point, the matrix B is regarded as a provisional
segmentation of the points into κ segments containing out-
liers. The goal of the next section is to refine this segmen-
tation and prune outliers, by solving, within each segment,
a robust single model fitting.

2.4. Structure recovery and outlier pruning

Our robust spectral clustering produces an accurate
soft-segmentation of data, represented by matrix B which
allows us to reduce the multi-model fitting problem to
many single-fitting problems, which are solved by consen-
sus maximization followed by a refinement of the segmen-
tation guided by the principles of robust statistics.

2.4.1. Consensus maximization

Let us first observe that Φ1 (where 1 is a vector of ones)
is the sum of the preference vectors of all the points in Φ,
so its entries are the votes obtained by each model. Hence
finding the maximal entry of Φ1 is equivalent to doing a
sort of MSAC (M-estimator SAmple and Consensus) with
the Cauchy weighting function (Equation 2).

We have seen that columns of B = [B1, . . . , Bk] can be
regarded as indicators of the segments. Hence ΦBi is the
sum of the preference vectors of the points in the segment i,
and its maximal entry represents the most preferred model
in that segment. Therefore, the maxima over the columns
of ΦB are the indices of the models in Φ that achieve
maximum consensus in each segment. According to the
observation above, this is equivalent to running a MSAC
within each segment i with preference matrix (Φdiag(Bi)).
The above reasoning can be extended to the matrix U ◦B
with entries in [0, 1], that corresponds to a soft segmenta-
tion in which outliers are under-weighted (◦ denotes the
component-wise or Hadamard product).

Before this step we found beneficial to remove ”spu-
rious” models, according to the segmentation represented
by B, and to replace them with (tentatively) pure models.
In particular, we deem as ”spurious” those models that
have less then 50% of their points belonging to a single
segment; in practice, we label the points in Φ according
to the segmentation given by B and we remove the rows
where no label occurs at least than 50% of the times. New
models are obtained by drawing random MSS within each
segment i with probabilities given by the non-zero entries
of (U ◦B)i.

In summary, the maximal entry in each column of Φ(U◦
B) corresponds to the index of the most preferred model by
the points of the segment, hence we choose it as the model
that represents the segment. This could have been a final
result if the goal was to find the correct models. However,
having recognized the entangled nature of model fitting
and segmentation problems, we will update the segmenta-
tion after refining the model.

2.4.2. Robust Segmentation

The models computed in the previous step implicitly
define a new segmentation, by assigning points to the near-

est model. Within this segmentation, outliers are singled-
out as points with a residual higher than a threshold ε =
θ σ̂ where σ̂ is an estimate of the scale of the noise affect-
ing a particular model and θ is the same tuning constant
as in Equation (2) (set to 5.0 in our experiments).

The value of σ̂ can be obtained in several ways: it can
be user provided (σ̂ = σn) or can be estimated robustly as
the standard deviation of the residuals of the inliers of a
specific model.

The second solution is to be preferred, as it leaves the
choice of the global noise scale σn a non-critical step and
makes the threshold ε data-adaptive, i.e. different for each
model. As a robust scale estimator we selected [42]:

σ̂ = Sn
.
= c medi(medj(|ri − rj |)), (18)

(where ri, i = 1, . . . , n denotes the residual between the
data xi and the considered model) as a valid alternative
to the more common median absolute deviation (MAD),
which is aimed at symmetric distributions, and has a low
(37%) Gaussian efficiency. Sn instead copes with skewed
distributions, has the same breakdown as MAD but a
higher Gaussian efficiency (58%). The efficiency of a ro-
bust estimator is defined as the ratio between the lowest
achievable variance in an estimate to the actual variance
of a (robust) estimate, with the minimum possible vari-
ance being determined by a target distribution such as the
normal distribution. Asymptotic efficiency is the limit in
efficiency as the number of data points tends to infinity.

The factor c can be set to 1.1926 for consistency with
a normal distribution, but other distributions require dif-
ferent values (see [42] for details). In our experiments it
has been tuned heuristically by analysing the distribution
of the residuals of inliers given by the ground-truth

For each sequence (or pair) the true standard deviation
of inliers and the estimator Sn had been computed, their
ratio being a measure of c. The value of c for each exper-
iment is obtained as the solution of a scalar least-squares
system. Values are reported in Table 1.

Experiment σn c

Vanishing point detection 0.397 1.19

Motion segmentation (two-views) 0.005 1.53

Planar segmentation (two-views) 0.013 2.11

Motion segmentation (video) 0.005 1.51

Table 1: Parameters used in the experiments. σn is the overall
standard deviation of the residuals of the inliers, as computed from
ground-truth (units refer to normalized image coordinates). c is the
value in Equation (18) tuned on the ground-truth data.

We noticed that in some cases most of the outliers are
assigned to a single segment, resulting in a contamination
greater than 50% that inevitably skews Sn. As a safeguard
against this, Sn is computed only on the residuals smaller
than θσn (with θ = 5.0).
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Algorithm 1 Robust Preference Analysis (RPA)

Input: data points X, an estimation of the noise variance σn, the number κ of sought structures

Output: segmentation

Generate tentative structures H = {h1, . . . , hm}; . biased sampling in Tanimoto space;
Build the matrix Φ, using the Cauchy weighting function in Equation (2);
Define the matrix K as in Eq.(4);
K = L+ S; . low-rank decomposition
L = UU>; . SymNMF
B = maxrows U ; . segmentation matrix
Replace spurious models with pure ones in H, according to the segmentation B;
{ι1, . . . , ικ} = maxcols;Φ(U �B) . consensus maximization
for j=1,. . . , k do . robust segmentation

for iter=1,. . . , 2 do
estimate Sn for the model hιj using Eq. (18);
outliers are points with residual > 5.0Sn;
recompute hιj with least-squares fit on the inliers;

end for
end for

The model is then refined with a least-squares fit on
the inliers, and the threshold ε is computed again (for each
model) to determine the final segmentation.

The whole procedure is summarized in Algorithm 1.

3. Experimental evaluation

In this section we assess experimentally the effective-
ness of our algorithm. All the code is written in Matlab
and is available for download3. We used the inexact ALM
code [43], whereas the SymNMF implementation is taken
from [28].

As customary in the literature, the results report the
misclassification errors (ME), i.e. the percentage of mis-
classified points.

The input parameters of RPA are reported in Table 1
and have been kept fixed in each experiment.

Vanishing point detection. In this experiment we compare
the performances of RPA with MFIPG on vanishing point
detection using the York Urban Line Segment Database
[44], a collection of 102 images of architectural Manhattan-
like environments (i.e. scenes dominated by two or three
mutually orthogonal vanishing directions). Annotated line-
segments that match with the 3-d orthogonal frame of the
urban scene are provided with the ground-truth; no out-
liers are present in the data.

The aim is to group the supplied segments in order to
recover two or three orthogonal vanishing points. Specifi-
cally, in this scenario, the sought models are two or three
points on the projective plane (possibly lying on the line at
infinity) which identify vanishing direction, and a segment

3http://www.diegm.uniud.it/fusiello/demo/rpa/

is said “to belong” to a vanishing point if its supporting
line, embedded in the projective plane, is incident to it.

MFIGP (Model Fitting with-Interacting Geometric Pri-
ors) is a recently proposed method [45] that builds on the
PEARL [46] algorithm adding high-level geometric priors.
In particular, in this application, an additional term ex-
pressing interaction between vanishing points is included
to promote the extraction of orthogonal vanishing points.
We used the code available from [43] with parameters
tuned manually for each single image, starting from those
recommended as default in the original paper. We take
into comparison also J-Linkage and T-Linkage. In this ex-
periment all the competing method were tuned with the
knowledge that the data were outlier-free.

The differences among the methods can be appreciated
by analyzing the average and median ME, collated in Table
2: these quantitative results confirms that RPA achieves
the lowest ME, followed by T-linkage. The attained seg-
mentations are highly accurate and the estimated van-
ishing points are orthogonal without enforcing this con-
straints as a prior information on segments distribution,
as happen in MFIGP.

Figure 4 shows three images where RPA achieved the
worst ME. The sub-optimal performance of RPA on these
three images can all be ascribed to SymNMF that, simi-
larly to spectral clustering, struggles in dealing with clus-

J-linkage T-linkage MFIGP RPA

Mean 2.85 1.44 3.51 1.08

Median 1.80 0.00 0.16 0.00

Table 2: Misclassification error (ME %) on YorkUrbanDB.
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P1080033 (ME=12.31) P1080056 (ME=17.05) P1080074 (ME=26.74)

Figure 4: A sample of the worst RPA results on vanishing point detection. Lines incident to the same vanishing points are represented
with the same color.

ters of heavily unbalanced sizes.

Two-views segmentation. In this experiment we exploit
the Adelaide Robust Model Fitting Data Set [47], which
consists of 38 image pairs, 19 related by multiple funda-
mental matrices and 19 by multiple homographies, with
gross outliers. The task consist in grouping points exhibit-
ing a consistent motion between the two images by fitting
fundamental matrices to subsets of point matches or seg-
menting them according to plane membership by fitting
homographies.

We compared RPA with T-Linkage, which uses prefer-
ence analysis and agglomerative clustering, and RCMSA
(available from [48]), a robust method which relies on an
efficient graph cut clustering based on a label optimization
framework.

RPA and T-Linkage shared the same biased sampling
in preference space: we drew 3n hypotheses by uniform
sampling and we used them to instantiate other 3n MSSs
according to Equation (6). In all the experiments λ was
set to the median of the Tanimoto distances between data
points.

We provided T-Linkage with the inlier thresholds com-
puted from the ground-truth segmentation for each single
image pair, and we retained as inliers the largest κ clus-
ters, κ being the correct number of models according to
ground-truth. Parameters of RCSA are those provided by
the authors in their implementation [21].

Results are reported in Table 4 and Table 3, and demon-
strate that our method outperforms its competitors, ob-
taining the lowest ME in most cases and the best mean
and median results overall. Some of the worst instances,
where RPA achieves the highest ME, are reported in Fig-
ure 5 and Figure 6.

While for fundamental matrices (Figure 5) the subjec-
tive quality of the worst result appears to the acceptable,
in the case of homographies the three worst results repre-
sent defective segmentations, and the ME is indeed higher.
By scrutinizing the intermediate results, it turns out that
for jonnsonb the blame should be put on Symmetric NMF,
which fails to find a correct segmentation of the data,
whereas for library and oldclassicswing it is the value

of σn that is respectively too low (over-segmentation) and
too high (under-segmentation). While there are no clear
remedies for the first case, the last two can be cured by a
better choice of σn: for example, the ME drops to 24.53%
for library and to 0.55% for oldclassicswing after as-
signing to σn the standard deviation of the residuals of the
inliers for that specific image pair.

κ %out T-linkage RCMSA RPA

biscuitbookbox 3 37.21 3.10 16.92 3.88

breadcartoychips 4 35.20 14.29 25.69 7.50

breadcubechips 3 35.22 3.48 8.12 5.07

breadtoycar 3 34.15 9.15 18.29 7.52

carchipscube 3 36.59 4.27 18.90 6.50

cubebreadtoychips 4 28.03 9.24 13.27 4.99

dinobooks 3 44.54 20.94 23.50 15.14

toycubecar 3 36.36 15.66 13.81 9.43

biscuit 1 57.68 16.93 14.00 1.15

biscuitbook 2 47.51 3.23 8.41 3.23

boardgame 1 42.48 21.43 19.80 11.65

book 1 44.32 3.24 4.32 2.88

breadcube 2 32.19 19.31 9.87 4.58

breadtoy 2 37.41 5.40 3.96 2.76

cube 1 69.49 7.80 8.14 3.28

cubetoy 2 41.42 3.77 5.86 4.04

game 1 73.48 1.30 5.07 3.62

gamebiscuit 2 51.54 9.26 9.37 2.57

cubechips 2 51.62 6.14 7.70 4.57

mean 9.36 12.37 5.49

median 7.80 9.87 4.57

Table 3: Misclassification error (ME %) in motion segmentation.
κ is the number of ground truth structures and % out is the percent-
age of outliers. All figures are the average of the middle 3 out of 5
runs.

Video motion segmentation. In these experiments we con-
sidered Sparse Subspace Clustering (SSC) [30] a state-of-
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toycubecar (ME=9.43) boardgame (ME=11.65) dinobooks (ME=15.14)

Figure 5: Instances of motion segmentation where RPA achieved the worst ME. Model membership is colour coded, black crosses (×) are
outliers.

oldclassicswing (ME=25.25) jhonsonb (ME=26.76 ) library (ME=31.29)

Figure 6: Instances of plane segmentation where RPA achieved the worst ME. Model membership is colour coded, black crosses (×) are
outliers.

1R2RCR (ME=19.00) 2T3RCRTP (ME=14.41) cars9 (ME=29.17)

Figure 7: Some of the worst results obtained by RPA on video motion segmentation. Model membership is colour coded, black crosses
(×) are outliers.

the-art technique that exploits a sparse representation to
build an affinity matrix, which in turns is segmented by
spectral clustering. The input data is a set of features tra-
jectories across a video taken by a moving camera, and
the aim is to recover the different rigid bodies moving in-
dependently.

Motion segmentation can be seen as a subspace seg-
mentation problem under the assumption of affine cam-
eras. In this case all feature trajectories associated with
a single moving object lie in a linear subspace of dimen-
sion at most 4 in R2f (where F is the number of video
frames). For this reason feature trajectories of a dynamic
scene containing n rigid motion lie in the union of n low

dimensional subspace of R2f and segmentation can be re-
duced to clustering data points in a union of subspaces.
Please note that SSC is tailored specifically to subspace
segmentation, hence it cannot be applied to fit fundamen-
tal or homography models, for they are not linear nor affine
subspaces.

We use the 155 video sequences from the Hopkins 155
dataset [49], each containing two or three moving objects.
In order to evaluate the robustness of the method, we add
to each sequence of the dataset 20% of outlying trajecto-
ries which are generated by starting a random walk at a
random point in the image and adding increments taken
from a trajectory (picked at random in the sequence) be-
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κ %out T-linkage RCMSA RPA

unionhouse 5 18.78 48.99 2.64 10.87

bonython 1 75.13 11.92 17.79 15.89

physics 1 46.60 29.13 48.87 0.00

elderhalla 2 60.75 10.75 29.28 0.93

ladysymon 2 33.48 24.67 39.50 24.67

library 2 56.13 24.53 40.72 31.29

nese 2 30.29 7.05 46.34 0.83

sene 2 44.49 7.63 20.20 0.42

napiera 2 64.73 28.08 31.16 9.25

hartley 2 62.22 21.90 37.78 17.78

oldclassicswing 2 32.23 20.66 21.30 25.25

barrsmith 2 69.79 49.79 20.14 36.31

neem 3 37.83 25.65 41.45 19.86

elderhallb 3 49.80 31.02 35.78 17.82

napierb 3 37.13 13.50 29.40 31.22

johnsona 4 21.25 34.28 36.73 10.76

johnsonb 7 12.02 24.04 16.46 26.76

unihouse 5 18.78 33.13 2.56 5.21

bonhall 6 6.43 21.84 19.69 41.67

mean 24.66 28.30 17.20

median 23.38 29.40 17.53

Table 4: Misclassification error (ME %) in plane segmentation. κ
is the number of ground truth structures and % out is the percentage
of outliers. All figures are the average of the middle 3 out of 5 runs.

κ = 2 κ = 3

SSC RPA SSC RPA

Checker
mean 8.19 4.53 9.58 6.09

median 0.32 2.72 2.91 3.77

Traffic
mean 9.89 7.16 12.21 7.88

median 1.93 4.80 5.87 4.77

Others
mean 17.97 13.68 22.84 19.15

median 1.07 6.93 22.84 19.15

All
mean 6.33 9.84 10.94 7.24

median 3.65 0.82 3.68 4.38

Table 5: Misclassification error (ME %) in video motion segmen-
tation with 20% of outliers. Every row correspond to a subset of
sequences. κ is the number of ground truth structures.

tween consecutive frames (again picked at random).
The input parameters of SSC are those provided by the

authors in the code, available from [50]. Feature coordi-
nates are normalized to the interval [−1, 1].

Some failure cases of RPA are reported in Figure 7. In
particular, in 1R2RCR and cars9 two independent motions
are incorrectly merged because the intermediate segmen-

tation produced by SymNMF is inaccurate. As a conse-
quence RPA hallucinates a small moving object among
the outliers, whereas in cars9 the background is over-
segmented in two motions. The suboptimal segmentation
of 2T3RCRTP is due to the looseness of σn, as the inlier
threshold of the motion defined by the translating box is
not tightly estimated and some background points are in-
correctly assigned to it. This problem is common in pres-
ence of nearly-degenerate motions, since, when the dimen-
sion of some subspace drops, the scale of the residuals of
its points is accordingly affected and determining a global
inlier threshold becomes difficult.

The figures reported in Table 5 show that RPA achieves
results comparable to SSC, which anyway is specifically
designed for subspace recovery. RPA, instead, is able to
handle a variety of structures, as it combines the main
ideas of SCC – i.e. modeling outliers as sparse components
– with the versatility of the preference representation.

Sampling. In order to complement Figure 2, where a com-
parison of biased sampling methods is reported on a two-
view motion segmentation example, we also investigate the
performance of the guided sampling in the preference space
on instances of vanishing points estimation, homography
fitting, and video motion segmentations problems. Results
are collected in Figure 8 where it can be appreciated that
in all the applications is beneficial to exploit the informa-
tion provided by Tanimoto in terms of pure MSS extracted.
Moreover the specification of the locality bias λ seems to
be less critical.

4. Conclusions

We argued that preference analysis coupled with robust
matrix decompositions yield a versatile tool for geomet-
ric fitting, which exploits profitably the interplay between
consensus and preference and is robust to outliers.

Our strategy was to reduce the multi-model fitting task
to many single robust model estimation problems attempt-
ing to solve the chicken-and-egg dilemma. In particular,
we conceived three levels of protection against outliers.
The first one is the adoption of the Cauchy function to
model points preferences. The second level appears in the
robust low rank approximation, where Robust PCA and
SymNMF are used to gives rise to a soft segmentation
where outliers are under-weighted. Robust extraction of
models in a MSAC-like framework, together with outlier
rejection based on a robust, model-specific scale estimate,
is our third safeguard against outliers. The value of σn
and the number of models κ are the only inputs required
from the user.

Experiments have provided evidence that our method
compares favorably with state-of-the-art competing algo-
rithms, being more accurate than T-linkage, MFIGP and
RCMSA and as accurate as SSC, although the latter only
works with subspaces.
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Vanishing points - P1020826 Plane segmentation - johnsonb Video motion segmentation - 1RT2TC
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Figure 8: Comparison of different sampling strategies on sample vanishing point (first column), plane segmentation (second column) and
video motion segmentation (third column) experiments.
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Appendix A. Background: subspace recovery

Multiple subspace estimation is a particular instance
of multi-model fitting that can be encountered in many
Computer Vision applications – from image segmentation
to motion segmentation, or temporal video segmentation
– where a mixture of subspaces has to be fitted to high
dimensional data.

In this scenario, a recent trend [30, 51] has been concen-
trating on sparse representation and low rank constraints
in order to derive a similarity matrix robust to outliers
that, in turn, is fed to spectral clustering.

The notion of sparsity [52] is straightforward: a vector
is sparse if it can be exactly or approximately represented
as a linear combination of only a few vectors selected from
a predetermined dictionary.

This property is encoded by the `0 “norm” ‖v‖0 =
|{k : (v)k 6= 0}|: a vector admits a k-sparse representation
with respect to a dictionary D if it can be written as Dc
and ‖c‖0 = k.

While the reconstruction of a signal from its sparse rep-
resentation is a simple linear transform, the inverse prob-
lem

arg min
c
‖c‖0 such that Dc = v, (A.1)

is a non-linear optimization that, in general, is intractable.
This fact has motivated the flourishing of many methods
in the compressed sensing literature based on the convex
relaxation of the `0-norm. The `1-norm, defined as the
sum of the absolute values of the entries ‖v‖1 =

∑
k|(v)k|,

serves to replace the problem in Equation (A.1) with the
following tractable optimization objective:

arg min
c
‖c‖1 such that Dc = v. (A.2)

At a high level, the effectiveness of sparsity-oriented ap-
proaches can be explained viewing this property as a useful
way of constraining the complexity of a vector represen-
tation, which can be very generally justified by Occams
razor. Sparse Subspace Clustering (SSC [30]) exploits this
principle to derive a segmentation of high dimensional
data. The main idea of SCC is to take advantage of the
“self-expressiveness” of the input: every point can be ex-
pressed as a linear combination of few other points lying in
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the same subspace. A sparse `1 optimization program cap-
tures this property by defining a collection of vectors of co-
efficients ci using as a dictionary the data matrix D = X:

arg min
ci∈RN

‖ci‖1 subject to xi = Xci and (ci)i = 0.

(A.3)
The constraint (ci)i = 0 removes the trivial solution that
decomposes a point xi as a linear combination of itself.
In this way the sparsest representation of xi would only
select vectors from the subspace in which xi happens to
lie. In matrix notation the problem in Equation (A.3) can
be rewritten as

min
C
‖C‖1 such that X = XCT, diag(C) = 0. (A.4)

In case of data contaminated by noise and outliers, instead
of expressing a data point as an exact linear combination of
other points, it is convenient to introduce a penalty term:

min
C
‖C‖1+µ‖E‖2,1 such thatX = XCT +E, diag(C) = 0.

(A.5)

The `1,2-norm is defined as ‖E‖2,1 =
∑
j

√∑
i |Ei,j |2. The

underlying assumption is that a data point can be written
as xi = Xci + ei where ei is a sparse vector that models
gross outlying entries of xi.

A related approach, termed Low Rank Representation
(LRR) [51], derives a similar convex optimization problem

min
C
‖C‖∗ + µ‖E‖1 such that X = DCT + E (A.6)

where D is the dictionary matrix, either constructed in
advance or equal to X, and ‖C‖∗ =

∑
σi(C) is the nuclear

norm that equals to the sum of all the singular values σi(C)
of C.

Both SSC and LRR then use the optimal C to define
an affinity matrix. It is quite natural to define a similarity
measure between points as S = |C| + |C|T, because non-
zero elements of ci correspond to points from the same
subspace of xi. This similarity matrix is finally used to feed
spectral clustering and a partition of the data is obtained.

The main difference between the two methods is that
SSC minimizes the `1-norm of the representation matrix to
induce sparsity while LRR tries to minimize nuclear norm
to promote a low-rank structure. Both methods however
rely on the same idea: taking advantage of the intrinsic
redundancy of multi-model data to embed the data point
in a discrete metric space to facilitate the segmentation
task that is solved thanks to spectral clustering.

Interestingly, this first-represent-then-clusterize approach
is evocative of the preference approach philosophy.
If T-Linkage is taken in comparison, the representation
matrix C corresponds to the preference embedding, whereas
the similarity S plays the same role of the Tanimoto dis-
tances. Moreover, as sparsity is concerned, outliers can be
recognized in practice as sparse vectors in the preference
space, since the number of sampled structures supporting

outliers is considerable smaller than the number of struc-
tures supporting an inlier (typically an outlier is explained
only by the structures it has happen to generate by the
MSS it belongs to).

There are also some deep differences, though. The pref-
erence representation proposed in T-Linkage is not limited
to vectorial (and affine) subspace. This comes at the cost
of choosing a correct inlier threshold – a parameter that
has geometrical meaning but is highly data depended– and
of the effectiveness of the sampling scheme adopted to gen-
erate hypotheses. On the other hand, SSC and LRR de-
pends on the regularization coefficient µ to handle outliers
and noisy data. As the segmentation is concerned, spec-
tral clustering requires to know in advance the number of
models, whereas the greedy linkage strategy, adopted by
T-Linkage, can work without this parameter.
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